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Abstract

This paper presents an integrated approach and a unified algorithm that combine the benefits of PDE
surfaces and powerful physics-based modeling techniques within one single modeling framework, in or-
der to realize the full potential of PDFE surfaces. We have developed a novel system that allows direct
manipulation and interactive sculpting of PDFE surfaces at arbitrary location, hence supporting various
interactive techniques beyond the conventional boundary control. Our prototype software affords users
to interactively modify point, normal, curvature, and arbitrary region of PDFE surfaces in a predictable
way. We employ several simple, yet effective numerical techniques including the finite-difference dis-
cretization of the PDE surface, the multigrid-like subdivision on the PDE surface, the mass-spring
approximation of the elastic PDE surface, etc. to achieve real-time performance. In addition, our dy-
namic PDE surfaces can also be approzimated using standard bivariate B-spline finite elements, which
can subsequently be sculpted and deformed directly in real-time subject to intrinsic PDE constraints.
QOur experiments demonstrate many attractive advantages of our dynamic PDF formulation such as

intuitive control, real-time feedback, and usability to the general public.

1. Introduction and Motivation

Surface modeling and design techniques are vital to
many visual computing applications including inter-
active graphics, interface technology, CAD/CAM, an-
imation and entertainment, and virtual environments.
Conventional modeling schemes such as Non-Uniform
Rational B-Splines (NURBS) make use of simple poly-
nomial functions in association with a multitude of
control points (and weights or knots). Polynomial-
based splines are very powerful and extremely pop-
ular, mainly because they are compact, easy to un-
derstand, well-behaved, and satisfying many mathe-
matical properties such as smoothness requirements
and fairness criteria. Despite the rapid advances in the
theoretical foundations and mathematical properties
of free-form splines during the past several decades,
better and more efficient interactive techniques for
popular splines have been evolved rather slowly. In
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essence, free-form spline modeling is frequently asso-
ciated with tedious and indirect shape manipulation
through time-consuming operations on a large num-
ber of (oftentimes irregular) control vertices. These
conventional techniques can be difficult, less natural,
and counter-intuitive, because strong mathematical
sophistication is necessary for users. Moreover, only
geometric attributes are characterized within math-
ematical splines. Recently, PDE (Partial Differential
Equation) surfaces had emerged as a powerful mod-
eling technique and started to gain popularity and
strength for surface representation and design. PDE
surfaces permit geometric objects to be defined and
governed by a set of differential equations. In compar-
ison with traditional control-point-based techniques,
PDE surfaces offer many advantages:

e PDE surfaces are generally controlled by physical
laws, so they are natural and much closer to the
real world. They are potentially ideal candidates for
both design and analysis purposes.

e The formulation of differential equations is well-
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conditioned and technically sound. Smooth surfaces
with high-order continuity requirements are readily
defined through PDEs.

e Smooth surfaces that minimize certain energy func-
tionals oftentimes are associated with differential
equations, hence, optimization methods can be uni-
fied with PDE surfaces.

e Many powerful numerical techniques to solve PDEs
are commercially available. Parallel algorithms can
be deployed for large-scale problems in industrial
settings.

e Users can easily understand the underlying physical
process associated with PDEs, therefore, high-level
control is possible through the modification of phys-
ical parameters.

o PDE surfaces can potentially unify both geometric
and physical aspects. They are invaluable through-
out the entire modeling, design, analysis, and manu-
facturing tasks. Various heterogeneous requirements
can be enforced and satisfied simultaneously.

Despite the rapid advances and modeling successes of
PDE surfaces, they demand a lot of novel interactive
techniques to realize their full potential. Typical short-
comings associated with PDE surfaces include:

e The prior work on PDE surfaces mainly concen-
trates on elliptic PDEs and is lack of interactive
techniques for shape manipulation.

e Besides boundary curve control and interactive edit-
ing of coefficients for differential equations, there is
a lack of direct interactive manipulation mechanism
for PDE surfaces in general.

e At present, local control is not yet to be supported.
Global control is less intuitive to manipulate.

In this paper, we develop interactive techniques and
implement a prototype software system to facilitate
direct manipulation and interactive sculpting of PDE
surfaces. Our goal is to further promote the applicabil-
ity of PDE surfaces in interactive graphics and forge
ahead towards the realization of the full potential for
PDE surfaces. Our modeling algorithms and design
framework are founded on the integrated methodology
of physics-based modeling and differential equations.
To present a proof-of-concept demonstration, we first
discretize a continuous PDE surface using finite dif-
ference method. The initial discretization can then be
interactively refined through recursive subdivision to
achieve better accuracy. Later on, PDE surfaces can be
approximated by B-spline finite elements. Our system
offers users various interactive tools including directly
manipulating normal/curvature at arbitrary location,
constraining any local/global region, editing various
material properties, etc. Using our system, users are
able to enforce both functional requirements and geo-
metric properties on PDE surfaces simultaneously.

The remainder of the paper is structured as fol-
lows. Section 2 reviews the prior work of PDE surfaces
and physics-based models. In Section 3, we detail the
PDE formulation and discuss our integrated approach.
Section 4 presents techniques of directly manipulating
PDE surfaces. We outline our system implementation
and present our experimental results in Section 5. Fi-
nally, Section 6 concludes the paper.

2. Background

We have witnessed the ever-increasing popularity of
spline-based surface modeling techniques 7 in graph-
ics applications. To date, NURBS have become an in-
dustrial standard for graphical modeling and geomet-
ric data exchange. Various NURBS-based techniques
have been developed during the past twenty years such
as interpolation/approximation of a set of data points
and surface definition from a set of cross-sectional
curves 10,

In contrast to spline surfaces, in 1989 Bloor and
Wilson ! introduced a different method that defines
a smooth surface as a solution of partial differen-
tial equations (PDEs). They coined this type of sur-
face modeling techniques as PDE surfaces. Since their
initial application on surface blending, PDE surfaces
have broadened their uses in surface description, solid
modeling, and B-spline approximation in recent years.
In principle, the PDE-based method has certain ad-
vantages such that most of the information defining
a surface comes from its boundary curves. This per-
mits a surface to be generated and controlled through
very few parameters. In addition, this PDE technique
can be used to generate piecewise free-form surfaces 2.
By varying boundary conditions and control param-
eters in the PDE, designers can obtain various sur-
face shapes. Furthermore, Lowe, Bloor and Wilson 1!
presented a method with which certain engineering
design criteria such as functional constraints can be
incorporated into the geometric design of PDE sur-
faces. Therefore, it is possible to simultaneously in-
troduce geometric constraints, aesthetic criteria, and
physical and engineering restrictions into the design
process. Additionally, Bloor and Wilson 3 developed
an algorithm that approximates PDE surfaces using
standard B-splines. Their work intends to demon-
strate that PDE surfaces are virtually compatible with
other matured and well established techniques based
on popular splines for surface design, hence PDE sur-
faces can be readily incorporated into existing com-
mercial design systems. Later on, in 1993 PDE solids
were formulated in terms of parametric boundary sur-
faces by Bloor and Wilson 4, which further expands
the geometric coverage of PDE methodology. For cer-
tain simple boundary conditions, the elliptic PDEs
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can be solved analytically, i.e., PDE surfaces in these
cases have a closed-form formulation that frequently
involves functions of Fourier series. However, for gen-
eral boundary conditions, a PDE solution will have
to be sought numerically instead. Recently, Bloor and
Wilson % derived a set of approximate solutions for
PDEs in closed form for general boundary conditions.
The approximate solution can be made to approach
the true solution up to any degree of accuracy. Their
generic solutions can be decomposed into a finite sum
of Fourier functions which satisfy PDEs with an addi-
tional ’corrector’ term that satisfies boundary condi-
tions.

However, the aforementioned techniques can only
afford users indirect and non-intuitive shape manip-
ulation on PDE surfaces. Physics-based modeling, in
contrast, offers users a means to overcome the draw-
back of indirect design mechanism associated with
PDE surfaces. It is possible to unify physics-based
modeling methodology with PDE approach, mainly
because that the dynamic behaviors of physics-based
models are also controlled by differential equations
(e.g., Lagrangian equations of motion). Terzopou-
los and Fleischer '* demonstrated simple interactive
sculpting using viscoelastic and plastic models. Cel-
niker and Gossard ¢ developed an interesting pro-
totype system for interactive free-form design based
on the finite-element optimization of energy functions
proposed in Terzopoulos and Fleischer 4. Terzopou-
los and Qin 2 5 formulated a novel model for inter-
active sculpting Dynamic NURBS (D-NURBS). Ye,
Jackson and Patrikalakis 16 incorporated certain func-
tional constraints into the design process of geometric
shapes. Dachille et al. ¢ presented an approach for
the direct manipulation of physics-based B-spline sur-
faces. In essence, because most physical phenomena
can be described in the form of PDEs, it is read-
ily feasible to integrate geometric PDE surfaces with
physics-based modeling approaches to achieve the full
potential of PDE surfaces.

3. Formulation and Properties

This section formulates PDE surfaces, and discusses
properties of the integrated approach of PDE surfaces
and physics-based modeling.

3.1. Differential Equations

Throughout this paper, we focus on solving the fourth-

order elliptic PDEs 1:

3 5% . .
(G T 5,2) X =0, M

where wu, v are two parametric coordinates,
a is a control parameter, and X(u,v) =
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[ z(u,v)  y(u,v) z(u,v) ]T denotes the point
coordinates of the PDE surface in 3-space. Note
that, our mathematical derivation and its associated
numerical techniques can be readily generalized to
other arbitrary PDEs. To simplify the matter, we
consider that four boundary conditions comprise two
curves which define a pair of the curved surface edges
at the opposite side along one parametric direction
(e.g., u) and a pair of their associated derivative
curves defining gradient information across the two
curved edges throughout this paper. Without loss
of generality, we only consider PDE surfaces that
are geometrically closed along the second parametric
direction (e.g., v). For the convenience of the following
discussion, we allow the value of u to vary between 0
and 1, and v to vary between 0 to 2w. The boundary
conditions are of the following form:

X(0,v) = ¢co(v), X(1,v) = e1(v),

P 00) = o), (L) =i (). (2)
By interactively modifying boundary curves and their
gradient curves, users are capable of manipulating the
entire surface in an indirect manner. This gives the de-
signer an efficient way to edit the PDE surface through
a fewer number of parameters that define boundary
curves.

3.2. Physics-based Modeling

A deformable model is characterized by its posi-
tions X(u, v, t), velocities X(u7 v,t), and accelerations
}"((u, v, t) along with material properties such as mass,
damping, and stiffness distributions. Applying La-
grangian mechanics, we obtain a set of 2nd-order non-
linear differential equations that govern the physical

behavior of the underlying physics-based model:
MX + DX 4+ KX =T, (3)

where M is a mass matrix, D is a damping matrix,
K is a stiffness matrix, and f represents the entire
external force applied on the surface.

3.3. Numerical Techniques

Prior work on PDE surfaces mainly seeks closed-form
explicit solutions (e.g., Fourier series functions) in
order to exploit many attractive properties of ana-
Iytic formulations for surface design. In the interest
of arbitrary boundary conditions, we resort to numer-
ical techniques that guarantee a solution of the in-
tegrated formulation, unifying both dynamic models
and PDE surfaces within a single design framework.
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Numerical algorithms facilitate the material model-
ing of anisotropic distribution and its realistic phys-
ical simulation, where there exist no accurate ana-
Iytic solutions for PDE surfaces. Among many ma-
tured techniques, we employ two popular numerical
approaches to demonstrate the universal applicability
of our framework: (1) finite-difference discretization,
and (2) finite-element method based on B-spline ap-
proximation (see Sec. 4.6 for the details).

The finite-difference method transforms a partial
differential equation to a system of algebraic equa-
tions by replacing all partial derivatives in the differ-
ential equation with their discretized approximations.
The system of algebraic equations can then be solved
numerically either through an iterative process or a
direct procedure to obtain an approximate solution
to the continuous PDE. Based on the Taylor series
expansion of a continuous function f(z), we derive
the central-difference approximation of f'(z): f'(z) =
(f(zx+h)— f(x—h))/2h, as well as the approximation
of J"(a): f"(s) = [f(a+h) — 24(x) + f(x — W)/,
where h denotes the grid interval. We can easily ex-
tend the computation of univariate derivatives to all
partial derivatives of bivariate surface geometry, by
dividing the [u,v] domain into m and n discretized
points, respectively. Now, (1) can be rewritten as:

AX = b, (4)
where A is the discretized differential operator in a
(m x n) x (m x n) matrix form, and

T
X = [ X1,1  X1:2 Xm,n ] )

b=[ b by boxn |-

Typical boundary conditions permit us to derive the
point coordinates lying on the curved edges of u =0
and u = 1 (i.e. the value of x; ; and xm ; (1 < j < n),
respectively. Moreover, given the initial derivative in-
formation along two opposite curves, we can explicitly
compute additional 2n data points in the discretiza-
tion. These data points lie on two curves (i.e., X2 ; and
xm_w) that are adjacent to two boundary curves. In
analogy with the original PDE 1| we also assume that
the solution surface is closed along its v direction, so
the points on v = 0 are the same as those on v = 27.
We solve the set of linear equations whose unknowns
are x;; using linear algebra techniques. Despite the
specific constraints we enforce for the PDE surface
used in this paper, in general this type of elliptic PDEs
allows the boundary conditions to be explicitly for-
mulated in arbitrary form. This permits designers to
choose (various) constraints based on diverse design
tasks.

We associate the Lagrangian mechanics with the

discretized PDE (refer to (4)) for the unified frame-
work by attaching mass points to geometric grids and
adding springs between immediate neighbors on the
rectangular mesh of the PDE surface, then we obtain
a dynamic version of PDE surfaces:

MX + DX + (K +A)X =b +f, (5)

where both the velocity and the acceleration of X can
be discretized along time axis analogously:

X ~ (Xt-}-At _ 2Xt + Xt_At)/At27

X & (XA - XA 2AL,

Note that at the equilibrium, if stiffness distribution
as well as the external force vector f are zero, (5) re-
duces to (4) with additional physical properties such
as mass and damping distributions. By allowing the
PDE surface to dynamically deform, users will have
a natural feeling when they interactively manipulate
the PDE surface, which is lacking without Lagrangian
equations of motion. Furthermore, material properties
can be introduced to govern the behavior of the un-
derlying PDE surface, this hybrid formulation affords
users to obtain a surface that satisfies both geometric
criteria and functional requirements at the same time.

In general, we either resort to direct approaches or
make use of iteration-based techniques. Certain vari-
ants of iteration techniques exist for solving the above
linear equations 2. We solve them using Gauss-Seidel
iteration, which starts from an initial guess of the dis-
cretized surface points, then recursively calculates the
data points in a pre-defined order. After a finite num-
ber of steps, the values obtained through the recursive
approach are considered to be extremely approaching
the accurate solution. To further speed up the conver-
gence rate of Gauss-Seidel iteration, we take into ac-
count the error factor that is characterized by the dif-
ference between the approximation and the real value.
This leads to Successive Overrelaxation (SOR) iter-
ation. When using iterative approaches to solve the
approximated linear equations of the PDE, the initial
guess plays a significant role that affects the conver-
gence speed. Hence extra cares need to be taken to en-
sure fewer calculations and better time performance.
Furthermore, we take advantage of the multi-grid like
subdivision method to speed up the numerical integra-
tion. The surface is first solved on the coarsely sampled
points, and then it is refined into a finer grid whose
initial values are computed either through the simple
linear interpolation or more complicated subdivision
schemes 8. The convergence rate of our technique is
greatly increased. In addition, this method allows the
user to control the error bound of the approximated
solution.

© The Eurographics Association and Blackwell Publishers 2000.
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4. Interactive Techniques

This section details various interactive techniques and
explains the implementation issues.

4.1. PDE Surface Initialization

We provide users two different ways to initialize a
PDE surface. First, users can interactively input con-
trol points using mouse and the system will calculate
cubic B-spline curves as the boundary curves. Then
using the same method, users can enter control points
to obtain two extra curves, corresponding to the two
boundary curves, respectively. The difference between
any point on each newly defined curve and its asso-
ciated point on the boundary curve will be used to
determine both the magnitude and the direction of
the derivative vector across the two boundary curves.
Alternatively, users are allowed to define the bound-
ary curves and their derivatives using certain implicit
functions. The point coordinates are sampled along
the implicit curves, and saved into a data file. The
system can retrieve the data file and initialize the
PDE surface based on implicit function curves. The
PDE surface then can be derived based on the solution
of linear equations subject to initial values explained
above (refer to Fig. 1 and Fig. 2).

&

Figure 1: The PDFE surface is obtamedfrom curves of
implicit functions: (a) Boundary conditions obtained

from a file; (b) The PDE surface subject to (a)

=&

a (b)
Figure 2: The PDFE surface is generated from B-
spline curves: (a) B-spline boundary curves with con-
trol points; (b) The corresponding PDE surface.

© The Eurographics Association and Blackwell Publishers 2000.

If the boundary curves are B-splines, we can modify
their shape by changing B-spline control points. Sub-
sequently, the entire PDE surface will be re-computed
and modified with the new boundary conditions. If
the boundary curves are obtained through certain im-
plicit functions, we can change them in the same way
as adding additional conditions discussed in the fol-
lowing sections.

4.2. Modifying Coefficient a

The coefficient a can also influence the global shape of
a surface. This coefficient controls the relative smooth-
ness and the level of variable dependence between the
u and v directions. For a large a, changes in the u
direction occur within a relatively short length scale,
i.e. it is 1/a times the length scale in the v direction
in which similar changes can take place. As a result,
users can control how boundary conditions influence
the interior of a surface by modifying the length scale
(i.e. a). In general, the coeflicient a is chosen indepen-
dently of u and v. We use a = 2 in this paper for our
experiments.

4.3. Joining Multiple PDE Surfaces

Oftentimes a single PDE surface can not satisfy com-
plicated design requirements, because real-world ob-
jects exhibit both complex topological structure and
irregular geometric shape. We shall piece multiple
PDE surfaces together for this purpose. In our system,
users can join n—1 PDE surfaces sequentially by spec-
ifying 2n boundary conditions (where n > 3). Note
that, 2n conditions are necessary because two neigh-
boring PDE patches share one common boundary. To
satisfy C! continuity, the tangent vectors across the
shared boundary must be the same. Fig. 3 illustrates
how to connect several PDE surfaces with six bound-
ary curves. There are seven curves after the gradient
curve on one side of the shared boundary is calculated
from another one on the opposite side to obtain C'
continuity.

4.4. Enforcing Additional Conditions

By changing the boundary curves, users can modify
the entire shape of a PDE surface. However, when the
global appearance of a PDE surface is satisfactory, any
subsequent sculpting via boundary conditions may de-
stroy certain already-existing nice features of the un-
derlying surface. In this scenario, making small-scale
changes on a localized region is more desirable. We en-
force additional constraints to achieve this goal. Note
that, the original finite-difference formulation consists
of m x n equations and m x n unknowns, i.e., the co-
efficient matrix is a square matrix. The introduction
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|
@;\

(b)
Figure 3: Connectmg two PDE surfaces: (a) The
boundary conditions; (b) The connected composite sur-
face.

of additional conditions forces the system to incorpo-
rate a set of new equations into the original set. As a
result, (4) becomes

A'X =D, (6)

where A’ has m x n+ k rows and m x n columns with
k > 0. We now have more equations than the num-
ber of unknowns. There are two ways to solve such a
system with those additional constraints. One way is
to treat the constraints as hard constraints, i.e., the
additional equations must be satisfied. In this case,
we need to explicitly formulate constraints and en-
force these additional constraints within the original
equations. This method works well if the additional
constraints are of linear form (e.g., fixing a subset of
certain unknowns or three points must be co-linear).
Alternatively, one can consider additional conditions
as soft constraints and solve the above equations in a
least-square fashion !'°. The least-square approxima-
tion is a solution of the following equations:

ATAX =A"TD. (7)

Now the composite matrix becomes a square matrix,
and the equation can be solved using the aforemen-
tioned techniques in this paper (Note that, other more
robust algorithms such as singular value decomposi-
tion are amenable to our PDE sculpting as well).

4.4.1. Manipulating Surface Points

One desirable way to manipulate a surface directly is
to specify certain location in 3-space that a PDE sur-
face must pass through. We can achieve this goal by
selecting a point on the surface grids (e.g., xi,;), then
dragging it to the desired position where the surface
must interpolate. Moreover, users are allowed to edit
a set of points, and the new and modified surface in-
terpolates all the selected data points. Fig. 4 shows
the modified PDE surface by changing the position of
one point on the original surface.

e

(a)
Figure 4: Moving one point on the PDE surface: (a)

The point editing; (b) The modified PDE surface.

4.4.2. Changing Surface Normal

We can also manipulate the surface normal on any
point to achieve a local editing capability in the vicin-
ity of the data point, as demonstrated in Fig. 5. The
normal on a continuous surface can be approximated
by the neighboring points:

Xit1,; — Xi—14 % Xij+1 — Xij—1
2Au 2Av

When users modify the point normal, our system will
compute four neighboring points according to the new

ng; =

normal direction. In our implementation, we simply
enforce four new equations within (4). The modified
surface with a rotated normal at the selected point can
be obtained. An example for this kind of constraints
is shown in Fig. 6.

X Xi+ij

(a) (b)

Figure 5: Changing the point normal results in the
change of neighbor points: (a) Normaln; ; of x; ;; (b)
The new normal n}

4.4.3. Editing Surface Curvature

Users can also change the shape of a PDE surface by
modifying the curvature at arbitrary point. The curve

1 "
. x .
curvature is: K = w We consider the surface
curvature at any surface point along u-direction and

v-direction, respectively.

2
I A =1

— Ky = . (8)
I® 5= ||3

u
[
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Ghéan

Figure 6: The PDFE surface subject to the normal con-
straint: (a) The black line with arrow is the red point’s
normal, red lines are local coordinate system; (b) The

modified surface.

This implies that changing curvature will modify the
neighboring points. If we solve the above equations di-
rectly, we need to deal with non-linear equations. To
avoid this, we approximate the solution as follows (re-
fer to Fig. 7). Any curvature modification reflects the

ij i
il o 2 .
Hi Melj K Wiel
a b

Figure 7: Curvature modification via the change of
the distance between the neighboring points: (a) High
curvature due to short distance; (b) Low curvature due
to long distance

distance between the two neighboring points, so we in-
teractively edit the curvature information by attempt-
ing to move the neighboring points x;—1; and Xiy1 ;.
In general, increasing the distance will reduce the cur-
vature magnitude, while decreasing the distance will
have an opposite effect on curvature value. After we
compute the new position of relevant neighbors cor-
responding to the curvature manipulation, we can in-
corporate these known values of data points into the
system and re-compute the equations to derive the
new surface that satisfies the curvature constraints.
In Fig. 8, we modify a PDE surface with curvature
constraints.

4.4.4. Sculpting Localized Regions

Standard PDE surfaces only support global manipu-
lation, i.e., any local modification results in a new sur-
face undergone the global deformation. This deficiency
severely restrains users’ freedom of arbitrary surface

© The Eurographics Association and Blackwell Publishers 2000.

ST
(a) (b)

u-curvature

c d
Figure 8: C('u)ruature editing: (a) The(z'n)z'tz'al boundary
conditions for a PDE surface; (b) The surface with
curvature mapping; (c¢) The surface after changing u-
curvature 0.8 — 4.2, v-curvature 1.3 — 4.1 on a point.
(d) The curvature map in u-v domain.

manipulation at any localized region(s). To overcome
this difficulty, we develop a new technique that allows
the designer to fix any specified area of a surface which
he/she does not want to change. This can be achieved
in our system by selecting a region in the parametric
domain of u and v, then any changes outside this re-
gion will not affect any data points inside, as shown
in Fig. 9.

O

(a) b
Figure 9: Surface manipulation with fized regions: (a)
The yellow part is fized; (b) The modified surface with-
out disturbing the fized part.

4.5. Forces

Because the run time of standard numerical solvers de-
pends on the number of sampling points on the PDE
surface, users oftentimes have to patiently wait for the
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final stable surface as the large number of equations
are solved within the system. When the number of
sample points are tremendous, the computation time
is rather long at the order of seconds/minutes. This
significantly limits the interactivity of surface model-
ing and manipulation as no visual feedback between
the initial and final states are provided. To ameliorate,
we can implicitly compute the external force f based
on various additional constraints as discussed above.
We then divide the time domain into many small time
steps and approximate both the velocity and the ac-
celeration of data points through successive time inter-
vals. We can dynamically manipulate the PDE surface
with forces in real-time by solving

(2M + AtD + 2APK + 2AP A)X /T8 = (©)
2A82(b 4 f) + 4MX' — (2M — AtD)X 41

Additional constraints that control the behavior of
the PDE surface can be obtained via the editing of
material properties such as mass/damping quantities
and stiffness distribution. When additional constraints
are incorporated into our mass-spring model, between
consecutive time steps the data positions gradually
evolve, hence the number of iterations to solve (9) is
very small (less than 10). This results in real-time per-
formance.

4.6. B-spline Approximation

To facilitate the data exchange capability of PDE sur-
faces with standard spline-based systems, we compute
a B-spline approximation of the PDE surface. A B-
spline surface over u, and v domain can be defined
as

X(u,0) =Y > Bic(w)Bja(v)piy,  (10)

i=1 j=1

where B;.(u) and B, g4(v) are B-spline basic func-
tions of u and v with the order ¢ and d, respectively,
pij(1 <1 < k,1 < j < 1) are B-spline control
points. Oftentimes the number of control points is less
than the number of sample points on the PDE sur-
face, therefore the B-spline approximation results in a
family of over-constrained linear equations whose un-
knowns are fewer than the number of equations. For
example, given the m x n sample points on the PDE
surface, the approximation using & x ! control points
leads to

BP = X, (11)

where there are m x n linear equations with k& x [
unknowns. Assuming fixed parameterization of data
points in B-spline approximation, the matrix B is a
discretization of basis functions. This over-constrained
system can be solved by multiplying BT on both sides

of (11). Consequently, we obtain a B-spline surface
that approximates the PDE surface in a least-square
sense. Fig. 10 shows a B-spline approximation for pre-
vious examples. Meanwhile, we also use B-spline finite
elements to approximate the dynamic model of PDE
surfaces at each time step. This allows users to in-
teractively manipulate the B-spline solution of PDE
surfaces with forces in real-time.

(b

(a)
Figure 10: B-spline Approzimations: (a) and (b) are
two approzimations for Fig. 1 and Fig. 8, respectively.
The black lines with red points are the B-spline control
mesh.

5. System Implementation

This section outlines the system architecture, its func-
tional components and details the set of design toolk-
its.

5.1. Architecture and Toolkits

We have developed a prototype software system that
permits users to interactively manipulate PDE sur-
faces either locally or globally. The system is written
in Visual C+4 and runs on PCs. Fig. 11 illustrates
the architecture of our prototype system. Our system
provides the following functionalities:

Boundary Curves. Users can interactively input
and edit control points of cubic B-spline curves as
boundary conditions. Commonly-used implicit func-
tions can also be retrieved from a data file to serve as
boundary curves during the initialization phase. Users
can obtain a PDE surface satisfying these constraints.

Dynamic Models. Our system supports novel
physics-based PDE surfaces including: (1) finite-
difference discretization using mass-spring models; (2)
multigrid-like subdivision for model refinement; and
(3) finite element approximation using B-splines. Ma-
terial properties and dynamic behavior greatly en-
hance the interactive manipulation of conventional

PDE surfaces.

Sculpting Tools. Users are free to use various ma-
nipulation routines including: (1) joining several PDE

© The Eurographics Association and Blackwell Publishers 2000.
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Figure 11: System architecture

surfaces smoothly; (2) moving (a set of ) arbitrary sur-
face points to desired locations; (3) modifying surface
normals at arbitrary surface points; (4) editing surface
curvatures at arbitrary surface points; (5) changing
boundary conditions and the coefficient (i.e., a) as-
sociated with the PDE; (6) specifying and fixing any
local region(s) of interests; (7) manipulating geometric
attributes only in a user-specified area; (8) modifying
material properties such as mass, damping, and stiff-
ness distributions in any user-specified region(s); (9)
computing the B-spline approximation of PDE sur-
faces; and (10) directly deforming B-spline finite ele-
ments with “forces”.

5.2. Results and Discussion

We use several numerical techniques to solve the PDE
surface subject to various constraints. Table 1 details
our experiments and their performance. Note that, it
generally takes more iterations in a coarsely sampled
grid, however, the CPU time spent on the coarser grid
is far less than that on the finer grid. In Table 2, we
summarize the physical parameters used in our mass-
spring examples as well as the B-spline approximation
for mass-spring PDE surfaces in Fig. 12.

We enforce additional constraints beyond conven-
tional boundary conditions of PDE surfaces. These

© The Eurographics Association and Blackwell Publishers 2000.

Grids G-S SOR P N C

15 x 15 1438 756 253 146 447

30x30 1751 838 1420 146 494

60 x 60 4000 1583 933 146 190

Table 1: Number of iterations for various manipu-
lation techniques with different sampling grids. The
iteration threshold (0.001) is the sum of all distance
between the corresponding points in successive steps.
G-S stands for Gauss-Seidel iteration, SOR stands for
SOR iteration. P, N, and C denote point, normal and
curvature manipulations on the surface, respectively.

Example Grids Mesh  u 5y p At

(a) 30x30 N/A 20 70 100 0.1

(b) 30x30 &x8&8 20 70 100 0.1

Table 2: The physical parameters in several dynamic
surfaces. Mesh stands for grids of the B-spline control
mesh, and u, v, and p represent Mass, Damping and
Stiffness distribution.

constraints provide more freedom to designers when
modeling a PDE surface, making it more efficient to
achieve desired results. We use both finite-difference
and B-spline finite element techniques for implemen-
tation. The advantages of these approximation tech-
niques are that they are simple, easy to implement,
and suitable for additional constraints. On the other
hand, the time and space complexity are increased
with higher resolution as well as increasing accuracy.
And the convergence speed of the iteration depends
on the initial values. Our multi-grid like subdivision
method for various levels of refinements achieves an
anticipated result in our examples.

(a (b)
Figure 12: Mass-spring models for point-editing: (a)
The mass-spring model of the PDE surface; (b) The

mass-spring model of the B-spline surface.
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6. Conclusion

We have presented a set of interactive techniques that
can incorporate additional geometric constraints and
material criteria to the conventional PDE method.
Our prototype software provides users a wide range
of powerful toolkits such as point manipulation, nor-
mal editing, curvature control, local sculpting, as well
as boundary control. These value-added capabilities
permit users to model and manipulate PDE surfaces
intuitively. In addition, we have integrated the PDE
surfaces with our physics-based modeling framework.
One major advantage of the PDE method is that users
can deploy fewer design constraints to achieve desired
design effects. Our experiments have shown that these
additional constraints offer users more freedom and a
more natural interface to manipulate the PDE surface
satisfying a set of design criteria and functional re-
quirements. Furthermore, physics-based modeling per-
mits the PDE surface to be governed by physical laws
and to be equipped with material properties, making
the PDE surface more realistic and more interactive
than the prior kinematic PDE surface. Our system
also computes the B-spline finite element approxima-
tion of the PDE surface and allows users to interac-
tively manipulate B-splines to support the data ex-
change capability in commercially available geometric
modeling systems. The future directions comprise: (1)
the generalization to other types of PDEs; (2) the de-
sign and analysis of more effective and robust algo-
rithms for PDE surfaces; (3) the development of more
complicated curve/regional constraints and toolkits;
(4) a as a bivariate function of u and v; (5) open/close
PDE surfaces with/without self-intersection; (6) the
integration of subdivision surfaces with PDEs for com-
plex boundary conditions of arbitrary topology and
multi-resolution analysis; etc.
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