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Abstract

Geometric modeling has proved to be crucial to computer graphics and computer aided geometric

design �CAGD�� During the past several decades� numerous geometric formulations have been proposed

for a large variety of geometric modeling applications� In this paper� we survey the diversity of shape

representations ranging from the primitive polynomial to the sophisticated Non�Uniform Rational B�

Spline �NURBS�� We demonstrate that� among various geometric representations� NURBS have become

an industrial standard primarily because of their many superior properties� By reviewing commonly

used design paradigms such as interpolation� approximation� interactive modi�cation and variational

optimization� we can also show that these conventional geometric design techniques are generally awk�

ward when designers are confronted by complex� real�world objects� This is primarily because they only

allow free�form primitives such as NURBS to be indirectly manipulated through numerous degrees of

freedom �DOFs�� To overcome the disadvantages of this indirect process� we summarize the prior work

of physics�based modeling and review dynamic NURBS �D�NURBS� as a physics�based generalization of

geometric NURBS for shape design� D�NURBS can unify the features of the industry�standard NURBS

geometry with the many demonstrated conveniences of interaction within the new physics�based design

framework� We demonstrate that D�NURBS can not only serve as a basis for the future research of

physics�based geometric design but also become readily appropriate for a large variety of important

applications in graphics� vision� and scienti�c visualization�
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� Introduction

Geometric modeling is concerned with the mathematical representation of geometric entities and their

application to the design of objects by computer� Geometric modeling is crucial to a variety of �elds

from CAGD to computer graphics� virtual reality� medical imaging� and computer vision� During the past

several decades� numerous geometric formulations ranging from the primitive polynomial to sophisticated

rational splines have been proposed for a large variety of geometric modeling applications�

Geometric computation requires that shapes be represented in a precise and unambiguous manner and

that the mathematical formulation be �exible for free�form design� Geometric objects can be represented

with simple parametric polynomials� piecewise non�rational or rational splines� domain�less recursive subdi�

vision surfaces� and implicit functions� NURBS ���	
� among frequently used representations� have become

an industrial standard for geometric design� This is primarily because they provide a uni�ed mathemat�

ical formulation for representing not only free�form curves and surfaces like B�splines� but also standard

analytic shapes such as conics� quadrics� and surfaces of revolution�

Many design techniques have been developed for CAGD to achieve various design and manufacturing

requirements� First� designers can specify geometric entities by either interpolating or approximating a set

of regular data points� scattered data points� or boundary curves� Second� designers can indirectly manipu�

late the DOFs of the underlying geometric formulation to achieve interactive shape design� Third� through

the process of cross�sectional design� they can design surfaces by specifying generator curves� Finally� users

can also utilize constraint�based optimization methods to determine free parameters� In general� industrial

design requirements can be posed as both quantitative functional and qualitative aesthetic criteria� The

latter ones are usually satis�ed through the use of optimization techniques�

Traditional geometric design is a kinematic process� It require the designer to achieve desired shapes

through the indirect manipulation of many DOFs� This conventional shape modi�cation process can often

be clumsy and laborious� because geometry is both abstract and static� Pure geometry does not have

the intuitive behavior of precomputational� physical design media such as modeling clay� The design and

manufacture process� however� requires a mechanism which can accomplish the interactive modi�cation of

geometric information both e�ciently and precisely� Unfortunately� traditional design methodology can

not o�er us such a dynamic and interactive framework for time�varying requirements� To bridge the gap

between geometry and the requirements of design and manufacturing� we have developed D�NURBS and

physics�based shape design� overcoming the design di�culties of the conventional geometric modeling� As

a result� we examine how to associate physical dynamics with abstract geometry� We can demonstrate that

D�NURBS� built upon industry�standard geometric NURBS� provide a uni�ed scheme for various shape

representations as well as design paradigms�
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Figure �� The three�dimensional parametric curve and its parametric domain�

��� Overview

In Section � we review geometric modeling methods� From Section � to Section �� we survey the progression

of computer�aided design from the purely geometric to the physics�based paradigms� We start with a review

of geometric design �Section �� and discuss some of its limitations �Section ��� We then review variational

design which addresses some of these limitations in Section �� In Section �� we summarize prior work in

physics�based design which may be viewed as a generalization of variational design� The advantages of the

physics�based modeling approach will serve as the motivation for D�NURBS which will be developed in

Section � for geometric design� Section � concludes the paper�

� Geometric Representation

In this section� we review frequently used geometric representations including primitive polynomials� para�

metric splines� subdivision forms� algebraic functions� and NURBS �more detailed materials can be found

in ���� ��� �� ��� �
��

��� Parametric Curves

A parametric curve is de�ned as a function of one parameter u over an interval domain I � c � c�u� �see

Fig� ��� The parametric formulation supports straightforward geometric computation� It can be easily

extended to higher dimensions�
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����� Polynomial Forms

From the computational viewpoint� �nite�degree polynomials are ideal for representing and approximat�

ing geometric entities because polynomials are closed under di�erentiation� integration� and arithmetic

operations� The best known polynomial representation is the monomial form of degree n�

f�u� � a� � a�u� � � � � anu
n� ���

Despite its simplicity� the computational advantage of ��� is counteracted by the fact that the ai in ��� do

not provide any intuitive insight into the curve shape beyond the point u � ��

In addition� a polynomial curve can be de�ned by a set of n�� coe�cients along with a knot sequence

t�� � � � � tn

f�u� � a�L
n
��u� � � � � � anL

n
n�u� ��

where Ln
i �u� are Lagrange polynomials of degree n satisfying Ln

i �uj� � �ij � and � is the Kronecker delta�

It is apparent that the polynomial curve interpolates all the ai� However� the interpolating curve ex�

hibits unwanted oscillation� especially for high�order polynomials� Therefore� both the monomial and the

Lagrangian forms are not suitable for the construction of piecewise smooth curves�

Alternatively� a modeler can use Hermite polynomials Hn
i �u�

f�u� � D�a�H
n
� �u� �D�a�H

n
� �u� � � � � �D�n�����a�H

n
�n������u� ���

�D�n�����a�H
n
�n������u� � � � � �D�a�H

n
�n����u� �D�a�H

n
n �u�

where Djai � f �j��i�� i � �� �� j � �� � � � � �n � ���� and n is odd� Even�degree Hermite polynomials

require a di�erent treatment �see ���
 for the details�� Although ��� is geometrically intuitive� the Hermite

interpolant has a severe drawback�designers must be provided with high�order derivative information in

order to achieve the desired order of continuity across the adjacent curve spans� Unfortunately� derivative

information is neither available nor easily derived in most applications�

To overcome prior di�culties� de Casteljau and Bezier independently developed a curve formulation�

now called Bezier curves� based on Bernstein polynomials Bn
i �u��

f�u� � a�B
n
� �u� � � � � � anB

n
n�u� ���

where

Bn
i �u� �

�
B� n

i

�
CA ��� u�n�iui� i � �� �� � � � � n�
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Bezier points a�� � � � � an form the Bezier polygon� Unlike the coe�cients in �������� Bezier control points

are viewed as design tools to generate a free�form curve� The control polygon is both simple and easy to

use mainly because Bernstein basis functions have many important features such as� �i� partition of unity�

�ii� positivity� and �iii� recursive evaluation� Feature �i� ensures Bezier points are invariant under a�ne

transformation� Features �i� and �ii� guarantee that the curve segment resides within the convex hull or

Bezier polygon and that the Bezier curve has a variation diminishing property� Feature �iii� serves as a

basis for the well known de Casteljau algorithm which is used to evaluate a curve through repeated linear

interpolation� This recursive evaluation has proven to be both computationally e�cient and stable �note

that it is slower than Horner�s rule�� Other important properties of Bernstein polynomials include degree

elevation and subdivision �see also ���
 for the details about the di�erentiation and integration of Bernstein

polynomials and Bezier curves��

����� Parametric Splines

The above modeling techniques are relatively simple and robust� The only available means for modeling

complex shapes� however� is to increase the degree of the basis functions� Higher order polynomials a�ord

greater �exibility at the expense of more complex geometric computation� but they are not quite satisfactory

because they tend to introduce spurious undulations between interpolating points� Such oscillations are not

implied by the data points themselves� Moreover� designers have to enforce extra continuity requirements

where two adjacent polynomials meet� This� in general� complicates the design task tremendously� One

alternative is to use piecewise polynomials� or splines�

The mathematical theory of splines was originated by Schoenberg �	�
 in �	��� A spline curve is a

piecewise univariate function satisfying a set of continuity constraints� The spline can be categorized in

terms of interpolation�approximation schemes or global�local schemes� In �	� de Boor proposed B�splines

from the standpoint of approximation theory ��
� During �	�� and �	��� Riesenfeld and Gordon proposed

B�splines as a powerful and proper generalization of Bernstein polynomials for free�form curve design

�	�� ��
�

A B�spline curve is the combination of a set of piecewise polynomial functions with n�� control points

pi

c�u� �
nX

i��

piBi�k�u� ���

where u is the parametric variable and Bi�k�u� are B�spline basis functions� Assuming basis functions of

degree k � �� a B�spline curve has n � k � � knots ti in a non�decreasing sequence� t� � t� � � � � � tn�k �

�



B�spline basis functions are de�ned recursively as

Bi���u� �

���
��

� for ti � u � ti��

� otherwise
�

with

Bi�k�u� �
u� ti

ti�k�� � ti
Bi�k���u� �

ti�k � u

ti�k � ti��
Bi���k���u��

The parametric domain is tk�� � u � tn��� Similar to Bezier points in ���� de Boor points pi form the

control polygon� Many attractive and important properties follow immediately including the following�

� Partition of unity� positivity� and recursive evaluation for B�spline basis functions�

� B�splines intrinsically provide various smoothness criteria� The curve is Ck�j continuous at a j�fold

knot�

� B�splines include Bezier curves as their subset� Composite Bezier curves equivalent to a B�spline

curve can be easily obtained by means of multiple knot insertion at every old knot until all knots are

of multiplicity k�

� In contrast to Bezier curves� B�splines have a local control property�the adjustment of one control

point a�ects the curve only locally�

� Invariance under linear transformation�

� Strong convex hull and variation diminishing properties�

A recursive evaluation algorithm that can e�ciently evaluate B�spline curves was invented by Mans�eld�

de Boor� and Cox ��� 
� B�spline derivative and integration formulas are discussed in detail in ���
�

One important advantage of B�splines over Bezier polynomials is that� in order to increase the potential

�exibility of B�splines� a modeler need not raise the degree of the basis functions� Instead� this goal can

easily be achieved through knot insertion with which the number of B�spline DOFs are increased while the

order of the basis function remains unchanged�

��� Parametric Surfaces

Since the pioneering work by Coons and Bezier in the late ���s� CAGD has been dominated by the theory

of rectangular surface patches� Two predominant modeling schemes are control point based �Fig� �a��

and trans�nite based �Fig� �b�� representations� Recently� many di�erent approaches have been derived

for representing smooth surfaces� Today� parametric surfaces can be categorized as follows�
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Figure � Control point based and trans�nite representations�

Directrix�Generator The surface is swept out by sliding a generator curve across a set of directrices�

Three essential constituents include directrices �longitudinal curves�� correspondence rules� and gen�

erators� To make the generated surface satisfy continuity requirements� the constituents must be

su�ciently smooth� Typical examples are conic lofting surfaces and surfaces of revolution�

Trans�nite Patch The blending surface interpolates a network of given curves �e�g�� the Coons patch��

Multiple Patch The surface is a collection of �smaller� patches �e�g�� the Bezier patch� and n�sided

patches��

Carpet Method The surface is a set of multiple patches� and adjacent patches are constrained to maintain

certain continuity conditions �e�g�� B�splines��

New Representations Typical examples are recursive subdivision surfaces� irregular B�spline�like sur�

faces� multivariate B�splines� and algebraic patches�

����� Tensor�Product Surfaces

Among various surface forms� the tensor�product surface is the simplest and most popular scheme because

it is a straightforward generalization of its curve predecessor� Given two sets of basis functions fFi�u�g

and fGj�v�g for curves� a general tensor�product surface can be constructed as a linear combination of the

composite set of basis functions fFi�u�Gj�v�g as follows�

f�u� v� �
X
i

X
j

ci�jFi�u�Gj�v�� ���

�
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Figure �� Rectangular surface and its parametric domain�

Fig� � illustrates a tensor�product surface and its parametric domain� Because of the special construction

of ���� the properties of tensor�product surfaces are usually determined by those of the underlying curve

schemes� Tensor�product surfaces of monomial and Lagrangian forms can easily be derived in light of ���

and ��� respectively� Analogous to ���� the tensor�product Bezier surface can be de�ned as

f�u� v� �
X
i

X
j

bi�jB
m
i �u�Bn

j �v�� ���

Like Bezier curves� the many nice properties of Bezier surfaces include the following�

� All isoparametric curves are Bezier curves�

� Partial derivatives along the boundary can be formulated explicitly�

� The strong convex hull property�

� Degree elevation and subdivision are carried out along all rows or all columns�

� A�ne invariance�

Bezier surface evaluation can be implemented by successively applying the de Casteljau algorithm on

relevant rows and columns �note that the evaluation order is irrelevant�� In analogy to Bezier curves�

complex surfaces can be constructed by stitching together a number of Bezier patches smoothly�

Likewise� a tensor�product B�spline surface is de�ned over the parametric variables u and v as

s�u� v� �
mX
i��

nX
j��

pi�jBi�k�u�Bj�l�v�� ���
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A B�spline surface has �m����n��� control points pi�j � Assuming basis functions along the two parametric

axes of degree k�� and l��� respectively� the number of knots is �m�k����n�l���� The non�decreasing

knot sequence is t� � t� � � � � � tm�k along the u�axis and s� � s� � � � � � sn�l along the v�axis� The

parametric domain is tk�� � u � tm�� and sl�� � v � sn��� If the end knots have multiplicity k and l in

the u and v axis respectively� the surface patch will interpolate the four corners of the boundary control

points�

B�spline surfaces generalize Bezier patches� Their primary properties include the following�

� All isoparametric curves are B�spline curves�

� Local control�

� Knot insertion increases the DOFs while keeping the degree of basis functions unchanged�

� Strong convex hull�

� B�splines include Bezier surfaces as their subset� The piecewise Bezier representation of B�splines

can be obtained through multiple knot insertion�

� The B�spline control polygon converges to the B�spline surface as the number of knots increases�

� B�spline control points permit interactive manipulation�

����� Trans�nite Surfaces

Unlike the previous control point based schemes� the trans�nite approach allows surfaces to be determined

by a set of prescribed boundary curves� Before the advent of computers� trans�nite�based surfaces were

generated with the lofting technique� One of the most popular trans�nite surfaces is the Coons patch

which can be obtained by blending four boundary curves either bilinearly or bicubically� The bilinearly

blended Coons patch can be concisely formulated with the Boolean sum

�P �f � �P� � P��f � �P� � P� � P�P��f �	�

where two operators P�� and P� are de�ned in terms of Lagrange polynomials in �� and four boundary

curves

�P��f � f��� v�L�
��u� � f��� v�L�

��u�

�P��f � f�u� ��L�
��v� � f�u� ��L�

��v�

	



f(0,v)

f(1,v)
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f(u,0)

�a� �b�

f(0,v)
f(u,1)

f(1,v)

f(u,0)

�c� �d�

Figure �� The boolean�sum construction of a bilinearly blended Coons patch�

Fig� � illustrates a Boolean sum construction of a bilinearly blended Coons patch� It is apparent that a

bilinearly blended Coons patch interpolates four boundary curves� When abutting Coons patches� however�

bilinearly blended Coons patches are only C� across their boundaries� If cross�boundary derivatives are

known� bicubically blended Coons patches can be de�ned using cubic Hermite polynomials �see ���
 for

the details�� Likewise� bicubically blended Coons patches interpolate both boundary curves and prescribed

boundary derivatives�

Theoretically� trans�nite surfaces may produce high�order continuity across adjacent patches� In prac�

tice� however� high�order derivatives are often unavailable during the design process� The ad hoc and

heuristic approach is to estimate the initial derivative values based on generating curves in the vicinity�

Another design di�culty comes from the inconsistency of the cross�derivative �twist� which may in�uence

local surface oscillations� To overcome twist incompatibility in Coons patches� Gregory replaced the in�

compatible constant twists with variable twists using a convex combination method� which is also known

as Gregory�s square�

Coons� contribution was very signi�cant primarily because it stimulated the development of other

surface representations� Generalizing the Coons patch� Gordon constructed a blending surface from a

quadrangular network of compatible curves with Lagrange polynomials� The idea of blending was further

��
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Figure �� An irregular surface and its parametric domain�

carried over to trans�nite interpolation of triangles ��
�

Two major schemes have been developed for free�form curve�surface design� The Bezier�B�spline tech�

nique emphasizes geometric intuition� while the Coons�Gordon method is based on abstract algebraic

concepts such as the Boolean sum� The two types of shape representations di�er from each other dramati�

cally in terms of their geometric nature� One apparent distinction is that the boundary curves of a B�spline

surface must also be B�splines� whereas the Coons patch allows its boundary curves to be of arbitrary form�

����� Irregular Patches

Despite their simplicity� tensor�product surfaces have drawbacks� The underlying shape �and the para�

metric domain� of tensor�product surfaces must be �topologically� rectangular� However� when used for

representing complex shapes� general n�sided patches are more desirable than rectangular patches� Fig� �

shows a surface composed of triangular patches and its parametric domain�

Historically� de Casteljau considered triangular patches in the late ���s even before he de�ned tensor�

product �Bezier� patches� Nevertheless� it was not until the ���s that triangular schemes started to

be widely applied to CAGD� Farin constructed Bezier triangles based on the Bernstein form� Like the

univariate Bezier curve and tensor�product Bezier surface� the Bezier triangle has many nice properties

such as partition of unity� positivity� and recursive evaluation for basis functions� Detailed discussion

about the formulation� derivative computation� degree elevation� subdivision� and continuity condition can

be found in ���� �
� Triangular Bezier patches have been used in various design applications� They can be

used as Hermite interpolants which interpolate position and derivative information at vertices and across

boundaries� Subsequently� other triangular interpolants have been derived ��
� The main techniques of

��



triangular patches can be characterized as trans�nite� convex combination� and control point approaches�

Signi�cant e�ort has also been devoted to the derivation of arbitrary n�sided patches� Generalizing

triangular and tensor�product Bezier surfaces� Loop and DeRose de�ned S�patches over an arbitrary n�

sided convex polygonal domain ���
� The key technique is functional composition which embeds a polygonal

parametric domain into a higher dimensional simplex� The S�patch is obtained by restricting the Bezier

simplex to the embedded polygonal domain� Despite its generalization over regular Bezier surfaces� the S�

patch su�ers from major drawbacks such as a complicated domain mapping formulation� a time�consuming

evaluation algorithm� and the lack of a geometric interpretation for its control polygon�

Signi�cant e�ort has also been devoted to the derivation of arbitrary n�sided patches� Generalizing

triangular and tensor�product Bezier surfaces� Loop and DeRose de�ned S�patches over an arbitrary n�

sided convex polygonal domain ���
� The key technique is functional composition which embeds a polygonal

parametric domain into a higher dimensional simplex� The S�patch is obtained by restricting the Bezier

simplex to the embedded polygonal domain� Despite its generalization over regular Bezier surfaces� the S�

patch su�ers from major drawbacks such as a complicated domain mapping formulation� a time�consuming

evaluation algorithm� and the lack of a geometric interpretation for its control polygon�

One typical application of the S�patch is to �ll a n�sided hole with G� continuity� Loop and DeRose

proposed generalized B�spline surfaces of arbitrary topology based on their n�sided S�patch ���
� Although

the technique generalizes biquadratic and bicubic B�spline surfaces� there is no straightforward closed�form

formulation for this new representation� In addition� there are strict restrictions placing on the connectivity

of the initial control mesh� The construction of the generalized B�spline surface is extremely complicated�

and this procedure can only implemented indirectly through multiple steps� Another disadvantage of this

B�spline�like scheme is that this algorithm does not provide a uni�ed approach for quadratic and cubic

B�splines� In either case� only G� surfaces are generated�

����� Triangular B�splines

Although widely used� regular B�spline surfaces are incapable of describing surfaces of arbitrary topology�

Consequently� triangular B�splines ��
 are emerging as a powerful new tool for geometric modeling� They

are useful for modeling a broad range of complex objects de�ned over arbitrary� non�rectangular domains�

Using triangular B�splines� designers can bene�t from arbitrary parametric domains� non�degeneracy for

multi�sided surfaces� and other important features�

The theoretical foundation of triangular B�splines lies in the multivariate simplex spline of approxima�

tion theory� Motivated by an idea of Curry and Schoenberg for a geometric interpretation of univariate

B�splines� de Boor �rst presented a brief description of multivariate simplex splines ��
� Since then� their

�



theory has been explored extensively ��� �� �� ��
� The well�known recurrence relation of multivariate

simplex splines was �rst proposed in ��
� Subsequently� Grandine gave a stable evaluation algorithm ��	
�

Dahmen and Micchelli presented a thorough review of multivariate B�splines ��
� From the point of view of

blossoming� Dahmen� Micchelli and Seidel proposed triangular B�splines which are essentially normalized

simplex splines ��
�

The practical application of multivariate simplex splines is relatively underdeveloped compared to

their theory� because of complicated domain partitioning and time�consuming algorithms for evaluation

and derivative computation� especially for high dimensional and high order cases� However� it is possible

to derive e�cient algorithms for a low dimensional domain such as a plane and�or a low order polynomial

such as a quadratic or a cubic� Traas discussed the applicability of bivariate quadratic simplex splines

as �nite elements and derived di�erentiation and inner product formulas ����
� Auerbach et al� use the

bivariate simplex B�spline to �t geological surfaces through scattered data by adjusting the triangulation

of the parametric domain in accordance with the data distribution ��
� Recently� the �rst experimental

CAGD software based on the triangular B�spline was developed� demonstrating the practical feasibility of

multivariate B�spline algorithms ��
�

Triangular B�splines are ideal for geometric design applications because of their many nice properties

such as lower polynomial degree and optimum global smoothness with high �exibility� First� their locally

de�ned basis functions are nonnegative piecewise polynomials which sum to unity� Second� polynomial

surfaces with degree n can be Cn�� continuous if their knots are in general positions� The designer can

achieve various smoothness requirements through knot variation� For instance� in quadratic triangular

B�splines� the six linearly independent bivariate basis functions are de�ned over convex hulls spanned

by �ve knots� Making four of the knots collinear renders the corresponding basis function discontinuous

along the line� Making three knots collinear leads to a discontinuity of the �rst derivative� Finally�

triangular B�splines have the convex hull property and are a�ne invariant under standard geometric

transformations� Since any piecewise polynomial with degree n over a triangulation can be represented as a

linear combination of triangular B�splines ���
� they provide a uni�ed representation scheme for polynomial

models with arbitrary topology�

��� Subdivision Forms

Because the planar parametric domain is an open surface� it is almost impossible to model an object of

arbitrary genus with a single non�degenerate B�spline surface� Thus� extra boundary continuity constraints

must be enforced� Moreover� singularity seems to be inevitable in modeling real�world objects� Although

trimming surfaces o�er an alternative� it can destroy the compact and concise representation of spline

��



Figure �� Recursive subdivision surface�

surfaces� The domain�less subdivision schemes �see Fig� �� have proven to be very promising for modeling

extremely complex objects�

In �	��� Chaikin described an e�cient algorithm which permits the recursive subdivision of an initial

polygon and makes a series of new polygons converge to a smooth curve� In �	��� Catmull and Clark

generalized Chaikin�s approach and constructed a smooth surface with arbitrary topology through the

recursive subdivision of an arbitrarily shaped polyhedron ���
� This surface reduces to a G� B�spline

surface except at a �nite number of extraordinary points where only tangent plane continuity is achieved�

The essential part of these new schemes is the subdivision rule which can guide the generation of an in�nite

set of consecutively re�ned meshes based on an initial polyhedron� The subdivision surface is the limit

to which this in�nite corner�chopping process converges� Note that� di�erent subdivision rules determine

distinct shapes of the converged smooth surface�curve�

The key advantage of subdivision surfaces is that smooth surfaces of arbitrary topology can be obtained

based on topologically complex initial meshes� However� recursive subdivision surfaces lack parametric

domains� which precludes their immediate pointwise evaluation and hence may limit the applicability of

these schemes� In general� subdivision surfaces can be reduced to regular B�spline surfaces except at a

�nite number of singular points� Since the singular points need special treatment� subdivision surfaces are

not equivalent to the previously described standard spline formulations� Instead� they are often referred

to as B�spline�like surfaces� The behavior of those singular points are determined by eigenvalues of a set

of matrices �	
�

Due to the lack of explicit parameterization� the fast evaluation of subdivision surfaces is restrained�

Peters developed an algorithm which can generate a bivariate C� surface with an explicit parameterization
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from an irregular control point mesh ���
� His approach produces a re�ned mesh of points through the

use of the subdivision procedure� The new control point mesh is then used for generating a C� surface

consisting of a set of quadratic and cubic patches� The major advantage of this algorithm is that it combines

the intuitive subdivision of the irregular meshes with low�degree parameterization� The key constituents

of this technique are �i� re�ning the initial mesh and generating the control points of box spline� �ii�

converting the box spline surface into Bezier form� and �iii� �lling the remaining holes with cubic triangular

patches� Although open or closed surfaces of general topological structure can be obtained� this algorithm

is complicated and ad hoc� Furthermore� a large number of patches are necessary to describe a complex

shape�

��� Algebraic Functions

Although the most popular representation in CAGD is the parametric form� the traditional representation

of geometric entities �in classical analytic geometry� is the implicit function� While parametric forms are

well suited for shape editing and rendering� implicit forms are useful for point membership classi�cation�

Fig� � shows that a two�dimensional implicit function f�x� y� � � is obtained through a planar cross�section

of the three�dimensional scalar function z � f�x� y�� The most simple form for implicit functions is the

power basis expression of degree n X
i�j�k�i�j�k�n

aijkx
iyjzk � �� ����

Like the monomial form in ���� coe�cients in ���� provide neither direct geometric interpretation nor

intuitive insight into the underlying shape because the power basis implicit function is algebraic� and not

geometric� It is equally di�cult to predict the in�uence on the shape caused by the coe�cient perturbation�

Also there are no convenient tools for the intuitive shape control of this algebraic surface�

It can be shown that the set of implicit algebraic surfaces is actually larger than that of rational surfaces�

This set is also closed under certain geometric operations� Every rational parametric curve�surface can

be represented by an implicit algebraic equation� but not vice versa� Despite their representation power�

implicit algebraic equations have shortcomings from the perspective of computational geometry� First�

digitizing and rendering an implicit function is always di�cult� Second� the derived shape may have

separate components which are not indicated in the empirical data� therefore� extra polynomial constraints

are necessary to ensure no singularities or self�intersections�

Despite these shortcomings� algebraic functions can be used for free�form modeling� Typical applications

include forcing an algebraic surface to interpolate a set of points or spatial curves� and using piecewise alge�

braic patches to form a complex shape satisfying certain continuity requirements across patch boundaries�

Sederberg discussed the modeling techniques for cubic algebraic surfaces �	�� 	�
� Ho�mann systematically

��
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Figure �� The construction of a two�dimensional implicit function�

reviewed the implicit function including the implicitization� parameterization� and the parametric�implicit

conversion in CAGD ��
� Bajaj and Ihm presented an e�cient algorithm to implement Hermite interpola�

tion of low�degree algebraic surfaces with C� or G� continuity �
� The interpolation is essentially reduced

to a homogeneous linear system where the unknowns are coe�cients of the algebraic surface� Note that�

neither point nor curve interpolation is an attractive mechanism for de�ning an implicit surface because it

is di�cult for designers to predict the surface behavior beyond interpolating curves and points�

The bene�ts of using implicit functions are due to their low degree and computational e�ciency� It is

highly desirable to permit the interactive and direct manipulation of implicit algebraic surfaces� A piecewise

algebraic surface patch can be de�ned with trivariate barycentric coordinates using a reference tetrahedron�

and a regular lattice of control points and weights can be associated with this bounding tetrahedron�

Consider a tetrahedron with noncoplanar vertices vn���� v�n��� v��n�� and v���n� Let �r� s� t� u� denote the

local barycentric coordinates of a point p in the tetrahedron� By de�nition� we have

p � rvn���� sv�n�� � v��n� � uv���n�

where r � s� t� u � �� Then� we de�ne a set of �n� ���n� ��n� ���� control points pijkl such that

pijkl �
ivn��� � jv�n�� � kv��n� � lv���n

n
�

where i� j� k� l � �� and i� j � k � l � n� A weight wijkl is assigned to each control point� The algebraic
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Figure �� A quadratic algebraic patch�

patch inside the tetrahedron can be formulated using Bernstein�Bezier basis functions as

X
i

X
j

X
k

X
l�n�i�j�k

wijkl
n�

i�j�k�l�
risjtkul � �� ����

where i� j� k� and l are non�negative� and �r� s� t� u� represents the local barycentric coordinates of arbitrary

vertices on this algebraic patch� Fig� � shows the construction of a quadratic algebraic patch in which

n � � The key advantage is that control points and weights provide a meaningful way to control the

shape of the patch� Note that� unlike weights of rational splines� the weights of algebraic patches are

not independent� Like Bezier curves and surfaces� algebraic patches have some nice properties such as

local control of control points and weights� boundary interpolation� gradient control� and self�intersection

avoidance �see �	�� 	�� 
 for the details�� Patches can be abutted smoothly for modeling complex shapes�

By applying subdivision� additional degrees of freedom are generated� allowing patches to satisfy extra

continuity conditions across the boundaries�

Implicit functions have been used in various applications in graphics and CAGD� Generalizing ordinary

algebraic modeling methods� Muraki used the �blobby� models for volumetric data �tting ���
� Although

this approach allows the automatic extraction of a symbolic shape description from the range data� it

is too slow to be of practical importance� The convolution surface ���
 is another example of graphical

model representation with implicit functions� and this technique is based on skeletons� The convolution

surface generalizes the �blobby� model because the continuous integral operator is used to replace the

discrete summation of exponential�based operators� Thus� the shape of the convolution surface is smooth

and blendings are well behaved� Dutta� Martin and Pratt ���
 used piecewise Dupin�s quartic cyclides for

��
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Figure 	� Tension e�ect on curve shape �a� the curve is generated by control polygon �b� the curve is
generated through data interpolation�

free�form surface modeling and blending because of the low algebraic degree� rational parametric form� and

simple and intuitive geometric parameters of cyclides�

��� Geometric and Variational Splines

The main task in CAGD is to smoothly construct complex shapes with a parsimonious number of curve

spans or surface patches� For instance� piecewise Bezier curves can be used to construct complex curves

satisfying certain continuity requirements at conjunction points� Ordinary parametric continuity� however�

has proven to be unnecessarily restrictive� Recently� a weaker continuity condition� geometric continuity�

has received a great of deal of attention �see ��� 	
 for the details�� By de�nition� two adjacent curves

are said to have Gn continuity at a joint if and only if they meet with Cn continuity under arc�length

parameterization� Obviously� G� means unit tangent vector continuity� G� implies curvature continuity in

addition to G� continuity�

With geometric continuity� it is possible to introduce shape parameters independent of control points�

which can provide designers more DOFs for shape design and control� It is always desirable to provide

extra �exibility for geometric design� Recently� there has been a great deal of interest in the use of

tension parameters as extra design handles beyond control vertices for piecewise polynomial �see Fig� 	 for

tension e�ects on the curve shape�� Note that� tension parameters act as a parametric rescaling because

the parametric continuity is reduced into geometric continuity� Many special splines involving geometric

continuity have been developed during the past twenty years�

The Beta�spline ��
� in which adjacent curve spans satisfy geometric continuity� generalizes the uniform

cubic B�spline� The uniformly shaped Beta�splines provide only two control parameters �bias and tension�

��



for the whole curve� and thus� no local control is provided� Nonetheless� this generality allows designers

to control the geometric shape with shape parameters in addition to control points� In general� a tension

increase will pull the curve towards the control point� and a bias increase will pull the curve span towards

the corresponding line segment of the control polygon� In particular� if the bias is one� and the tension

is zero� the Beta�spline is reduced to the cubic B�spline� The e�ect of bias and tension and the necessary

G� continuity conditions are discussed in ���
� Furthermore� a continuously�shaped Beta�spline has been

developed ��
 where local control of bias and tension are obtained� Other forms of Beta�splines also exist�

In ��� 	
� G� and G� Beta�splines are shown to be equivalent to composite quadratic and cubic Bezier

splines� respectively�

DeRose and Barsky discussed a new class of splines� geometrically continuous Catmull�Rom splines

��
� which can be expressed as

c�u� �
X
i

ai�u�Wi�u�� ���

where each ai�u� is constructed to interpolate the k�� vertices vi� � � � �vi�k� Unlike the previously discussed

spline schemes� ai�u� is a vector�valued interpolating function� As a result� geometrically continuous

Catmull�Rom splines can either interpolate or approximate data points� It has both control vertices and

shape parameters which can be used for shape manipulation� When used in applications� however� its

control vertices and shape parameters are often transformed into the equivalent Bezier control polygon to

take advantage of various e�cient Bezier toolkits�

Many special splines have also been de�ned via variational forms� In �	��� Nielson generalized the

exponential related spline under tension� He proposed the Nu�spline as a G� �continuous curvature�

piecewise polynomial minimizing the following functional over �t�� tn
�

Z tn

t�

��f ���u����du�
nX

i��

�i
��f ��ui����� ����

subject to the interpolation f�ti� � di and necessary end conditions� Based on ����� Nielson further

developed a geometric representation which allows convenient tension control while maintaining the global

G� continuity ���
� This curve is composed of piecewise planar rational polynomials with tangent direction

continuity and zero curvature at each end� Similar to the Nu�spline� it permits local control of tension

parameters�

In �	��� Hagen proposed the Tau�spline ���
 which is a quintic spline that maintains both curvature

and torsion continuity by minimizing

Z tn

t�

���f �k��u�
����du�

nX
i��

k��X
j��

�i�j
���f �j��ui�

���� ����

�	



subject to interpolatory constraints� Pottmann presented a special spline with tension control ���
 which

generalizes the Tau�spline and possesses third�order parametric continuity and a smooth torsion plot� Lasser

explicitly formulated a Bezier representation for the Tau�spline ���
� Thus� many e�cient algorithms of

Bezier splines are also applicable to Tau�splines�

In �	��� Nielson extended his Nu�spline to the surface case ���
� The straightforward tensor�product

generalization of Nu�spline is not very useful because the arbitrary n �m tension parameters will a�ect

the entire curve network� In contrast to ordinary piecewise splines� Nu�spline provides extra tension

parameters� When used for various modeling applications� however� Nu�splines are often converted into

piecewise Hermite polynomials to expedite spline evaluation�

Foley presented a weighted Nu�spline interpolant ���
 which is the C� piecewise cubic polynomials by

minimizing
n��X
i��

wi

Z ti��

ti

��f ���u����du�
nX

i��

�i
��f ��ui����� ����

subject to the interpolatory conditions f�ti� � di� The weighted Nu�spline obtained from ���� can be used

as a shape�preserving interpolant� Derivative constraints enforce the piecewise cubic interpolant to preserve

local monotonicity� In addition� tension parameters can be used for shape modi�cation� Furthermore� a

cardinal basis for univariate weighted Nu�splines is formulated ���
� Unlike cubic Hermite basis functions�

cardinal basis of weighted Nu�splines are not local� They can not be evaluated easily and e�ciently� These

cardinal bases can be further used to construct a weighted Nu�spline surface which is a piecewise bicubic

surface� The weighted Nu�spline surfaces can be interactively changed by manipulating the control points

�interpolating points� and interval�point tension parameters� Note that� the surface boundaries are also

weighted Nu�splines� In particular� when all weights are equal� and all tensions are zero� the weighted

Nu�spline is reduced to a C� cubic spline�

Given t� � t� � � � � � tn� the weighted spline interpolant ���
 is the C� piecewise cubic function f�u�

that minimizes Z tn

t�
w�u��f ����u���du ����

subject to f�ti� � di and relevant end conditions� Over each interval� weighted cubic splines have piece�

wise constant tension control w�u�� In addition� they generalize cubic B�splines� The B�spline�like basis

functions can be formulated explicitly� This can facilitate interactive design� Later� based on ����� Foley

derived weighted bicubic splines ��	
 which minimize the following functional�

Z tn

t�

Z sm

s�

w�u� v��fuu�vv�u� v��
�dudv ����

subject to the interpolation constraints f�ui� vj� � di�j � This scheme has been used for the interpolation
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Figure ��� A planar NURBS curve obtained through projection�

of rapidly varying data� The surface is actually a piecewise bicubic Hermite interpolant whose unknown

derivatives can be obtained by solving a linear system of equations�

Cohen formulated local basis functions for the locally tensioned splines �LT�spline� which are essentially

piecewise C� cubics having continuous curvatures ��
� It is shown that the LT�splines have the variation

diminishing property� the convex hull property� and a straightforward knot insertion algorithm� Both

curves and individual basis functions can be easily evaluated� When used for shape modeling� however�

LT�splines are often transformed into equivalent B�splines in order to bene�t from various algorithms for

e�cient evaluation� re�nement� and hierarchical modeling� Note that� the fact that the B�spline is employed

as the underlying formulation for this and other special splines in various applications demonstrates that

B�splines are more powerful and �exible schemes�

��� NURBS Geometry

We now review the formulation of NURBS curves�surfaces and describe their analytic and geometric

properties� Intuitively� a spatial NURBS is de�ned as the projection of a �D B�spline into a �D homogeneous

space� Fig� �� illustrates a two�dimensional NURBS obtained through the projection of a three�dimensional

B�spline curve�

�



����� Curves

A NURBS curve generalizes the B�spline� It is the combination of a set of piecewise rational functions

with n� � control points pi and associated weights wi�

c�u� �

Pn
i�� piwiBi�k�u�Pn
i�� wiBi�k�u�

� ����

where u is the parametric variable and Bi�k�u� are B�spline basis functions� Assuming basis functions of

degree k � �� a NURBS curve has n � k � � knots ti in non�decreasing order� t� � t� � � � � � tn�k � The

parametric domain is tk�� � u � tn��� In many applications� the end knots are repeated with multiplicity

k in order to interpolate the initial and �nal control points p� and pn�

����� Surfaces

A NURBS surface is the generalization of the tensor�product B�spline surface� It is de�ned over the

parametric variables u and v as

s�u� v� �

Pm
i��

Pn
j�� pi�jwi�jBi�k�u�Bj�l�v�Pm

i��

Pn
j�� wi�jBi�k�u�Bj�l�v�

� ��	�

A NURBS surface has �m� ���n� �� control points pi�j and weights wi�j � Assuming basis functions along

the two parametric axes of degree k�� and l��� respectively� the number of knots is �m�k����n� l����

The non�decreasing knot sequence is t� � t� � � � � � tm�k along the u�axis and s� � s� � � � � � sn�l

along the v�axis� The parametric domain is tk�� � u � tm�� and sl�� � v � sn��� If the end knots have

multiplicity k and l in the u and v axis respectively� the surface patch will interpolate the four corners of

the boundary control points�

To evaluate NURBS� the de Boor algorithm can be applied to the numerator and denominator� respec�

tively� A more stable and robust evaluation algorithm which does not make explicit use of �D projective

geometry is described in ���
� The non�uniform knot vector of NURBS o�ers much better parameterization

and greater �exibility in shape design than the previously presented formulations� especially for the �tting

of unequally spaced points�

����� Properties

NURBS generalize the non�rational parametric form� In analogy to non�rational B�splines� the rational

basis functions of NURBS sum to unity� NURBS inherit many properties of non�rational B�splines such

as the strong convex hull property� the variation diminishing property� local support� and invariance under

standard geometric transformations �see ���
 for more details�� Furthermore� they have many additional





properties�

� NURBS o�er a uni�ed mathematical framework for common analytic shapes and parametric poly�

nomial forms� For instance� NURBS can be used to precisely express conic segments as well as full

conics� NURBS can also represent extruded surfaces� natural quadrics �plane� cylinder� cone and

sphere�� ruled surfaces� and surfaces of revolution�

� NURBS are in�nitely smooth in the interior of a knot span� provided the denominator is not zero�

and at a knot they are at least Ck���r continuous with knot multiplicity r� This enables designers

to employ NURBS satisfying di�erent smoothness requirements�

� NURBS include weights as extra degrees of freedom which can in�uence local shape� Weights have a

clear geometric interpretation� If a particular weight is zero� the corresponding rational basis function

is also zero� Thus� the corresponding control point does not a�ect the NURBS shape� The spline

is attracted toward a control point if the corresponding weight is increased� and repelled from the

control point if the weight is decreased �see Fig� ���� By manipulating control points and weights�

NURBS provide the greatest �exibility for designing a large variety of shapes�

� Associated with NURBS are a set of powerful geometric toolkits such as knot insertion� re�nement�

knot removal� and degree elevation� Their evaluation algorithm is fast and computationally stable�

� NURBS are invariant under scaling� rotation� translation� and shear as well as parallel and perspective

projections� A linear or rational linear transformation of parameters will not change the shape and

order of NURBS� They are the genuine generalization of non�rational B�splines as well as rational

and non�rational Bezier forms�

There are various ways to represent a circle using a NURBS curve ���
 �Fig� � shows one NURBS

representation�� NURBS can be used to precisely construct conics and rational quadric patches of various

types ���
� Spherical patches such as a hemisphere� an octant of the sphere� and a whole sphere can be

represented using NURBS ���
�

Based on the concept of in�nity from projective geometry� Piegl incorporated in�nite control points into

the NURBS formulation ���� �	
� This can forge a link between the B�spline and Hermite representations�

In�nite control points simplify the data set in representing complicated shapes� They can be used to de�ne

circles� surfaces of revolution� and general torus patches� In�nite control points can also be used as a design

tool which facilitates designers having no expertise of projective geometry�

Piegl systematically discussed NURBS modi�cation through knot insertion and control point�weight

based manipulation ���� �
� Other NURBS geometric design techniques include the interpolation�approximation
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Figure �� A circle is represented using quadratic NURBS curve with � control points�
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of a set of data points and cross�sectional design� If weights are provided a priori� interpolation and ap�

proximation with NURBS is reduced to the solution of a set of linear equations� If weights are not given�

however� one often resorts to guessing weights and other heuristics� To �t a large amount of data� espe�

cially when the data set is subject to measurement error� least�square approximation is preferable to strict

interpolation�

The most frequently used NURBS design techniques are the speci�cation of a control polygon� or

interpolation or approximation of data points to generate the initial shape� For surfaces or solids� cross�

sectional design including skinning� sweeping� and swinging operations is also popular� The initial shape is

then re�ned into the �nal desired shape through interactive adjustment of control points and weights and

possibly the addition or deletion of knots�

To date� NURBS are the most general parametric representation because they are capable of repre�

senting both analytic shapes and free�form parametric forms� They combine a low�degree rational rep�

resentation of maximal smoothness with a geometrically intuitive variation� The rapid proliferation of

NURBS is due partly to their excellent properties and partly to their incorporation into such national and

international standards as IGES and PHIGS�� NURBS have been incorporated into a large number of

commercial modeling systems�

� Geometric Design Paradigms

This section summarizes geometric design techniques including interpolation� approximation� interactive

manipulation� and cross�sectional design�

��� Interpolation

Scienti�c and engineering applications such as medical imaging� automobile and aircraft design� and geo�

logical terrain modeling make use of interpolation techniques� Data interpolation with polynomial splines

can be formulated and solved through a set of linear equations� To obtain a unique solution� the num�

ber of unknowns must equal the number of independent constraints� For instance� a B�spline curve with

n � � control points �see ���� can be used to interpolate independent n � � data points di� Assuming

the corresponding parametric values u�� � � � � un are provided� unknown control points can be obtained by

solving 	
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Figure ��� The skinning operation �a� isoparametric curves �b� the skinning surface�

Let C be the coe�cient matrix in ���� p � �p�� � � � �pn

�� d � �d�� � � � �dn


�� then ��� can be written as

Cp � d

Note that� although the B�spline supports local control� B�spline interpolation is a global scheme� The

modi�cation of one data point a�ects the whole curve� Furthermore� if the parameterization is unknown�

��� is no longer a linear system� The chord�length schemes have been commonly used for the curve

parameterization� If only positional data are available� derivative information must be estimated based on

the given data to produce a smooth curve� Many automatic methods have been derived for this purpose

�see ���
 for the details�� To achieve data interpolation with tensor�product surfaces� data points must

usually conform to a rectangular grid structure�

Another data interpolation approach is the lofting technique which allows a smooth surface to pass

through a set of cross�sectional curves� Boolean sum surfaces such as Gordon� Coons� and Ball surfaces are

all constructed through the interpolation of a lattice of curves� Among various cross�sectional design tech�

niques� skinning creates a surface interpolating a set of isoparametric curves �see Fig� ���� To interpolate

non�isoparametric curves� reparameterization is necessary� Ferguson and Grandine proposed an approach

which supports the interpolation of a set of non�constant parameter curves ���
�

Much work has been done on spline interpolation� Lounsbery� Mann and DeRose surveyed various

interpolation methods over a triangulated polyhedron ��	
� Forrest discussed iterative interpolation and

approximation of Bezier polynomials ���
� Dyn� Levin� and Gregory used a subdivision surface with ten�

sion control to interpolate data points ���
� Geometric splines have become increasingly popular� With

geometric continuity� extra degrees of freedom �usually expressed as shape parameters� provide designers

additional shape handles� Shape parameters have a clear geometric interpretation� Automatic selection

�



Figure ��� Scattered data interpolation�

of these parameters is highly desirable from designers� point of view� A procedural method �		
 exploits

piecewise cubic Bezier curves to construct aG� interpolant with shape parameters� The procedure automat�

ically determines tangent direction and two derivative magnitudes using an intuitive geometric ruled�based

approach� Also� the procedural methods can provide pleasing curves for a set of irregular interpolation

points�

Scattered data interpolation �see Fig� �� for an illustration� has also been widely applied especially

in scienti�c computing� Shepard originally formulated the scattered data interpolation as the problem

of �nding f�u� v� with f�ui� vi� � fi� where �ui� vi� are irregularly distributed� i � �� � � � � n� Typical

techniques are based on Shepard�s formulas and Hardy�s multiquadrics ��
 which are all distance�weighted

and application�dependent interpolants� Shepard�s method constructs an interpolant using

f�u� v� �

Pi�n
i�� fi�u� v��di�u� v�

�

Pi�n
i�� ��di�u� v�

�
���

where di�u� v� is the distance between �u� v� and �ui� vi�� fi�u� v� � fi � �u� ui�ai � �v � vi�bi� ai and bi

are estimated to approximate the tangent plane at �ui� vi�� In spite of its simplicity� Shepard�s method is

a global scheme� it does not reproduce any local shape properties implied by the data because it has local

extrema at data sites�

Recently� scattered data interpolation has been extended into the higher dimensional data �e�g� �D

data� surface�on�surface data�� Nielson et al� investigated the scattered data interpolation over volumetric

domains and arbitrarily shaped surface �surface�on�surface� domains ���� �	
� He used Hardy�s multiquadric

�



global interpolant which is de�ned as

f�x� y� �
nX

i��

�i

q
�x� xi�� � �y � yi�� � R� ��

subject to the interpolation constraints� f�xi� yi� � fi� i � �� � � � � n� The coe�cients �i are computed

through a �n � ��� �n � �� linear system of equations based on interpolatory constraints� Note that the

extremely large number of unorganized data can make this system over�determined� It will lead Hardy�s

method to a least�square approximation� Nielson and Ramaraj also introduced an minimum norm network

approach using a set of cubic polynomials to interpolate scattered data points over a spherical domain

���
� The interpolant is determined by functional minimization� The algorithm consists of �i� domain

triangulation� �ii� construction of the boundary curve network which satis�es the optimization functional

subject to the interpolation constraints� and �iii� patch generation from the curve network to cover the

entire domain using triangular interpolants� Step �ii� and �iii� are executed via minimization�

��� Approximation

Shape approximation is necessary for several reasons�

Data Exchange	 Di�erent modeling systems often enforce certain limitations such as maximum allowable

degree� To exchange geometric data among several design systems� users must approximate higher

order geometric entities which can not be precisely represented in the desired system because of the

limitations�

Data Reduction	 It can be formally de�ned as� given a set of control points with basis functions of

degree n �e�g� Bezier curve�� �nd another set of control points with basis functions of degree m � n�

such that the new representation is the best approximation of the original one� Knot removal is a

commonly used technique for data reduction� It removes knots from a spline without perturbing the

spline more than a given tolerance� Scattered data �especially noisy data� �tting is another typical

example for data reduction�

Decomposition	 Geometric modeling and data visualization often require a large amount of data� As

more and more data are processed by computers� transmission and storage becomes a bottleneck for

the geometric process� In order to implement a more economical representation and e�cient analysis�

multi�resolution techniques are often used�

Hierarchical Modeling	 The same geometric object is represented at di�erent levels� It starts with a

rough global shape de�ned on a relatively coarse scale� The local details are only modeled on the

�



re�ning scale� Hierarchical representation is useful for high speed rendering because it avoids the

sampling problem�

Special Shapes	 When a curve �or surface� has no simple or compact mathematical representation �e�g�

the intersecting curve of surfaces� or the o�set of curves or surfaces�� shape approximation is necessary�

If m data points are provided in ���� where m � n � �� the coe�cient matrix in ��� becomes an

m � �n � �� matrix� Thus� this linear system becomes overdetermined� The interpolation is transformed

into approximation� It can be solved as follows

C�Cp � C�d� ���

where C�C is the new squared coe�cient matrix� p is the unknown control point vector� and d is the given

data point vector� It can be easily veri�ed that the solution of ��� also minimizes the error functional

E �
mX
i��

kc�ui�� dik
�

In general� the whole approximation procedure involves parameterization� least�squares �tting and param�

eter optimization� Chord�length parameterization is often used for curve approximation� Hoschek applied

non�linear parameter optimization to the degree reduction of Bezier splines ���
� Sarkar and Menq pre�

sented an algorithm to implement smooth least�square approximation using cubic B�splines� where the

parameterization is formulated as a nonlinear minimization problem �	�� 	�
� In most applications� data

points are not regularly distributed� Hoppe et al� presented an algorithm which can reconstruct a polygo�

nal approximation from unorganized data points by estimating the tangent plane for each data point ���
�

The geometry and topology can be inferred automatically from the data� However� the input data must

be dense because it is impossible to recover features where there is insu�cient sampling� Very often� a set

of data points can not be sampled exactly� Cheng and Barsky presented an algorithm that uses a cubic

spline curve to interpolate speci�ed data points at some knots and pass through speci�ed regions at other

knots while minimizes the energy ���
� Chou and Piegl used piecewise cubic rational Bezier splines to �t

a set of data points and their tangent directions in the least�square sense ��	
�

Although rational curves and surfaces started to be widely used in CAGD only during the past ten

years� rational functions have been studied for many decades in approximation theory� In general� rational

approximation provides better accuracy� Nevertheless� it is di�cult to reduce rational approximation

into a linear system� Recently� Pratt� Goult and Ye proposed an e�cient linearized approximation of

rational functions ���
� If g�u� � p�u��q�u� is a rational polynomial� where p�u� �
Pm

i�� piAi�u�� q�u� �

	



Pn
j�� qiBi�u�� the minimization of the error functional

E�g� �
Z �

�

����f�u�� p�u�

q�u�

����
�

du

reduces to a set of nonlinear equations� Although it can be solved by iterative methods in practice� the

result largely depends on a good initialization� To avoid the nonlinearity� alternatively� one can minimize

the linear functional

 E�g� �
Z �

�
kf�u�q�u�� p�u�k�du

This linear minimization process can be further divided into two steps� First� solve for

	  E

	pi
� ��

where pi is evaluated in terms of q�u�� Second� solve for

	  E

	qj
� ��

where the unknown qj of q�u� are determined uniquely� Although it has been shown that this linearized

functional produces good results for many applications� it is not the least�squares �best� approximation of

the rational function�

��� Interactive Modi�cation

Due to measurement errors and the subjective judgement of designers� there are no objective best shapes�

Thus� it is more reasonable to apply interactive techniques� Conventionally� interactive design is accom�

plished through control polygon manipulation� If geometric continuity is used� extra shape parameters

such as tensions can also be exploited to implement interactive control� The interactive procedure must

be easy to use� In addition� the underlying mathematical formulation should be transparent to users who

may have little mathematical background�

There exists a large variety of spline formulations� Each formulation encourages the implementation of

certain styles of interaction� Even though the mathematical power of two formulations may be equivalent�

the ease of use from the designer�s viewpoint may vary dramatically� For instance� the cubic B�spline

without multiple knots is inherently C� continuous� The cubic Bezier curve� however� possesses C� conti�

nuity only when its control points are subject to certain geometric constraints� Extra design requirements

to ensure the piecewise Bezier curve be C� must be enforced� This may be quite expensive because the

constraints have to be maintained throughout the whole design process� Bartels et al� presented a general
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statistical analysis approach to measure and analyze user performance with interactive curve manipulation

of a single control point ���
� B�splines� Bezier splines� Catmull�Rom splines� and two other C� interpo�

lating splines are investigated� It has been demonstrated that there is a signi�cant performance di�erence

among these �ve formulations� The B�spline formulation is the best in terms of both match quality and

time cost of achieving the objective for the curve case�

Cross�sectional design allows control polygons of isoparametric curves to be used as tools for interactive

surface re�nements� High�level operators such as bends� twists and free�form deformations �FFD� are

also applicable� But traditional free�form interaction has long been control point based� Control point

manipulation is an indirect� often unnecessarily tedious solution for interactive modeling� Although the B�

splines have been very popular because of their interaction convenience� the B�spline formulation does not

support direct shape interaction� Direct and precise free�form shape manipulation is often desired� Fowler

presented a new technique to kinematically manipulate position and�or normal at arbitrary selected points

on the tensor�product B�spline surface ���
� His approach is equivalent to solving an underdetermined linear

system of equations� To derive a unique solution� extra geometric constraints are employed to minimize

the combined movement of the control vertices�

Deformation is a highly intuitive and interactive operation� it can be used to generate large families of

geometric shapes� Barr proposed twisting� bending� and tapering transformation of geometric objects which

can be used to create complex objects from simpler ones ��
� Globally and locally de�ned deformations may

be used as hierarchical operations� expanding the CAD�CAM repertoire� Forsey and Bartels presented

Hierarchical B�splines which support local re�nement and manipulation on B�spline surfaces ���
� In

general� re�nement is implemented through knot insertion� Knot insertion on the surface will introduce

more control points outside the local re�ning region� Local hierarchical re�nement on the B�spline surface

can be achieved through the use of an overlay surface and o�set referencing of control vertices� Galyean

and Hughes presented a new interactive modeling technique for solid sculpting ���
� Controlled by a �D

input device� a sculpting tool can modify the voxel array values which represent the volumetric material�

A set of sculpting tools such as cutting and adding is provided� The algorithm allows the modi�cation of

the material through purely geometric means�

��� Cross	Section Design

Many objects of interest� especially manufactured objects� exhibit symmetries� Often it is convenient to

model symmetric objects through cross�sectional design by specifying pro�le curves ���
� Cross�sectional

design operations such as skinning� sweeping� and swinging have been widely used for interactive shape

modi�cation� The fundamental requirements are� �i� the surface must be visually smooth if all section
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Figure ��� Construction of a cubical NURBS swung surface� �a� NURBS pro�le curve on x�z plane� NURBS
trajectory curve on x�y plane� �b� Cube surface wireframe�

curves are visually smooth� �ii� no unnecessary undulation� and �iii� a�ne invariance�

Originating in lofting theory� a skinning process generates a surface passing through a series of cross�

sectional pro�les� Surface design can thus be reduced to the design of �a� a series of compatible cross�

sectional pro�les� and �b� a path trajectory� Extra e�ort has to be done to make all section curves

compatible� One typical technique to achieve this goal is degree elevation� Because of the lack of �D

interaction techniques and tools� sectional curves are often created as planar pro�les� But trial�and�error

procedures used for designing fair curves can be laborious� To avoid spatial surface interaction� projection

curves are used for interrogation and necessary modi�cation� Other compromises must be made towards

the con�icting parameterization demands� Sweeping is a special case of skinning where a set of constant

section curves are provided� The construction of the surface also depends on the parameterization of the

path �spine� curve�

Barr employed a spherical cross�product to construct superquadrics from pro�les ��
� Woodward ����


introduced the swinging operator by extending the spherical cross�product with a scaling factor� and applied

it to generate surfaces with B�spline pro�le curves �see also ��
�� Piegl carried the swinging idea over to

NURBS curves ���
� He proposed NURBS swung surfaces� a special type of NURBS surfaces formed by

swinging one planar NURBS pro�le curve in the x�z plane along a second NURBS trajectory curve in

the x�y plane� For example� Fig� �� illustrates the design of a cubical NURBS swung surface from two

NURBS pro�le curves� Swinging generalizes rotational sweeping� Designers can reposition control points�

change weights� modify the knot vector� and move the data points of sectional curves in order to modify

the surface shape� Several geometric shape design systems� including the recent one in ����
� include some

form of swinging �or sweeping� among their repertoire of techniques�
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Figure ��� NURBS as an integrated form for various geometric entities�

� Challenges for Geometric Design

NURBS have become a de facto standard in commercial modeling systems� Fig� �� illustrates that NURBS

can be used to integrate various geometric forms� Despite the extraordinary �exibility of NURBS� tradi�

tional design methodology can not exploit their full potential� This is because NURBS have been viewed

as purely geometric primitives� which require designers to interactively adjust many DOFs�control points

and associated weights�to obtain desired shapes�

Conventional geometric design techniques previously described are kinematically driven� Despite mod�

ern interactive devices� this process can be clumsy and laborious when it comes to designing complex�

real�world objects�

Rational splines such as NURBS provide better accuracy than ordinary polynomial functions when

used for approximation� Although NURBS can be used to represent many analytical shapes such as conics

precisely� no simple and �exible methods are o�ered to designers for the automatic selection of weights

in an intuitive and meaningful way� Conventional methods through user speci�cation of weights are both

heuristic and ad hoc�

Given a set of empirical �D data points provided by a scanner� the task of inferring both geometry

and topology from this scattered data is extremely di�cult� This is because no implicit neighborhood

information is available and the data are often subject to measurement error�

Flexible and real�time interaction between designers and the modeling systems is crucial not only for

future CAD systems but also for other diverse applications such as architecture design� surgical planning�

and robotics� Directly manipulating geometry in an interactive environment requires the integration of

virtual reality techniques with well established CAD design and manufacture methodology� In contrast�
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Figure ��� Shape�preserving interpolants �a� convex�preserving �b� monotonic�preserving�

dynamic �D interaction of free�form geometric shapes in the CAD system has been rarely explored� As a

result� the full potential of dynamic interaction is yet to be realized�

The above di�culties are due to the intrinsic features of traditional geometric modeling� Pure geometric

representation is abstract� It does not have behavior� The design and manufacture process� however�

requires a mechanism which can accomplish the interactive modi�cation of geometric information both

e�ciently and precisely� It can be demonstrated that traditional design methodology can not o�er us such

a dynamic and interactive framework for time�varying requirements� Strongly motivated to bridge the

large gap between the characteristics of geometry and the design and manufacture process requirements�

we investigate how to associate physics and physical behavior with abstract and static geometry�

� Variational Design

Designers not only require the shape to satisfy functional requirements such as interpolation and continuity

but also need visually�pleasing and fair shapes implied in the given data points� For instance� if the data

are locally monotonic or convex� the interpolation function should also be a shape�preserving interpolant�

Shape�preservation requires shape �delity re�ected by the data beyond interpolation�approximation� Fig� ��

illustrates two typical examples of shape�preserving requirements�

In contrast� ordinary interpolating techniques usually generate shape oscillations not implied in data

points� To achieve satisfactory design� both functional requirements and aesthetic criteria are needed� One

of the most important problems in CAGD is to construct visually�pleasing �fair� splines that can either

interpolate or approximate a given set of points� Note that� aesthetic criteria are very subjective because

they are often style�dependent� It can be di�cult to express such requirements formally� Nevertheless�

quantitative judgement has to be formulated even before the design and manufacture process starts� The
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variational technique is more appropriate because it can implement qualitative and subjective criteria as

quantitative ones�

Variational optimization is also used to determine the interpolant unknowns where only partial infor�

mation is provided� Once interpolation constraints are satis�ed� there are generally surplus degrees of

freedom� The values of these free parameters dramatically in�uences the shape� Local methods apply

heuristics to manually set free variables� This will not always achieve satisfactory results because it needs

a lot of user intervention� Likewise� manual operation is not e�cient for a large number of degrees of

freedom� In contrast� global optimization methods allow the primitives to autonomously deform to mini�

mize an energy functional subject to constraints� This approach requires less user input than conventional

free�form modeling techniques� Moreover� the fairness criterion acting as an objective function discourages

undesired oscillation�

Parkinson interpolated a set of data points with a set of biarcs ��
� Unknown gradients at data points

are determined by the e�cient linearized approximation of an energy minimization� Wever presented a

global cubic C� interpolant using energy minimization ���
� A non�negative exponential spline is derived as

a shape�preserving interpolant for positive data ����
� where tension parameters are used in the nonlinear

constrained optimization of bending energy� Moreton and Sequin presented a simple mechanism which

allows the creation of complex smoothly shaped surfaces of any topological types with piecewise biquintic

Bezier patches ���
� Nonlinear optimization techniques are used to minimize a fairness functional based on

the variation of curvature in order to determine remaining free parameters unspeci�ed through geometric

interpolatory constraints� The use of the variation of curvature functional allows commonly used shapes

such as spheres� cylinders and tori to be reconstructed subject to a set of compatible constraints� However�

the computational cost of the modeling software is extremely expensive� It prevents this technique from

being used for interactive surface design�

In �	�
� the fairness criterion is de�ned as the curvature plot which is a piecewise monotonic function

with the fewest possible monotone pieces� To generate a fair curve� an interactive fairing process is often

used in which users interactively modify control points repeatedly in terms of curvature plots until a

curve of acceptable fairness is obtained� Manual adjustment is ine�cient and completely incompatible

with any automatically re�ning processes� For instance� when using B�splines to approximate data points�

it is possible to exhibit unwanted behavior due to digitizing errors� Therefore� it is inevitable to have

an unacceptable curvature plot� Sapidis and Farin developed an algorithm for locally fairing planar B�

spline curves by repeatedly removing and reinserting knots of the spline �	�
� He further derived a simple

geometric condition for the quadratic Bezier curve to ensure monotonic curvatures �	
� This condition

also provides a simple criterion which can be used for automatically correcting the curvature plot�
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Optimal design requires designers �engineers and stylists� to focus on the shape instead of the abstract

geometric representation� For this matter� functional constraints can be expressed in the form of partial

di�erential equations with suitable boundary conditions ���� ��
� Although a wide range of surfaces can be

generated based on various PDE requirements and boundary constraints� the PDE�based approach is not

compatible with conventional spline techniques� It provides little intuition for shape adjustments� Also�

it is di�cult to determine how the variation of boundary curves a�ects the surface interior� Thus� the

expertise of designers is necessary to achieve desirable shape re�nement� To demonstrate that the PDE

surface is a compatible approach with established techniques of mainstream surface design� B�splines have

been used to approximate PDE surfaces ��
�

� Physics�Based Modeling

The physics�based design paradigm can provide a means to overcome the above drawbacks� Free�form

deformable models� initially introduced to computer graphics in ����
 and further developed in ����� ���

���� ��� ��� ��
 are particularly relevant� They are also useful for user interfaces� virtual reality� im�

age processing� and geometric modeling� Physics�based models are governed by the mechanical laws of

continuous bodies which can be expressed in the form of dynamic di�erential equations� The dynamic

and realistic behaviors can be obtained by solving an associated motion equation numerically� To date�

however� researchers in the �elds of computer vision and graphics devote most of their endeavors to the

investigation of constraints� articulated rigid or nonrigid body synthesis� and complex scene control� Less

e�ort has been applied to free�form dynamic interaction between designers and individual manufactured

objects which is especially useful for geometric design�

Physical simulation can be used as an e�ective interactive tool for building and manipulating a wide

range of models� It supports the dynamic manipulation of complex physical models� Terzopoulos and

Fleischer demonstrated simple interactive sculpting using viscoelastic and plastic models ����
� Celniker

and Gossard developed an interesting prototype system ���
 for interactive free�form design based on

the �nite�element optimization of energy functionals proposed in ����
� The system combines geometric

constraints with sculpting operations based on forces and loads to yield fair shapes� However� this approach

does not provide interactive mechanisms in dealing with forces and loads� Bloor and Wilson developed

related models using similar energies and numerical optimization ���
� and in ��
 they proposed the use of

B�splines for this purpose� Subsequently� Celniker and Welch investigated deformable B�splines with linear

constraints ���
�

Welch and Witkin extended the approach to trimmed hierarchical B�splines �see also ���
� for interactive

modeling of free�form surface with constrained variational optimization ����
� The traditional control point
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approach is intuitive by allowing a conceptually simple change� However� to enforce a precise modi�cation�

many�even all� the control points have to be repositioned in order to achieve the desired e�ect�

Motivated by the fact that splines provide insu�cient detail for modeling certain natural shapes� such

as terrains� and fractals provide insu�cient shape control� Szeliski and Terzopoulos proposed constrained

fractals� a hybrid of deterministic splines and stochastic fractals which combines their complementary

features ����
� Through the use of the energy minimization principles the constrained fractal can be applied

to synthesize realistic terrain surface from sparse elevation data� Multiresolution stochastic relaxation is

used to compute fractals e�ciently�

Thingvold and Cohen proposed a deformable model based on a B�spline surface� whose control points

are mass points connected by elastic springs and hinges ����
� The control polygon re�nement conserves

physical quantities such as mass� spring� and hinge� Pentland et al� used a modal analysis method to

decompose non�rigid dynamics into a set of independent vibration modes based on eigenvalues ���� ��� ��
�

Discarding high�frequency modes� the number of unknowns can be largely reduced while preserving the

accuracy and generality of the formulation� A special global polynomial deformation can be associated

with a set of vibration modes and applied to the animation with a superquadric ellipsoid�

Extracting geometric information from scattered data is important for visualization and object recog�

nition� Miller et al� presented a method generating a simple topologically closed geometric model from

a volumetric data set ���
� The polyhedron model can expand itself like a balloon until it reaches the

volumetric boundary of the scanned object through a relaxation process which also minimizes the pre�

scribed cost function� Global subdivision is needed wherever appropriate for complex shape during the

optimization process�

Szeliski and Tonnesen presented a new model of elastic surfaces based on interactive particle systems

���
� New particles are added into the system automatically which enables the surface to stretch and

grow� Particle based surfaces can split and join without manual intervention� In spite of the interactive

power for free�form modeling� particle based surfaces have some disadvantages� such as the lack of a precise

and compact mathematical representation which presumably is vital in engineering applications�

In summary� physics�based models have dynamic behavior which is governed by physical laws� This

allows designers to directly manipulate and interactively sculpt shapes using a variety of force�based tools�

The energy�based optimization process can be implemented automatically� In addition� physics�based

shape design can free designers from making nonintuitive decisions such as assigning weights to NURBS or

determining shape parameters in variational splines� Furthermore� with physics�based direct manipulation�

non�expert users are able to concentrate on visual shape variation without needing to comprehend the

underlying mathematical formulation�
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� D�NURBS for Physics�Based Design

By marrying advanced geometric modeling with computational physics� we have developed D�NURBS� a

physics�based generalization of geometric NURBS for geometric design� The mathematical development

of D�NURBS consists of four related parts� �i� D�NURBS curves ����
� �ii� tensor product D�NURBS

surfaces ����
� �iii� swung D�NURBS surfaces ��	
� and �iv� triangular D�NURBS surfaces ���� 	�
� In

the following context� we summarize the signi�cant features of this physics�based design framework� The

detailed mathematics and implementation of D�NURBS have been documented in ����� �	� ��� 	�
� They

are beyond the scope of this survey�


�� Motivation

Generalizing B�splines to either NURBS or special geometric and variational splines has one feature in

common� These generalizations have o�ered designers extraordinary �exibility when utilized for geometric

design� Nevertheless� traditional design methodology can not exploit the full potential of the underlying

geometric formulations�

Traditional geometric design is kinematically driven� Designers are faced with the tedium of indirect

shape manipulation through a bewildering variety of geometric parameters! i�e�� by repositioning control

points� adjusting weights� and modifying knot vectors� To sculpt a complex shape� these interactive

techniques may take too many trial�and�error procedures� Also� it often requires designers to have speci�c

expertise� Despite the recent prevalence of sophisticated �D interaction devices� the indirect geometric

design process remains clumsy and time consuming in general�

Shape design to required speci�cations by manual adjustment of available geometric DOFs is often

elusive� because relevant design tolerances are typically shape�oriented and not control point�weight ori�

ented� Due to the geometric �exibility of various representations such as NURBS� traditional geometric

shape re�nement remains ad hoc and ambiguous� For instance� to adjust a shape should the designer move

a control point� or change a weight� or move two control points����" Control point and weight dependent

manipulation is not natural because these DOFs do not reside on the sculpted geometric entity�

The design requirements of engineers and stylists can be very di�erent� Whereas engineers focus on

technical and functional issues� stylists emphasize aesthetically�driven conceptual design� Therefore� typical

design requirements may be stated in both quantitative and qualitative terms� such as �a fair and pleasing

surface which approximates scattered data and interpolates a cross�section curve�� Such requirements may

impose both local and global constraints on shape� The incremental manipulation of local shape parameters

to satisfy complex local and global shape constraints is at best cumbersome and often unproductive�

Stylists are often interested in geometric �theme variation�� This requires geometric entities to be gen�
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erated quickly and naturally� Unlike engineers� stylists are concerned more with the geometric shape than

with its underlying mathematical description� It is apparent that conventional interpolation�approximation

techniques� which often generate computerized models from digitized data� may not be quite suitable to

the time�varying requirements of stylists�


�� The Physics	Based Approach

Physics�based modeling methodology and �nite element techniques provide a means to overcome some

disadvantages of conventional geometric design�

� The behavior of the deformable model is governed by physical laws� Through a computational physics

simulation� the model responds dynamically to applied simulated forces in a natural and predictable

way� Shapes can be sculpted interactively using a variety of force�based �tools�� The physics�based

sculpting is intuitive for shape design and control�

� The equilibrium state of the dynamic model is characterized by a minimum of the potential energy of

the model subject to imposed constraints ����
� It is possible to formulate potential energy functionals

that satisfy local and global design criteria� such as curve or surface �piecewise� smoothness� and to

impose geometric constraints relevant to shape design�

� The physical model may be built upon a standard geometric foundation� such as free�form parametric

curve and surface representations� This means that while shape design may proceed interactively

or automatically at the physical level� existing geometric toolkits are concurrently applicable at the

geometric level�

Physics�based shape design can free designers from the need to make nonintuitive decisions such as

assigning weights to NURBS or determining shape parameters in variational splines through the direct and

intuitive sculpting of NURBS objects� In addition� with physics�based direct manipulation� non�expert

users are able to concentrate on visual shape variation without needing to comprehend the underlying

mathematical formulation�

Moreover� geometric design� especially conceptual design� is a time�varying process because designers

are often interested in not only the �nal static equilibrium shape but the intermediate shape variation as

well� In contrast to recent variational design approaches� time is fundamental to physics�based modeling�

Additional advantages can be obtained through the use of real�time dynamics�

� An �instantaneous� optimizer �if such a thing existed� can produce some kinematics if it were applied

at every interaction step to satisfy constraints� But the motion would be arti�cial and there would
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be nothing to prevent sudden� nonsmooth motions �depending on the structure of the constraints�

which can be annoying and confusing� By contrast� the dynamic formulation is much more general

in that it marries the geometry with time� mass� force� and constraint� Dynamic models produce

smooth� natural motions which are familiar and easily controlled�

� Dynamics facilitates interaction� especially direct manipulation and interactive sculpting of complex

geometric models for real�time shape variation� The dynamic approach subsumes all of the geometric

capabilities in an elegant formulation which grounds shape variation in real�world physics� Despite the

fact that incremental optimization may provide a means of interaction� pure optimization techniques

can easily become trapped in the local minima characteristic of non�linear models and�or constraints�

In contrast� real�time dynamics can overcome the di�culty of incremental optimization through the

incorporation of inertial properties into the model and the interactive use of force�based tools by the

designer�

� Practical design processes span conceptual geometric design and the fabrication of mechanical parts�

Physics�based modeling techniques and real�time dynamics integrates geometry with physics in a

natural and coherent way� The uni�ed formulation is potentially applicable throughout the entire

design and manufacturing process�

D�NURBS are physics�based models that incorporate mass distributions� internal deformation energies�

forces� and other physical quantities into the NURBS geometric substrate �Fig� ���� The equations of

motion for D�NURBS are formulated systematically through the application of Lagrangian mechanics�

Finite element analysis is employed to reduce these equations to e�cient algorithms that can be simulated

at interactive rates using standard numerical techniques� The dynamic behavior of D�NURBS results from

the numerical integration of their nonlinear di�erential equations in response to the applied forces and

constraints to produce physically meaningful� hence intuitively predictable motion and shape variation�

The dynamics framework of D�NURBS provides a principled mechanism for automatically determining the

values of control points and weights in accordance with design requirements�

D�NURBS generalizes traditional geometric design methodology using geometric NURBS� Within this

physics�based shape design framework� elastic functionals can be used to allow the qualitative imposition

of �fairness� criteria through quantitative means� Optimal shape design �nonlinear shape optimization�

results when D�NURBS achieve static equilibrium subject to global or local geometric constraints� More�

over� geometric design� especially conceptual design� is a time�varying process because designers are often

interested in not only the �nal static equilibrium shape but the intermediate shape variation as well� Conse�

quently� designers can interactively sculpt complex shapes to satisfy required speci�cations not only in the
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Figure ��� D�NURBS as new Physics�based models�

traditional indirect fashion� by adjusting control points� but also through direct physical manipulation� by

applying simulated forces and local and global shape constraints� The key advantage of this physics�based

design framework is that existing geometric toolkits continue to be applicable at the basic geometry level�

while it also a�ords designers new force�based toolkits that support dynamic manipulation and interactive

sculpting at the physics level �see Fig� �	�� More importantly� the two type of toolkits are compatible with

each other� Designers are free to choose either one or both to achieve design requirements� The signi�cant

advantage of D�NURBS is that it integrates force�based dynamic manipulation and interactive sculpting

with all existing NURBS geometric features and toolkits�


�� Modeling Applications

We have implemented a D�NURBS prototype modeling environment� We use this system to demonstrate

that D�NURBS are e�ective tools in a wide range of applications� including interactive sculpting through

force�based direct manipulation tools� shape blending� and scattered data �tting�

D�NURBS provide a natural solution to the solid rounding problem� In contrast to the geometric

approach� the D�NURBS can produce a smooth �llet with the proper continuity requirements by minimizing

its internal deformation energy� Additional position and normal constraints may be imposed across the

boundary of the surface� The dynamic simulation automatically produces the desired �nal shape� Fig� �

demonstrates edge rounding using D�NURBS surfaces� In Fig� ��a��� we round an edge at the intersection

of two planar faces� The faces are formed using quadratic D�NURBS patches with � � � control points�

The D�NURBS rounds the corner as it achieves the minimal energy equilibrium state shown in Fig� ��a��

Fig� ��b�� illustrates the rounding of a trihedral corner of a cube� The corner is represented using a

��



Interpolation/
Approximation

Variational
Optimization 

Interactive
Modification

Cross−sectional
Design

Force−based Toolkits

PHYSICS
LEVEL

GEOMETRY
LEVEL

Figure �	� Two�level Physics�based design paradigm�

�a�� �a�

�b�� �b�

Figure �� Solid rounding� �a� rounding an edge between polyhedral faces! �b� rounding a trihedral
vertex� �a�� Initial con�guration of control points and patches� �a� Rounded D�NURBS surface in static
equilibrium� �b�� Initial con�guration of control points and patches� �b� Rounded D�NURBS surface� In
both examples� the control points along edges have multiplicity �
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Figure �� Four �tted shapes� �a� Pot� �b� Vase� �c� Glass� �d� Bottle�

quadratic D�NURBS surface with � � � control points� The corner is rounded with position and normal

constraints along the far boundaries of the faces �Fig� ��b���

D�NURBS is also useful for scattered data �tting� Interesting situations arise when there are fewer

or more data points than there are degrees of freedom in the model� leading to underconstrained or

overconstrained �tting problems� The data interpolation problem is amenable to common constraint

techniques ���
� Approximation can be achieved by physically coupling the D�NURBS surface to the

data through Hookean spring forces� Spatial data points are often associated with corresponding nearest

material points of the model� We use a D�NURBS swung surface with �� control points to recover a pot�

a vase� a bottle� and a wine glass generated from synthetic data� The number of randomly sampled data

from objects are ��� ��� ��� and ��� respectively� Fig� ��a�d� shows the �nal reconstructed shapes�

The physics�based modeling approach is ideal for interactive sculpting of surfaces� It provides direct

manipulation of the dynamic surface to re�ne its shape through the application of interactive sculpting

tools in the form of forces� Fig�  illustrates four shapes sculpted using spring forces� The initial open

surface is generated using a quadratic triangular B�splines with � control points�

��



�a� �b�

�c� �d�

Figure � Interactive sculpting of an open quadratic surface into four di�erent shapes �a�d��

	 Conclusion

We have reviewed geometric modeling and demonstrated that NURBS� among many shape representations�

become an industrial standard in geometric design systems because of their ability to unify both free�form

parametric splines and commonly used algebraic functions� We also survey various shape design techniques

and discuss some of the limitations of geometric design� Furthermore� we summarize the major advantages

of D�NURBS � a newly developed physics�based shape design framework� It has been shown that D�

NURBS can be used to overcome the drawbacks of established geometric design methodology� Moreover�

the D�NURBS physics�based framework furnishes designers not only the standard geometric toolkits but

powerful force�based sculpting tools as well� It provides mechanisms for automatically adjusting unknown

parameters to support user manipulation and satisfy design requirements�

The application experiments obtained from the D�NURBS interactive modeling environment illustrate

that D�NURBS can provide a promising approach for a variety of CAD and graphics modeling problems

such as constraint�based optimization for surface design and fairing� automatic settings of weights in surface

�tting� and interactive sculpting through applied forces� In addition� D�NURBS promise to serve as a

basis for future research endeavors in physics�based CAGD� graphics� virtual reality� vision� and scienti�c

��



visualization�

Since our models are built on the industry�standard NURBS geometric substrate� designers working

with them can continue to make use of the existing array of geometric design toolkits� With the ad�

vent of high�performance graphics systems� the physics�based framework is poised for incorporation into

commercial design systems to interactively model and sculpt complex shapes in real�time�
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