
Voxels on Fire

Ye Zhao Xiaoming Wei Zhe Fan Arie Kaufman Hong Qin ∗

Center for Visual Computing and Department of Computer Science
Stony Brook University

Stony Brook, NY 11794-4400

Abstract

We introduce a method for the animation of fire propagation and the
burning consumption of objects represented as volumetric data sets.
Our method uses a volumetric fire propagation model based on an
enhanced distance field. It can simulate the spreading of multiple
fire fronts over a specified isosurface without actually having to cre-
ate that isosurface. The distance field is generated from a specific
shell volume that rapidly creates narrow spatial bands around the
virtual surface of any given isovalue. The complete distance field
is then obtained by propagation from the initial bands. At each step
multiple fire fronts can evolve simultaneously on the volumetric ob-
ject. The flames of the fire are constructed from streams of particles
whose movement is regulated by a velocity field generated with the
hardware-accelerated Lattice Boltzmann Model (LBM). The LBM
provides a physically-based simulation of the air flow around the
burning object. The object voxels and the splats associated with the
flame particles are rendered in the same pipeline so that the volume
data with its external and internal structures can be displayed along
with the fire.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically Based Modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation

Keywords: Fire Propagation, Distance Field, Lattice Boltzmann
Model, Splatting, GPU Acceleration

1 Introduction

Simulating fire phenomena is important in many applications such
as entertainment, visual simulation, battlefield visualization, and
even landscape design. However, the visualization and animation
of fire is difficult. Extensive studies [Beaudoin et al. 2001; Chiba
et al. 1994; Lee et al. 2001; Nguyen et al. 2002; Perlin 1985; Per-
lin and Hoffert 1989; Perry and Ricard 1994; Reeves 1983; Stam
and Fiume 1995] have been conducted using different approaches
to model and render the dynamic behavior of fire. A good sur-
vey has been given by Nielson and Madsen [1999]. Over a decade
ago, Perlin et al. [1985; 1989] presented a noise-based method to
model fire where fractal perturbation is used to simulate its turbu-
lent movements. This approach is easy to implement, however it

∗Email:{yezhao, wxiaomin, fzhe, ari, qin}@cs.sunysb.edu

Figure 1: Fire on a volumetric table. The underlying noncom-
bustible metal frame is revealed once the wooden outer layer is
consumed.

cannot describe a fire front propagation or external effects such as
wind. Reeves [1983] proposed the use of a particle system to model
fire. The motion of the fire particles was affected by external forces,
such as gravity. Due to the discrete nature of particles, a huge num-
ber of them was required to achieve good visual effects. Chiba et
al. [1994] combined a user defined vortex-based velocity field and a
2D fuel map to describe the movement of fire. The finite difference
solver for partial differential equations was used in both the work
of Stam and Fiume [1995] and the work of Foster and Metaxas
[1997] to simulate turbulent gas and fire. Qian et al. [1998] used
a front tracking method to simulate infinitely thin premixed flame
surface, which is explicitly represented by connected marker points.
Recently, Nguyen et al. [2002] presented a method based on the
Navier-Stokes equations to model fuel with hot gaseous products.
Using the level set method to track the moving flame surface they
produced realistic looking turbulent flames.

Unlike these studies, we focus in this paper on the modeling of
fire front propagation and the burning consumption of objects rep-
resented by volumetric data sets, such as the table shows in Figure
1. Splatting is used to render the flames resulting in a realistic vi-
sual effect. King et al. [2000] first used textured splats in their
work to avoid the computational complexity of large particle sys-
tems. In our earlier work [Wei et al. 2002], textured splats were
adopted as the basic display primitives and the Lattice Boltzmann
Model (LBM) was introduced to model the interaction of the fire

with wind. We expand our work with LBM to generate the external
air velocity field that affects the movement of the fire front.

Related to our work of fire front simulation, both Perry and Pi-
card [1994] and Beaudoin et al. [2001] simulated the spreading of
fire on polygon meshes. In their work [Beaudoin et al. 2001], the
air velocity field was generated by user defined functions related to
environmental properties. Isosurfaces were built from dense grids
around the flame skeleton by Marching Cubes, where the density
values of grid points were calculated from flame skeletons accord-
ing to the fire distribution properties. Lee et al. [2001] evolved the
geodesics on polyhedral surfaces. They could simulate multiple fire
fronts simultaneously as well as fire front merging. In other appli-
cations, some different surface propagation methods [Turk 1991;
Ruuth et al. 2000] have also been proposed.

All these previous propagation approaches focused on simulat-
ing the fire front on surface triangles or polygons. In this paper,
we describe a method that simulates the fire evolution by using an
enhanced distance field on volumetric data sets. Given a specific
density isovalue, we do not generate the isosurface from the vol-
umetric data set. Instead, the fire front propagates directly on a
virtual surface related to this isovalue in the volumetruc object. In
each step, fire-front points move along a tangent direction of the ob-
ject surface defined by external forces. Distance field information
guarantees that the next position of these points always adheres to
the virtual surface. Our distance field is created by a propagation
method from a narrow band of space near the isosurface. Neighbor-
ing bands defined by different isovalues can be rapidly generated
from a shell volume that saves the density relations between every
voxel and its neighbors.

Along the fire front, flame particles are emitted according to the
fuel value of the current position of the object. Their movement fol-
lows the air velocity field which is simultaneously computed with
a graphics hardware accelerated LBM. We simply model the ob-
ject burning comsumption by modifying the fuel property of object
voxels and remove the burnt voxels from the rendering. The com-
plicated combustion procedure and the object burning deformation,
melting and breaking are left for future work. Splatting is used as
our direct volume rendering method for both flame particles and
object voxels. The object splats are created according to the user
defined transfer functions so that the traditional volume rendering
effects can be achieved. These splats are projected onto the screen
plane with an opacity blending function to create the final image.
In this way, the internal structures of the volumetric object can be
rendered together with the fire using the same rendering framework.

Working on volumetric data sets has several advantages. The
internal structure of the burning objects can be revealed once the
outer layer is burnt and rendered uniformly with the fire flames to
achieve high quality results. The consumption of fuel in volumet-
ric objects is more plausible and easy to implement. Furthermore,
due to the use of distance field the computation time has no direct
relation to the topological complexity of the object. It mainly re-
lates to the volume data size and is pre-calculated. In contrast, the
computational time of polygon-based methods depends heavily on
the number of triangles or polygons and their topological structures.
Moreover, although we currently focus on volumetric data sets, our
propagation method can be easily applied to polygonal objects.

The remainder of the paper is organized as follows: In the next
section, we introduce the distance field generation. In Section 3,
the fire propagation method on the virtual isosurface is described.
Flame generation from the LBM is discussed in Section 4. In Sec-
tions 5 and 6, we present our splat rendering method and several
simulation results.

2 Distance Field

A distance field is a scalar field that specifies a distance to a shape,
where the distance is usually signed to distinguish between the in-
side and outside of the shape. Data set D representing a distance
field to surface S is defined as: D : R3 → R and for p ∈ R3,

D(p) = sgn(p) ·min{|p−q| : q ∈ S} (1)

where sgn(p) = 1(−1) if p is inside (outside) of S, and || is the
Euclidean norm. For each voxel in the 3D volume data set grid,
the distance to the closest point on the surface is stored. In our fire
propagation method, we use an enhanced distance field to save not
only the distance value, but also the surface point q in Equation 1
that defines this value. When a fire-front point moves to a posi-
tion outside or inside the surface, we can easily move it back to its
closest point on the surface using the distance field.

Distance fields have been used for morphing [Cohen-Or et al.
1998], virtual endoscopy or skeletal representation [Zhou et al.
1998; Zhou and Toga 1999], digital characters [Perry and Frisken
2001], and other applications. Usually the distance field is calcu-
lated from the object modeled as a polygon mesh [Jones 1996]. For
the object modeled as a volumetric data set, a mesh may be gener-
ated first [Payne and Toga 1992]. Frisken et al. [2000] proposed
a hierarchical computation for distance fields. Jones and Satherley
[2001] gave a brief review of generation methods and proposed a
chamfer distance transform method. Breen et al. [1998] created the
distance field from a constructive solid geometry model in a two
step process: First they calculated the shortest distances to a set
of points within a narrow band around the evaluated surface. Sec-
ond they used a fast marching method to propagate the shortest dis-
tances and closest points information over the whole volume. Our
approach uses a propagating method similar to theirs, however, we
generate narrow bands for any given isovalue directly via a special
shell volume of the volumetric data set. Therefore, the fire fronts
can evolve on different isosurfaces chosen by the user.

2.1 Shell Volume
For a traditional volumetric data set V which stores the densities of
all the voxels, the shell volume is defined as a data set which has
the same grid size as V but stores three special density ranges for
every voxel. The basic idea of using the shell volume is that for
a given isovalue we can promptly determine whether a voxel of V
is inside, outside or on the corresponding isosurface. For this pur-
pose, we save three ranges (min0,max0), (min1,max1) and (min-
1, max-1) for each voxel by comparing the density values in its
26-neighborhood. The (min0,max0) range is defined as follows:
For each cell C denote dc as the density of the cell and dm as the
minimum density of its neighbors (if one of its neighbors is out
of grid boundary, dm is set to 0). Then, min0 = min(dc,dm) and
max0 = max(dc,dm). For the (min1,max1) range of C, min1 is de-
fined as the smallest min0 of its lower density neighbors (i.e., the
neighbors of C which have the densities smaller than C). And max1
is defined as the largest max0 of its lower density neighbors. Fi-
nally, for the (min-1, max-1) range of C, min-1 is defined as the
smallest min0 of its higher density neighbors and max-1 is defined
as the largest max0 of its higher density neighbors. Straightfor-
ward application of the above definitions can produce overlapping
ranges. In such cases, we modify either min-1 or max1 as needed
to ensure that max1 ≤ min0 and max0 ≤ min-1.

To illustrate the use of the shell volume, consider a specific iso-
value lying in the (min0,max0) range of voxel C. From this we
know that the corresponding isosurface lies between C and at least
one of its neighbors. Hence C can be considered as lying on the
isosurface. Now suppose that the isovalue lies in the (min1,max1)
range of voxel C. From this we can conclude that the isosurface

(a) density grid (b) isovalue=10

(c) isovalue=14 (d) isovalue=18

Figure 2: The shell volume is used to quickly and easily generate
narrow bands for different isovalues

lies one neighbor away from C. Thus, at least one of C’s neigh-
bors can be considered as lying on the surface and C must be inside
the isosurface (i.e., on the higher density side). All the voxels like
C, lying one neighbor away from and on the high density side of
the isosurface, comprise what is termed as the inside narrow band.
Similarly, all the voxels lying one neighbor away from and on the
low density side of the isosurface, comprise what is termed as the
outside narrow band. And finally, the voxels between those two
bands comprise what is termed as the surface band.

2.2 Distance Field Generation

Let us denote the inside, outside, and surface narrow bands as INB,
ONB, and SNB, respectively. For each voxel p in INB, initial dis-
tance field information can be generated as follows: Find the neigh-
bors belonging to SNB and identify q as the closest one to p. Rather
than saving the scalar value D(p) (defined in Equation 1) as tradi-
tional methods do, we instead save q which indirectly defines the
D(p) for p. The set of all such q defines the INB distance field. In
the same way, we define the ONB distance field. Next, we prop-
agate the computation through the whole volume in a way similar
to the fast marching method of Breen et al. [1998]. Note that our
distance volume provides an alternate representation of a standard
distance field.

Figure 2a shows a 4×4 grid where the values represent the densi-
ties. As an example, the voxel A has its (min0,max0), (min1,max1)
and (min-1, max-1) ranges as (3,12), (0,3) and (12,15). For the
voxel B, these ranges are (1,6), (0,1) and (6,15). While the user
chooses the isovalue as 10, A is in the SNB and B is in ONB. Figure
2b shows the corresponding isosurface. When the isovalue is 14
which lies in the (min-1, max-1) range of both A and B, Figure 2c
shows that they are both in ONB. In Figure 2d, where the isovalue
is 18, both of them do not belong to any narrow bands and their dis-
tance fields are calculated from propagation by the fast marching
method.

3 Fire Propagation

To simulate fire propagation on a volumetric object, the fire front
is represented by an evolving group of front points on a virtual iso-
surface. These front points can be considered as the emitters of the
flames.

3.1 Forwarding Fire Front
In each step, the fire front evolves on the virtual surface of the ob-
ject. In our implementation, points which represent the fire front
move forward based on the combined effect of their velocities and
external forces, such as wind. The wind forces are calculated by
LBM and the details will be given in the next section. When sim-
ulating point propagation on surface meshes, the points necessar-
ily move across boundaries between different polygons [Beaudoin
et al. 2001; Lee et al. 2001]. The polygon geometric properties,
such as normal vectors and tangent vectors, are typically used to
compute new positions of the points. In contrast, we model the
fire propagation on a volumetric data set without generating an iso-
surface and no geometric entities of the surface are used directly.
Nevertheless, the front points always adhere to a virtual isosurface.
In order to achieve this, in each time step, every point moves in the
following way:

1. Find the tangent plane of the virtual surface at the current po-
sition.

2. Calculate the forward velocity from the current velocity and
the wind field velocity which represents the external force and
is computed by LBM.

3. Adjust the forward velocity within the tangent plane. Com-
pute a temporary target position from this velocity.

4. Define the next position as the closest point on the virtual sur-
face to the temporary target position using the distance field
information.

We find the tangent plane at a point by utilizing the property
that it is perpendicular to the density gradient at that point. During
preprocessing, we compute the gradient vectors using central dif-
ferences for every regular voxel position of the whole volume data.
If during simulation, a point is not located at a regular grid position,
we simply use trilinear interpolation to calculate its gradient from
its eight regular neighbors.

Figure 3 illustrates the procedure for calculating the next posi-
tion, P1, of a fire-front point P. First, the gradient n of point P is
obtained. For this gradient, there are many vectors in the tangent
plane perpendicular to n, such as t and t′ in Figure 3a. Figure 3b
shows how we calculate the forward velocity v1 of P by the vector
addition of the current velocity v0 and velocity vf resulting from
external forces. In the next step, as shown in Figure 3c, forward
velocity v1 should be projected onto the tangent plane so that the
point always moves along the surface. Note that the resulting vec-
tor v lies along the intersection of the tangent plane with the plane
defined by n and v1. The projection, v, is calculated directly from
v1 and n as v = v1 − v1 ·n. This v is the tangent vector we want.
We just move its start point to P and call it t. Finally, we move P
along t to a temporary target position P0 by a predefined step size.
Although P0 may not be exactly on the isosurface, from the distance
field we can find the closest point P1 to P0 which is on the surface,
as shown in Figure 3d. Thus, P1 is the next position of P. We also
set the current velocity of P1 to be in the direction of t for the next
step of the calculation.

Note that one of the innovations of our method is the use of the
distance field as a crucial tool for the fire front forwarding. This

(a) (b) (c) (d)

Figure 3: Calculating the next position P1 of a fire front point P .

method is not limited to volumetric data sets. After computing the
distance field of the polygonal objects, it can be straightforwardly
applied to the fire front propagation on these objects. In this way,
the propagation method does not need to handle complicated poly-
gon surface properties, as previous studies do. We should mention
that to achieve more accurate distance values, we need to increase
the grid resolution. However, this computation could be finished in
pre-computation and will not influence the simulation.

3.2 Adjusting Fire Front
A fire front consists of a group of points. While these points move
forward on the virtual surface, the front should be kept orderly and
the points should be uniformly sampled so that no self-intersections
or large gaps between consecutive points appear. To satisfy this
requirement, our method inserts or deletes points when necessary,
and also handles self-intersections (the swallow tail problem) after
each forwarding step. The similar method was also used by Lee et
al. [2001].

If the gap between two consecutive points is too large, the fire
front cannot represent the exact surface shape. This is addressed
by inserting more points in the following way. We calculate the
midpoint of the gap and use the distance field to get the closest
point to it on the surface. This point is inserted and its velocity is
set to the average of its two neighbors along the front. If, on the
other hand, the gap is too small, or even zero, one of the points is
deleted.

The swallow tail problem occurs when the fire front intersects
with itself. We simply detect its occurrence by checking the direc-
tions of one point P relative to its two neighbors Pa and Pb along
the front. If the angle between PaP and PPb is too large, there ex-
ists a sharp corner at P. To smooth out the swallow tail, we sim-
ply delete P. Although this method may occasionally delete some
points where no swallow tail happens, it only removes sharp cor-
ners and because of our point insertion and deletion procedure, it
does not adversely affect the propagation of the front.

Several fire fronts can propagate simultaneously and they may
meet each other. When they meet, the area already consumed
should not be burnt again. That means one fire front cannot propa-
gate across another. We enforce this by initializing the fuel property
of every voxel of the whole object. This fuel value also represents
the ability of each voxel to emit different fluxes of flame particles.
When a front point moves to a position already consumed, we sim-
ply delete it. As a result, two fire fronts may merge and then extin-
guish.

4 Fire Flames

The fire front emits particles into the air space to form the flames.
These particles move according to the wind velocity field surround-

ing the volume object.

4.1 Wind Field
To model wind and other environmental effects that greatly affect
the direction and speed of the propagation of the fire front and flame
dynamics, we adopt the LBM approach, instead of using the tradi-
tional noise functions [Beaudoin et al. 2001]. In our recent work of
Wei et al. [2002; 2003a; 2003b], LBM has been used to model open
surface fire, smoke and specific wind field. To achieve interactive
speeds, we also implemented the LBM computations on graphics
hardware [Li et al. 2003]. The design of the LBM and its simple
way of modeling complicated boundary objects make it ideal for
our application. In what follows, we briefly review the LBM.

The LBM [Kandhai 1999; Muders 1995] is a numerical scheme
for simulating viscous fluids using a regular lattice of cells and
links. Motivated by kinetic theory, the population of fluid parti-
cles contained in a volume element of fluid is represented by a par-
ticle velocity distribution, or packet distribution, at each point in
space. Whereas both space and time are discretized, the packet dis-
tribution fα (x, t) is a continuous, real-valued function that specifies
the density of particles at position x, at time t with velocity vector
eα . Particle packets stream along lattice links from one site to an-
other in discrete time steps. Between streaming steps, they undergo
collision. As in kinetic theory, the collisions conserve mass and
momentum (and energy for thermal models). In the limit of zero
lattice spacing and time step, the LBM yields the incompressible
Navier-Stokes equation.

Figure 4: The D3Q19 lattice geometry

To balance between accuracy and speed, we employ the D3Q19
lattice which is a 3D lattice with 19 cells (the center cell with 18
neighboring cells), as shown in Figure 4. On this lattice, the packet

(a) (b)

Figure 5: Streamlines showing the wind field around two object boundaries: (a) sphere; (b) table.

distributions are denoted as fi where i is a particular link with its ve-
locity vector shown as ei. From the packet distributions, the macro-
scopic density (mass) ρ and velocity u are calculated as follows:

ρ = ∑
i

fi u =
1
ρ ∑

i
fiei (2)

where ei is the velocity vector, associated with link i. At each time
step, every cell updates its packet distribution values based on col-
lision and streaming rules. Collision describes the redistribution
of microscopic packets at each local node. Streaming describes
the motion of the packet distribution values to the nearest neigh-
bor along the links in the velocity directions. These two rules of the
LBM can be described by the following equations:

collision : f new
i (x, t)− fi(x, t) = Ωi (3)

streaming : fi(x+ ei, t +1) = f new
i (x, t) (4)

where Ω is a general collision operator. Since, from a statis-
tical perspective, the effect of collisions is to drive the system to-
ward equilibrium, the BGK model [Kandhai 1999; Muders 1995] is
employed to represent the collision operation as relaxation towards
local equilibrium. Denoting the equilibrium packet distribution as
f eq
i , the BGK collision operator is represented as:

fi(x+ ei, t +1)− fi(x, t) = −
1
τ
(fi(x, t)− f eq

i (ρ,u)) (5)

f eq
i = ρ(Ai +Bi(ei ·u)+Ci(ei ·u)2 +Di(u)2) (6)

where τ is the relaxation time scale, determining the viscosity of the
flow, and the coefficients Ai through Di are constant for a given lat-
tice geometry. The simplest way to define boundary conditions in

the LBM is through bounce-back or periodic boundary conditions.
However, to define the wind field around a burning object with arbi-
trary shape, a more accurate boundary condition is needed. In this
paper, we adopt the curved boundary condition proposed by Mei
et. al [2000]. The surfaces of the burning objects are resampled ac-
curately as the intersection points on the links between fluid nodes
and solid nodes. The incoming packet distributions are then calcu-
lated explicitly in a way similar to Equation 6. The density ρ and
velocity u of nearby fluid nodes and the boundary velocity uw of
the intersection points are used in this computation. We have used
this approach in our previous work to model the behavior of smoke
in an urban canyon [Wei et al. 2003a] and the wind field around
a moving object [Wei et al. 2003b]. In this paper we benefit from
the simple and efficient way of LBM to generate the dynamic wind
velocity field around different objects. In Figure 5, we show the
wind field generated around two objects. Streamlines are originat-
ing from a plane cutting through the most active flow region of the
grid. Red streamlines indicate out-coming flow towards the user,
green streamlines indicate incoming flow away from the user and
blue streamlines indicate the flow on the plane.

4.2 Flame Generation
A voxel where an emitter exists has a fuel value, that also represents
the fuel of the emitter. In each simulation step, flame particles are
emitted from the fire-front points with an initial velocity defined
by the current wind velocity and the fuel of its emitter. The fuel of
the emitters is consumed by emitting different numbers of particles.
At the same time, the particles are advected by the LBM velocity
field in the air space. Since the particle positions may not lie on
the regular grid sites where the LBM velocities are known, trilinear

interpolation is used as needed.
The LBM velocity field is calculated as part of the simulation

using graphics hardware acceleration, as detailed in our previous
work [Li et al. 2003]. We compute both the developing velocity
field and the evolving fire as the time goes on.

Flame particles have a finite life span determined by the fuel
value of that part of the object from which they are emerging. To
model this behavior, when each particle is emitted, it is given a life-
time value proportional to the fuel value of its emitter. The lifetime
value subsequently decreases by some factor in every time step.
When a particle’s lifetime reaches zero, it is deleted and no longer
contributes to the rendering. A flame list is created for each emitter
on the fire front. This list connects all active particles emitted from
a single emitter and represents a flame skeleton.

5 Rendering

In previous studies [Perry and Ricard 1994; Stam and Fiume 1995],
fire was typically rendered as a collection of particles with sur-
rounding properties set by the user and objects are rendered as tra-
ditional geometric primitives. Beaudoin et al. [2001] introduced
well-defined contour effects to build individual flames. They mod-
eled flames using implicit surfaces generated by Marching Cubes
from dense grids around flame skeletons, assigned different colors
to the resulting surfaces, and achieved good visual effects. Nguyen
et al. [2002] rendered the fire as a participating medium with black-
body radiation using a stochastic ray marching algorithm and gave
realistic fire results. Our method instead works on the volume data
directly, therefore it benefits from direct volume rendering tech-
niques without generating isosurfaces. In this way, external and in-
ternal structures of the objects can be rendered together with the fire
flames in a uniform framework to achieve superior visual effects.

(a) (b)

Figure 6: Rendering width-decreasing splats with different colors
to simulate a fire flame: (a) Decreasing width splats on a fire flame;
(b) A fire flame rendered with decreasing width splats with multiple
colors.

We use splatting [Westover 1990] to render the voxels and flame
particles together. The traditional Gaussian kernel is used to cre-
ate the splats. Flame particles are added as a different type of splat
and these are sorted together with all the voxel splats according to
their distance to the screen plane. The sorted splats are projected
onto the screen in front-to-back order and the final image is created
from their blending. Different opacity values must be assigned to
different splats to enable the blending procedure. We assign opacity
values to fire particles manually from a table while the opacity val-
ues of voxels are assigned by classic transfer functions. For flame
splats, small opacity values make the fire translucent while large
values hide the objects behind the fire. To keep the realistic shape

of each flame, we use Gaussian sphere splats to represent flame
particles on one flame skeleton. Because the number of particles
emitted in a simulation of one flame is not dense enough to show
the continuous shape of the flame, more splats are added just for the
rendering. In addition, to model the decreasing width of the flame
from the root to the tip, we simply decrease the radius of each parti-
cle splat moving from the root to the tip. The color variation caused
by different wavelength distributions over the flame depends on the
distance from the base of the flame. Our method assigns differ-
ent colors to different parts of the splats according to their distance
from the center to produce a single flame in colored layers. These
effects are illustrated in Figure 6. For better visual effects, we use
the noise based method, data shader [Brian and Mackerras 1993],
to choose the color of the splats in order to synthesize the texture of
the volume objects.

6 Results

We have implemented our method and tested it on several volumet-
ric data sets using a 2.53GHz P4 CPU and 1GB rambus memory.
Figure 7 shows the simulation of a single fire front on a sphere. As
the fire evolves from the bottom to the top, the outside layer of the
sphere is consumed by burning and the internal structures are re-
vealed. We render fire particles and voxels together by traditional
splatting. The volume objects appearance is controlled by transfer
functions easily tuned by the user. Figure 8 simulates two fire fronts
that start from two legs of a volumetric table and propagate over the
table top. Eventually the two fronts merge together. The other two
legs are not consumed because of the wind field direction. The
wood layer of the table is burned and the internal noncombustible
material is revealed. The computational results and the average sim-
ulation rates are shown in Table 1. The fire simulation algorithm

Table 1: Simulation results

Volume No. of No. of Propagation Average
data object flame simulation simulation rate
size voxels particles time (msec) (frames/sec)

3745 15
Sphere 64×64×64 22872 11167 31 24.6
Fig. 7 12454 78

5230 16
Table 67×128×67 58837 11096 62 14.2
Fig. 8 25814 156

which includes propagation and flame particle generation runs at
an average rate of 24.6 frames per second for the sphere and 14.2
frames per second for the table. This is an average value since the
number of fire emitters and the flame length is dynamically chang-
ing during the simulation, which means that the number of particles
being emitted is changing. Reducing the number of the flame par-
ticles further, the simulation can run much faster while losing some
image quality.

We use the graphics hardware accelerated LBM [Li et al. 2003]
to calculate the wind field around the object. The grid size for the
LBM computation is 60×80×60 and the speed is about 17 ms per
step on an Nvidia GeForce4 Ti 4600 card with 128MB memory,
while a comparable CPU computation speed is 384 ms per step.

7 Conclusions

We have presented a new method for simulating the evolution of
the fire fronts and the burning of objects represented as volumetric
data sets. Our method can be summarized as:

Figure 7: Simulation of one fire front evolving on a volumetric sphere. Once the outside spherical layer is consumed, the internal structures
are revealed.

Figure 8: Simulation of two fire fronts evolving on a volumetric table simultaneously. The fire starts from two legs of the table and propagates
to the table top. Eventually the two fronts merge together. Once the outside wooden layer is consumed, the noncombustible metal frame is
revealed.

• Using enhanced distance field representation, fire-front points
are guaranteed to stick to the virtual surface while propagat-
ing. This propagation method can be easily applied also to
polygonal objects.

• A shell volume is employed to rapidly generate narrow bands,
which are used in a fast marching method to create the dis-
tance field for the volumetric data for any given isovalue.

• The hardware-accelerated LBM generates a physically-based
flow field around complex burning objects at an interactive
speed.

• Fire flame particles emitted from the object surface move ac-
cording to the flow field. They are rendered together with the
object voxels by splatting to produce the realistic fire visuals
while keeping the volume rendering effects of the object.

Our future work will focus on the fire combustion process and
the burning effects on volume objects which are not addressed
here. For example, volume objects may deform because of the heat
and some objects will even melt or break. We plan to introduce
physically-based methods to model such phenomena. At the same
time, we will work on the new GeForce FX card which supports
floating point computation to accelerate the LBM. The real time
simulation will be implemented on higher resolution grids.

Acknowledgement

This work is partially supported by ONR grant N000140110034
and NSF grants IIS-0097646 and CCR-0306438.

References

BEAUDOIN, P., PAQUET, S., AND POULIN, P. 2001. Realistic and control-
lable fire simulation. Proceedings of Graphics Interface, 159–166.

BREEN, D. E., MAUCH, S., AND WHITAKER, R. T. 1998. 3D scan con-
version of csg models into distance volumes. Proceedings of Symposium
on Volume Visualization, ACM SIGGRAPH, 7–14.

BRIAN, C., AND MACKERRAS, P. 1993. Data shaders. Proceedings of
IEEE Visualization 1993, 25–29.

CHIBA, N., MURAOKA, K., TAKAHASHI, H., AND MIURA, M. 1994.
Two-dimensional visual simulation of flames, smoke and the spread of
fire. The Journal of Visulatization and Computer Animation 5, 37–53.

COHEN-OR, D., LEVIN, D., AND SOLOMOVICI, A. 1998. Three-
dimensional distance field metamorphosis. ACM Transactions on Graph-
ics 17, 2, 116–141.

DOBASHI, Y., KANEDA, K., YAMASHITA, H., OKITA, T., AND NISHITA,
T. 2000. A simple, efficient method for realistic animation of clouds.
Proceedings of SIGGRAPH 2000, 121–128.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of a hot,
turbulent gas. Proceedings of SIGGRAPH 1997, 181–188.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R.
2000. Adaptively sampled distance fields: A general representation of
shape for computer graphics. Proceedings of SIGGRAPH 2000, 249–
254.

JONES, M. W., AND SATHERLEY, R. 2001. Using distance fields for object
representation and rendering. Proceedings of Eurographics, 37–44.

JONES, M. W. 1996. The production of volume data from triangular meshes
using voxelisation. Computer Graphics Forum 15, 5, 311–318.

KANDHAI, B. D. 1999. Large Scale Lattice-Boltzmann Simulations. PhD
thesis, University of Amsterdam.

KING, S. A., CRAWFIS, R. A., AND REID, W. 2000. Fast volume ren-
dering and animation of amorphous phenomena. Proceedings of Volume
Graphics, 229–242.

LEE, H., KIM, L., MEYER, M., AND DESBRUN, M. 2001. Meshes on
fire. Proceedings of Eurographics Workshop on Computer Animation
and Simulation, 75–84.

LI, W., WEI, X., AND KAUFMAN, A. 2003. Implementing lattice boltz-
mann computation on graphics hardware. The Visual Computer (to ap-
pear).

MEI, R., SHYY, W., YU, D., AND LUO, L. 2000. Lattice boltzman method
for 3-d flows with curved boundary. Journal of Computational Physics
161, 680–699.

MUDERS, D. 1995. Three-Dimensianl Parallel Lattice Boltzmann Hydro-
dynamics Simulations of Turbulent Flows in Interstellar Dark Clouds.
PhD thesis, University at Bonn.

NGUYEN, D. Q., FEDKIW, R., AND JENSEN, H. W. 2002. Physically
based modeling and animation of fire. Proceeding of SIGGRAPH 2002,
721–728.

NIELSEN, T. E., AND MADSEN, S. T. 1999. Modeling, Animation, and
Visualization of Fire. Master’s thesis, University of Copenhagen, Den-
mark.

PAYNE, B. A., AND TOGA, A. 1992. Distance field manipulation of surface
models. IEEE Computer Graphics and Applications 12, 1, 65–71.

PERLIN, K., AND HOFFERT, E. M. 1989. Hypertexture. Proceedings of
SIGGRAPH 1989 20, 3, 253–262.

PERLIN, K. 1985. An image synthesizer. Proceedings of SIGGRAPH 1989
19, 3, 287–296.

PERRY, R. N., AND FRISKEN, S. F. 2001. Kizamu: A system for sculpting
digital characters. Proceedings of SIGGRAPH 2001, 47–56.

PERRY, C. H., AND RICARD, R. W. 1994. Synthesizing flames and their
spreading. Proceedings of Eurographics Workshop on Animation and
Simulation, 1–14.

QIAN, J., TRYGGVASON, G., AND LAW, C. K. 1998. A front tracking
method for the motion of premixed flames. Journal of Computational
Physics 144, 52–69.

REEVES, W. T. 1983. Particle system - a technique for modeling a class of
fuzzy objects. Proceedings of SIGGRAPH 1983 17, 3, 359–376.

RUUTH, S., MERRIMAN, B., AND OSHER, S. 2000. A fixed grid
method for capturing the motion of self-intersecting wavefronts and re-
lated PDEs. Journal of Computational Physics 163, 1–21.

STAM, J., AND FIUME, E. 1995. Depicting of fire and other gaseous
phenomena using diffusion processes. Proceedings of SIGGRAPH 1995,
129–136.

TURK, G. 1991. Generating textures on arbitrary surfaces using reaction-
diffusion. ACM SIGGRAPH Computer Graphics 25, 4, 289–298.

WEI, X., LI, W., MUELLER, K., AND KAUFMAN, A. 2002. Simulating
fire with texture splats. Proceedings of IEEE Visualization, 227–237.

WEI, X., LI, W., MUELLER, K., AND KAUFMAN, A. 2003. The lat-
tice boltzmann method for gaseous phenomena. IEEE Transaction on
Visualization and Computer Graphics (to appear).

WEI, X., ZHAO, Y., FAN, Z., LI, W., YOAKUM-STOVER, S., AND KAUF-
MAN, A. 2003. Blowing in the wind. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 75–85.

WESTOVER, L. 1990. Footprint evaluation for volume rendering. ACM
SIGGRAPH Computer Graphics 24, 4, 367–376.

ZHOU, Y., AND TOGA, A. W. 1999. Efficient skeletonization of volumetric
objects. IEEE Transactions on Visualization and Computer Graphics 5,
3, 196–209.

ZHOU, Y., KAUFMAN, A., AND TOGA, A. W. 1998. Three-dimensional
skeleton and ceterline generation based on an approximate minimum dis-
tance field. The Visual Computer 14, 303–314.

