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Abstract

Solid modeling based on partial differential equations (PDEs) can potentially unify both geometric constraints and functional requirements

within a single design framework to model real-world objects via its explicit, direct integration with parametric geometry. In contrast,

implicit functions indirectly define geometric objects as the level-set of underlying scalar fields. To maximize the modeling potential of PDE-

based methodology, in this paper we tightly couple PDEs with volumetric implicit functions in order to achieve interactive, intuitive shape

representation, manipulation, and deformation. In particular, the unified approach can reconstruct the PDE geometry of arbitrary topology

from scattered data points or a set of sketch curves. We make use of elliptic PDEs for boundary value problems to define the volumetric

implicit function. The proposed implicit PDE model has the capability to reconstruct a complete solid model from partial information and

facilitates the direct manipulation of underlying volumetric datasets via sketch curves and iso-surface sculpting, deformation of arbitrary

interior regions, as well as a set of CSG operations inside the working space. The prototype system that we have developed allows designers

to interactively sketch the curve outlines of the object, define intensity values and gradient directions, and specify interpolatory points in the

3D working space. The governing implicit PDE treats these constraints as generalized boundary conditions to determine the unknown scalar

intensity values over the entire working space. The implicit shape is reconstructed with specified intensity value accordingly and can be

deformed using a set of sculpting toolkits. We use the finite-difference discretization and variational interpolating approach with the localized

iterative solver for the numerical integration of our PDEs in order to accommodate the diversity of generalized boundary and additional

constraints.
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1. Introduction

Partial differential equation (PDE) techniques are widely

used for many visual computing applications, such as nature

phenomena simulation and animation [17], variational

fairing [35], image inpainting [2], etc. They also provide

an alternative way for geometric design [5–7,45]. Different

from traditional geometric representations, the PDE

methods model graphical objects as solutions of certain

elliptic PDEs with boundary constraints inside the para-

metric domain. The parametric PDE model simplifies the

geometric design process by using only boundary conditions

to recover the whole interior information and offers high-

order continuity as well as energy minimization properties.

However, it is extremely difficult to model arbitrary shapes

of general topology, because the PDEs are defined over

regular parametric domain, like traditional parametric

approaches.

In contrast, implicit functions use level-sets of certain

scalar field functions in the physical domain directly to

design, model, and interact with 3D objects, without

constructing the mapping between parametric and physical

spaces. They offer a fundamentally different yet convenient

and natural design paradigm (in comparison with parametric

representations) in visual computing fields such as graphics,

animation, and geometric design. This is because of their

unique properties such as arbitrary topology, collision

detection, free of parametric correspondence, etc. Appli-

cations of implicit functions include shape blending, surface

reconstruction from scattered data points, shape transform-

ation, and interactive modeling [3,4,8–10,12,13,18,21,22,

26,27,29,30,32,36,39,40,43,44,47].

Implicit functions offer several modeling advantages

such as flexible topology, simple data structure, efficient
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storage, volumetric information, unbounded geometry, etc.

Nonetheless, most of implicit functions focus on surface

models. Previous techniques for interactive implicit volume

sculpting have certain modeling limitations. Recently,

Cutler et al. [11] presented a procedural framework for

specifying layered solid models and applying a series of

simulation operations (serving as sculpting tools described

by a script language) to complex models. Bærentzen and

Christensen [1] developed an interactive volume sculpting

system using level-set method. Museth et al. [28] proposed

level-set-based editors for CSG operations, blending,

embossing, and smoothing for implicit surfaces. However,

these tools are associated with the specification of speed

functions for the evolving level-set, which are non-intuitive

for common users. Turk and O’Brien [41] presented

interactive implicit surface sculpting via particles, but

each operation requires reformatting and recalculation of

the entire system, which is difficult to model large datasets.

In general, the modeling potential of implicit functions has

not been fully explored yet and there are still difficulties to

design, reconstruct, and sculpt implicit models directly and

intuitively.

To maximize the modeling capabilities of PDE

techniques and implicit functions in geometric and visual

computing areas, we propose a more general PDE-based

modeling paradigm which integrates the PDE techniques

with implicit functions into one single framework for

interactive shape design and manipulation on PDE-based

volumetric implicit models. We develop an implicit

modeling system governed by elliptic PDEs of scalar

intensity fields. In particular, our prototype system can

reconstruct implicit objects and the embedding implicit

3D working space as approximated solutions of the PDEs

by specifying a set of curve outlines or scattered data

points of certain intensity values as general boundary

constraints with the assistance of variational interpolating

approaches. Because the curves and datasets are not

required to be closed, open surfaces can be modeled

within our system. Moreover, it offers a set of sculpting

toolkits to manipulate implicit objects, such as interac-

tively modifying the geometric shape, intensity value,

and gradient direction of selected sketch curves, directly

changing intensity values of selected regions in the

working space, as well as deforming iso-contours at

specified intensity values of the objects. Because the

working space is governed by the PDEs, any missing

information inside the space can be recovered by solving

the PDEs according to the given constraints. Our system

is able to recover damaged datasets using partial

information, smooth the intensity distribution of volume

data, and smoothly blend objects inside the working

space. In general, our system allows intensity manipula-

tions at any iso-value anywhere in the implicit working

space to model implicit objects either directly or

indirectly, which offers users both local and global

control of the implicit PDE model.

This implicit PDE approach has modeling advantages of

both parametric PDE techniques and implicit functions.

First, the behavior of the implicit PDE model is governed by

differential equations. Solving the PDEs results in both

boundary and interior information simultaneously, which

offers an alternative way to model implicit objects by using

only boundary information. This property makes the PDE

method extremely suitable for shape blending process.

Second, many natural physical processes are characterized

by differential equations in principle [19,20,37]. Hence,

PDE models are natural and close to the real world. They are

potentially ideal candidates for design, simulation, and

analysis tasks. Furthermore, geometric objects with high-

order continuity requirements can be readily defined

through high-order PDEs because of their differential

properties. Third, smooth objects that minimize certain

energy functionals are the solutions of differential equations

from the variational analysis point of view, so optimization

techniques can be unified with PDE models. In addition,

because the implicit PDE is formulated on a scalar intensity

field and defines objects by collecting points of certain iso-

values, it is capable of designing arbitrary topological

shapes and recovering the full information from partial

input, which reduces the burden of specifying the large

quantity of constraints for complete datasets. It offers users a

natural way to design objects easily with general non-

isoparametric arbitrary curve outlines, reconstruct objects

from scattered data points, blend shapes in the working

space, and recover damaged datasets.

The remainder of the paper is structured as follows.

Section 2 reviews the related work of PDE techniques and

implicit models. We detail the PDE formulation and present

our integrated approach for implicit PDE objects in Section

3. We introduce possible applications of our implicit PDE

model by enforcing different types of boundary and

additional constraints in Section 4. Section 5 discusses

techniques of directly manipulating implicit PDE objects

with constraints to construct more flexible topological

shapes, such as sketch sculpting and local region manipula-

tions. We outline the system implementation in Section 6.

2. Related work

Different from traditional free-form spline-based model-

ing techniques, Bloor and Wilson [5] introduced a method

that defines smooth surfaces as solutions of elliptic PDEs.

Since its initial application on surface blending, the PDE

approach has broadened its applications for free-form

surface design, solid modeling, and interactive surface

editing [6,7,42] during the past decade. In principle, the

PDE-based method has the advantage that most of the

information defining an object comes from its boundaries.

This permits an object to be generated and controlled by a

very few parameters such as boundary-value conditions and

global coefficients associated with an elliptic PDE. This
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PDE technique was then used for modeling parametric

surfaces and solids with global geometric features. To

obtain interactive sculpting and local control, we [14,15]

proposed an integrated model which combined PDE

surfaces and physics-based modeling techniques to offer

users direct manipulation for the PDE surfaces with

generalized boundary constraints and user-specified fea-

tures. We [16] extended the PDE technique’s coverage from

surfaces to solids in order to provide users a set of direct

editing toolkits to model the real-world objects with interior

material distribution. Zhang and You [45] investigated three

different orders, i.e. second, mixed, and fourth-order of

PDEs as surface representation techniques and demon-

strated the use and effectiveness of the PDE method for free-

form surface design.

However, because the aforementioned PDE methods

define objects over the regular parametric domain, they (like

other parametric representation techniques) have limitations

in handling arbitrary topological shapes, which can be easily

achieved by implicit functions.

Implicit functions offer a different way for shape

modeling by using certain scalar field functions to define

geometric entities. In the past several years, implicit

functions have been widely developed as a powerful design

and manipulation tool for graphical models. In 1994, Witkin

and Heckbert [44] introduced an approach using particles to

sample and control implicit surfaces. A set of particles are

locked onto a surface and act as control points for the

implicit surface. The surface shape can be manipulated by

moving particles interactively. Ferley et al. [18] presented a

sculpture metaphor for rapid shape prototyping. In their

approach, the sculpted shape is defined as the iso-surface of

a spatially sampled scalar field and can be manipulated by

adding, removing, painting, or smoothing material and

applying free-form and stamp tools. These techniques only

provide interactive and practical sculpting tools for implicit

surfaces.

As for implicit solids, Savchenko et al. [34] introduced a

novel approach for the reconstruction of geometric models

from given point sets using volume splines. Raviv and Elber

[32] presented an interactive sculpting technique that uses

the zero level-set of the scalar, tensor-product, uniform

trivariate B-spline functions to represent 3D objects. The

trivariate functions have a control volume that consists of

scalar control coefficients. Users can indirectly sculpt the

object by modifying relevant scalar control coefficients of

the trivariate B-spline functions in different levels of details.

Hua and Qin [23,24] developed interactive solid sculpting

toolkits with haptics on implicit B-spline solids defined

through the use of B-spline control coefficients over the

intensity field. However, the control of B-spline coefficients

is less intuitive to ordinary users in general.

Implicit functions can also be used for shape reconstruc-

tion and 3D morphing process. Turk and O’Brien [40] used

variational implicit functions to achieve shape morphing

and surface reconstruction. They employed the radial basis

function (RBF) method to construct an implicit function,

which interpolates the given dataset and minimizes the thin-

plate energy. Yet since the RBF method is a global

variational interpolating approach, any changes in the

dataset will cause recalculation of the entire system. It’s

time-consuming for direct manipulation and not applicable

for local sculpting of complex implicit models. Ohtake et al.

[29] presented a multi-level partition of unity implicit

surface supporting local features, but it is sensitive to the

quality of input data.

Level-set method is another popular technique to model

implicit objects. Zhao et al. [47] proposed a weighted

minimal surface model based on variational formulations

and PDE techniques to construct a surface from scattered

data. They used the level-set method as a numerical

technique to evolve the implicit surface continuously

following the gradient descent of the energy functional for

the final reconstruction. Their level-set model is governed

by a time evolution PDE with velocity at the level-sets given

by the motion equation of the original surface. The level-set

method is based on a continuous formulation using PDEs

and deforms an implicit surface according to various

equations of motion depending on geometry, external

forces, or certain energy minimization. It can easily handle

topological changes and reduce noises in the dataset. The

level-set method mainly focuses on implicit objects

reconstructed from scattered datasets. Problems for inter-

polating curve sketches, especially open curve sketches

have not been addressed. The shape deformation using the

level-set method is often obtained by manipulating the

speed functions in the level-set formulation [1,28], which is

non-intuitive for general users.

Despite the modeling advantages of implicit functions,

there are still difficulties for intuitive design and direct

manipulation of implicit surfaces and solids in general. We

integrate the implicit functions with the parametric PDE to

offer users modeling advantages of both types of techniques.

Instead of time evolution PDEs used in the level-set method,

we employ static elliptic PDEs for boundary value

problems. In particular, we introduce a novel technique

which defines volumetric implicit objects as solutions of the

elliptic PDEs of scalar intensity fields under generalized

boundary constraints, including sketch curves, scattered

data points, as well as volumetric datasets. The constraints

may be associated by different intensity values, which offers

more degrees of freedom than previous implicit techniques.

Our implicit PDE model can be used for geometric shape

design, object reconstruction, damaged data recovery, and

shape blending. Implicit PDE objects can be manipulated by

modifying the initial constraints or directly changing

intensity values in the interior of the volumetric space.

The implicit PDE method recovers not only the target

object, but also the entire working space by the given

information. Our system does not require the constraints to

be closed datasets, which provides modeling potentials for

open surfaces. To visualize implicit objects of scalar
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intensity field, we can either use the Marching Cube method

[25] which calculates the triangulated iso-surface at a

selected intensity value on discretized sampling grids, or

output the volumetric data in the working space to other

volume rendering systems such as Pov-Ray or Vol-Vis

systems.

3. Formulating implicit PDEs

3.1. Implicit elliptic PDE formulation

The implicit PDEs employed in this paper are founded

upon the parametric PDE solid models [16]. In order to take

advantage of the interactive feature associated with the

parametric PDE modeling techniques, we use elliptic PDEs

to define scalar intensity field for modeling implicit objects.

Because higher-order PDEs can provide higher-order

continuity for the scalar intensity value distribution, we

employ a fourth-order elliptic PDE to model the scalar field

for smooth results with tangential continuity, especially

when dealing with shape blending and damage data

recovery in which most of information are specified as

constraints.

In particular, we formulate the unknown function as the

intensity field function dðx; y; zÞ defined in the 3D physical

space of x; y; and z: The corresponding implicit PDE is

formulated as follows:

a2 ›2

›x2
þ b2 ›2

›y2
þ c2 ›2

›z2

 !2

dðx; y; zÞ ¼ 0; ð1Þ

where x; y; and z are coordinate variables of 3D physical

space varying from 0 to 1, respectively, which form a unit

cube as the working space; a; b; and c are arbitrary blending

coefficient functions of x; y; z defining material properties of

the implicit space, which are initially defined as constants

throughout the entire working space. The blending coeffi-

cient functions control the relative intensity blending and

the level of variable dependence among x; y; and z

directions. For example, according to Eq. (1), if a is given

as a large value for all sampling points in the working space,

then the contributions of dðx; y; zÞ along x direction will be

relatively small in comparison with the other two directions.

Hence, the coefficient functions will affect the solution of

Eq. (1).

Because the numerical techniques used in this paper to

solve the fourth-order elliptic PDE are suitable for other

boundary value PDEs, we also incorporate a second-order

PDE into our system:

a2 ›2

›x2
þ b2 ›2

›y2
þ c2 ›2

›z2

 !
dðx; y; zÞ ¼ 0; ð2Þ

which is less time-consuming to solve with less continuous

intensity distribution and can be used for initial guess of

intensity values of the objects.

Because aðx; y; zÞ; bðx; y; zÞ; and cðx; y; zÞ are allowed to

vary across dðx; y; zÞ; i.e. different locations in the physical

domain may have different smoothing coefficient values,

local control on implicit PDE objects can be easily

achieved.

To obtain direct and local manipulations on the implicit

PDE objects, we solve Eqs. (1) and (2) using numerical

methods based on finite-difference approximations of the

PDEs, which require at least six boundary conditions at

x ¼ 0; x ¼ 1; y ¼ 0; y ¼ 1; z ¼ 0; z ¼ 1 defining the inten-

sity values at three boundary surface pairs of the 3D

working space in order to derive a unique solution.

However, in most applications, there are no such boundary

conditions available for modeling implicit objects,

especially in the case of using implicit functions for shape

reconstruction, where the constraints are usually defined by

certain contouring sketch curves or scattered points

assigned with specified intensity values inside the 3D

working space. In such cases, the intensity distributions on

the boundaries are unknown. Thus, such problems cannot be

solved by traditional finite-difference methods directly.

However, we may approximate the intensity distribution for

this type of problems as follows. First, we find an initial

guess of the volumetric working space using certain

techniques. Second, we use the guessed boundary values

as boundary conditions, and enforce additional constraints

according to the original data. Third, we perform iterative

finite-difference techniques to get an approximated solution

for the entire working space based on these constraints.

After that, direct manipulations and local sculpting inside

the working space can be enforced by adding additional

constraints to the PDEs. Variational interpolating

approaches are good candidates for shape reconstruction

from scattered points, such as the RBF method [26,40]

which creates a 3D implicit function to give an approxi-

mation interpolating the given constraints by minimizing

certain energy functionals. We employ the RBF method to

compute the initial guess of the implicit PDE objects defined

by sketch curves. We can also calculate the intensity values

on sampling grids using their distance to the constraints,

because the implicit objects can be defined by distance

functions. The algorithm we use to compute the distance

field is the fast-tagging approach proposed by Zhao et al.

[46]. Note that, because our goal is to obtain an initial guess

of the working space according to constraints, there are

other techniques which can provide satisfactory results.

3.2. Radial basis function

RBF is commonly used for scattered data interpolation,

which is to generate a smooth surface that passes through a

given set of scattered points. Scattered data interpolation

sometimes can also be addressed using variational analysis

where the desired solution is a function, f ð~xÞ; which

minimizes certain energy functionals. In principle, the

energy functional measures the quality of interpolation
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subject to the interpolatory constraints f ð~ciÞ ¼ hi: It can be

solved by a weighted sum of certain RBFs (note that, we use

fð~xÞ ¼ l~xl3 in this paper). Then the interpolation function

can be formulated as:

f ð~xÞ ¼
Xn

i¼1

wifð~x 2 ~ciÞ þ Pð~xÞ; ð3Þ

where ~ci’s are coordinate vectors of the constraints, wi’s are

weights, and Pð~xÞ is a polynomial only consisting of the linear

and constant portions of f : According to the properties of the

appropriate RBFs, the interpolation function minimizes the

thin-plate energy while satisfying the data interpolation

requirement. By applying the constraints to Eq. (3), we can

obtain a linear equation system whose unknowns are the

weights and coefficients of the polynomial P:This system can

be solved using standard solvers of linear equations.

However, the RBF method requires gradient information

of the datasets, and time and space complexity of the

equation system depends on the number of constraints, so it

is not suitable for reconstruction and interactive sculpting of

large scattered datasets with arbitrary constraints. Because

our goal here is to simply make an initial guess for our

implicit PDE shape, distance approximation techniques

such as fast-tagging algorithm which computes the signed

distance field of the working space according the constraints

can give satisfactory results for such input.

3.3. Numerical simulation

In order to easily enforce additional constraints for direct

manipulations of implicit objects, we resort to numerical

techniques based on the finite-difference approximation and

iterative methods for linear equations to solve the implicit

PDEs with predefined boundary values or approximated

initial guess from sketch curves/scattered points. The

iterative methods will arrive at an approximated solution

with user-specified error tolerances. Numerical algorithms

also facilitate the material modeling of anisotropic distri-

bution. A multi-grid-like iterative solver is used to improve

the system performance.

The finite-difference method divides the working space

into discrete grids along x; y; z directions and transforms a

continuous PDE into a set of simultaneous algebraic

equations by sampling the partial derivatives in the equation

for each grid point with their finite-difference approxi-

mations. The algebraic equation system can be solved

numerically either through a direct procedure or an

iterative process for an approximated solution of the

continuous PDE.

Based on Taylor’s expansion, the derivatives of a

univariate function can be approximated using the central-

difference scheme f 0ðxÞ ¼ ðf ðx þ hÞ2 f ðx 2 hÞ=2h; f 00ðxÞ ¼

½f ðx þ hÞ2 2f ðxÞ þ f ðx 2 hÞ�=h2;where h denotes the spatial

interval along x direction. This can be generalized to all

partial derivatives on trivariate implicit geometry,

by dividing x; y; z domain into l;m; and n

discretized grids, respectively. We represent the function

dðx; y; zÞ by its values at the discrete set of

points (xi ¼ iDx; yj ¼ jDy; zk ¼ kDz), i ¼ 0; 1;…; l 2 1; j ¼

0; 1;…;m 2 1; and k ¼ 0; 1;…; n 2 1:Dx;Dy;Dz are the grid

spacing along x; y; z directions. We write di;j;k for dðxi; yj; zkÞ

and {i; j; k} for grid point ðxi; yj; zkÞ for sake of

simplicity (Fig. 1). We use finite-difference representations

of second-order and fourth-order partial derivatives

ð›2di;j;kÞ=ð›x2Þ; ð›4di;j;kÞ=ð›x4Þ; and ð›4di;j;kÞ=ð›x2›y2Þ at

{i; j; k} as examples:

›2di;j;k

›x2
¼

di21;j;kþdiþ1;j;k22di;j;k

ðDxÞ2
;

›4di;j;k

›x4
¼

di22;j;kþdiþ2;j;k24di21;j;k24diþ1;j;kþ6di;j;k

ðDxÞ4
;

›4di;j;k

›x2›y2
¼

di21;j21;kþdi21;jþ1;kþdiþ1;j21;kþdiþ1;jþ1;k

ðDxÞ2ðDyÞ2

þ
22di21;j;k22diþ1;j;k22di;j21;k22di;jþ1;kþ4di;j;k

ðDxÞ2ðDyÞ2
:

Other partial derivatives along y and z directions can be

computed similarly.

Substituting partial derivatives by finite-difference rep-

resentations at grid points, Eq. (1) can be rewritten as:

AD ¼ b; ð4Þ

where A represents the discretized differential operator in

ðl £ m £ nÞ £ ðl £ m £ nÞ matrix form, and each row in A

consists of coefficients of the difference equation for the

corresponding grid point. A is also controlled by the blending

functions aðx; y; zÞ; bðx; y; zÞ; and cðx; y; zÞ: D collects the

unknown intensity values at the grid points, and b is defined

by the value of constraints:

A ¼ ½Að0;0;0Þ;Að0;0;1Þ;…;Aðl21;m21;n21Þ�
T
;

Aði;j;kÞ ¼ ½Aði;j;kÞ;ð0;0;0Þ;…;Aði;j;kÞ;ðl21;m21;n21Þ�;

D ¼ ½dð0;0;0Þ; dð0;0;1Þ;…; dðl21;m21;n21Þ�
T
;

b ¼ ½bð0;0;0Þ; bð0;0;1Þ;…; bðl21;m21;n21Þ�
T
:

Fig. 1. The point discretization of an implicit function.
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A and b are defined as follows: given a grid point {i; j; k}; let

its index d ¼ i £ l £ m þ j £ m þ k be represented as ði; j; kÞ:

If it is a constraint point, all elements in Aði;j;kÞ have value 0

except Aði;j;kÞ;ði;j;kÞ ¼ 1; and bði;j;kÞ is set to be the intensity

value defined by the constraint. If it is free, the value of

Aði;j;kÞ;ði0;j0;k0Þ depends on contribution of {i0; j0; k0} in the

difference equation at {i; j; k}; and bði;j;kÞ ¼ 0: Fig. 1 shows

the grid points contributing for {i; j; k} in the dth row of A; i.e.

Aði;j;kÞ: All the values of Aði;j;kÞ;ði0;j0;k0Þ are set to be 0 except:

Aði;j;kÞ;ði;j;kÞ ¼ 6
a4

i;j;k

Dx4
þ

b4
i;j;k

Dy4
þ

c4
i;j;k

Dz4

 !

þ 8
a2

i;j;kb2
i;j;k

Dx2Dy2
þ

a2
i;j;kc2

i;j;k

Dx2Dz2
þ

b2
i;j;kc2

i;j;k

Dy2Dz2

 !
;

Aði;j;kÞ;ði^1;j;kÞ ¼ 24
a4

i;j;k

Dx4
þ

a2
i;j;kb2

i;j;k

Dx2Dy2
þ

a2
i;j;kc2

i;j;k

Dx2Dz2

 !
;

Aði;j;kÞ;ði;j^1;kÞ ¼ 24
b4

i;j;k

Dy4
þ

a2
i;j;kb2

i;j;k

Dx2Dy2
þ

b2
i;j;kc2

i;j;k

Dy2Dz2

 !
;

Aði;j;kÞ;ði;j;k^1Þ ¼ 24
c4

i;j;k

Dz4
þ

a2
i;j;kc2

i;j;k

Dx2Dz2
þ

b2
i;j;kc2

i;j;k

Dy2Dz2

 !
;

Aði;j;kÞ;ði^2;j;kÞ ¼
a4

i;j;k

Dx4
;

Aði;j;kÞ;ði;j^2;kÞ ¼
b4

i;j;k

Dy4
;

Aði;j;kÞ;ði;j;k^2Þ ¼
c4

i;j;k

Dz4
;

Aði;j;kÞ;ði^1;j^1;kÞ ¼
2a2

i;j;kb2
i;j;k

Dx2Dy2
;

Aði;j;kÞ;ði^1;j;k^1Þ ¼
2a2

i;j;kc2
i;j;k

Dx2Dz2
;

Aði;j;kÞ;ði;j^1;k^1Þ ¼
2b2

i;j;kc2
i;j;k

Dy2Dz2
:

The matrix A is called ‘tridiagonal with fringes’ [31].

Similarly, using finite-difference techniques, Eq. (2) can

be rewritten as:

A0D ¼ b0
; ð5Þ

Our implicit PDE is open along all of x; y; and z directions,

so forward/backward difference approximations shall be

utilized when computing partial derivatives near the six

boundaries instead. Arbitrary boundary and additional

constraints can be easily enforced by the finite-difference

method. In our system, after making the initial guess of

the intensity values, we fix the intensity values at

boundaries, so that the manipulations on the implicit

objects can be performed using the finite-difference

iterative solver. In general, this type of elliptic PDEs

allows designers to choose (various) constraints based on

diverse design tasks.

3.4. Constrained system

One attractive advantage of the PDE modeling

techniques is that the interior of the objects is controlled

by PDEs without the need of extra specification for

interior material distribution. More importantly, users can

modify an implicit PDE object by enforcing additional

hard constraints of desired intensity values anywhere

inside the working space without violating previously

defined conditions. Additional hard constraints inside the

working space introduce a set of new equations into the

system to replace the corresponding original

difference equations. For example, if we want to set

the intensity value di;j;k as a particular constant value d0;

the equation di;j;k ¼ d0 will be used to replace the

discretized difference equation approximating the PDE at

the point {i; j; k; }; i.e. Aði;j;kÞði;j;kÞ ¼ 1; all other

Aði;j;kÞði0;j0;k0Þ ¼ 0; and bði;j;kÞ ¼ d0: After replacing all the

equations according to the constraints, Eq. (4) becomes

AcD ¼ bc; ð6Þ

where Ac and bc are obtained by replacing kðk . 0Þ

equations in the original system with those derived from

additional k constraints at the corresponding coordinate

positions. The constrained system for the second-order

Eq. (5) has the similar form:

A0
cD ¼ b0

c; ð7Þ

3.5. Iterative method

With boundary conditions, we solve the linear

Eqs. (4)–(7) using finite-difference-based iterative tech-

niques. These methods make immediate use of the sparse

matrix structure on the left-hand side of the equations.

Using the matrix A in Eq. (4) as an example, A is split into

two parts

A ¼ Ad 2 Ar; ð8Þ

where Ad consists of the diagonal elements of A and zeros

elsewhere, and Ar is the remainder. Then Eq. (4) becomes

AdD ¼ ArD þ b: ð9Þ

The iterative methods start from choosing an initial guess

Dð0Þ and then solving successively by iterating DðsÞ from

AdDðsÞ ¼ ArD
ðs21Þ þ b: ð10Þ

The same idea can be applied to Eqs. (5)–(7).

In the case of predefined boundary conditions, we

compute the initial guess using simple linear interpolations

based on the constraints. The iteration will stop at DðsÞ for an

approximated solution when the difference between DðsÞ and
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Dðs21Þ is less than a threshold (we use 1029 in this paper).

Certain variants of iterative techniques exist for solving the

aforementioned linear equations [38]. In this paper, we

employ the Gauss-Seidel iteration, which uses the updated

value of the iteration result at a grid point on the right-hand

side of Eq. (10) as soon as it becomes available. To further

speed up the converging rate of Gauss-Seidel iteration, we

take into account the error factor, which is characterized by

the difference between the approximation and the real

solution. This leads to the method of successive over-

relaxation iteration, or SOR iteration. Nonetheless, the

discretization of volumetric implicit PDE space results in a

very large number of linear equations. This causes the slow

convergence of iterative methods. To achieve a solution

faster, we start solving the equations at a coarse grid with

down-sampled constraints and interpolate the solution at

finer grids to compute the initial guess for the iterative

methods at the finer resolution. The convergent rate of the

iterative solvers can be greatly increased.

4. Boundary conditions for different applications

To construct an implicit PDE object, first we need to

outline the rough shape of the object, which can be defined

through boundary conditions or special constraints such as

curve contours and scattered data points in the working

space that the object interpolates. The form of boundary

constraints varies for different applications. Our implicit

PDE techniques accept boundary conditions for applications

such as shape blending, object recovery, and shape

reconstruction from sketch curves and scattered data points.

Fig. 2 illustrates different types of boundary conditions in

simplified 2D cases.

4.1. Shape design using traditional boundary constraints

The implicit PDE techniques can model geometric

shapes by computing the information of the whole working

space based on traditional boundary constraints with

optional cross-sectional details inside the working space.

Such boundary conditions are defined as intensity values

sampled at certain resolution from input or use some

analytic functions to generate implicit boundary functions

dð0; y; zÞ; dð1; y; zÞ; dðx; 0; zÞ; dðx; 1; zÞ; dðx; y; 0Þ; dðx; y; 1Þ

and a collection of cross-sectional scalar intensity functions

dðxi; y; zÞ; dðx; yj; zÞ; or dðx; y; zkÞ; where xi; yj; zk [ ð0; 1Þ are

constants. These functions are sampled at specified

resolution to provide a set of intensity values inside the

working space. Using these values as generalized boundary

conditions, we introduce certain number of new equations

and the linear equation system has the form of Eqs. (6) or (7)

which can be solved using above mentioned techniques.

Fig. 3 shows examples of the fourth-order and second-order

PDEs, respectively. Although Eq. (6) takes more time to

solve, it provides higher-order continuity of intensity

Fig. 2. 2D illustrations of different types of boundary conditions. (a) Traditional boundary constraints; (b) boundary conditions for shape blending; (c) sketch-

curve constraints; (d) scattered-point constraints.
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distributions in the working space in comparison with the

results from Eq. (7).

4.2. Shape blending

Our PDE formulations define the interior information of

implicit objects via differential properties, which means that

it is possible to automatically recover the missing

information from partial data using our prototype system

and guarantee intensity continuity of non-constrained parts

of the working space. This feature can be applied to shape

blending process by placing the objects to be blended into

the working space and the system will compute the

connecting parts between those objects. Such kind of

datasets form another type of initialization with pre-defined

boundary constraints, which gives most of the information

with only a small portion of the working space missing. The

missing information of the working space can be approxi-

mated based on the remaining part using our PDE

formulations. An example of shape blending is shown in

Fig. 4 including blended results using different order PDEs,

where the fourth-order blended shape is smoother than the

second-order result. The above two types of boundary

conditions allow our system to model volumetric datasets.

4.3. Shape reconstruction from sketch curves

To maximize the modeling potential of implicit PDEs,

we develop a set of toolkits using PDE techniques to

reconstruct objects from spatial sketch curves of specified

intensity values. Because with this type of constraints, the

boundary information around the working space is missing,

it is extremely difficult to directly solve the implicit PDE

under such constraints. Therefore, we employ techniques

such as the RBF method for the interpolation problems to

obtain an initial guess for the implicit PDE shapes subject

to sketch curve constraints. We then use the iterative solver

to get a smooth solution. When performing the RBF

method, the gradient information indicating the change of

the intensity values around the constraints will be needed to

define the inside and the outside of the reconstructed shape.

If the gradient information is not provided by users, our

system calculates the gradient at each sample point of the

constraints according to the normal of the local tangent

plane of the curve at that point, as explained in Fig. 5. Our

system also allows designers to interactively input certain

sketch curves such as B-spline curves with specified

intensity values, which permits the initial sketch curves

being modified directly. Note that, the sketch curves are not

required to be planar curves. Moreover, they can even be

open curves, which may result in open iso-surfaces instead

of solid objects. Fig. 6 shows examples obtained from

sketch curves.

When modeling more complex shapes from sketches,

usually there are a large number of sketch curves to be

enforced, which will increase the number of calculations

dramatically. Moreover, sometimes the sketch curves are

only designed to model the local area they resides, so their

global contribution are not desirable. To address such

issues, our system allows users to compute the initial guess

of implicit PDE objects using the RBF method for selected

subset of sketch curves at any local region of the working

domain without disturbing the outside areas. At the

initialization stage, when using RBF method to compute

the initial guess of the implicit shape, users are prompted to

select interested curves, define the region in the working

Fig. 3. Examples of implicit PDE objects generated from cross-sectional boundary conditions. (a) Original object rendered by POV-RAY; (b) cross-sectional

boundary conditions by removing several data slices along the y-direction from the original data; (c) and (d) are recovered fourth-order implicit PDE objects

from (b) by solving Eq. (1) with b ¼ 1:2 and 4:8; respectively; (e) and (f) are corresponding second-order objects. The fourth-order PDE provides more

continuous results.

Fig. 4. Shape blending using implicit PDEs. (a) Original dataset shown in iso-surface; (b) blended object from (a) using the fourth-order PDE; (c) blended

object using the second-order PDE; (d)–(f) are cross-section views of the working space for (a)–(c), respectively, where darkness increases with intensity.
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space to reconstruct the subset of the object, as well as to

indicate if curves that only part of them inside the specified

area can make contribution to the reconstruction. After all

the sampled intensity values in each of the sub-regions of

the working space are computed, our system can perform a

global blending process to put sub-regions together. This

feature can reduce the number of calculations of the RBF

method, and provide fast reconstruction by sculpting sketch

curves. Moreover, CSG sculpting tools can be easily

enforced accordingly. Fig. 7 shows an example.

4.4. Shape reconstruction from unorganized scattered

data points

Implicit functions are commonly used for shape

reconstruction from scattered data points. In this paper,

our implicit PDE model not only reconstructs objects

from unorganized scattered data sets, but also recovers

information of the entire working space where objects

reside, with which direct manipulations of objects can be

easily applied. Similar to the sketch curve constraints,

intensity values at boundaries of the working space are

unknown. However, for scattered points datasets where the

number of constraints is extremely large and there is no

gradient information available, RBF method is not suitable

for computing the initial guess. In such case, we use the

signed distance field approximation based on the con-

straints. The initial intensity value on the sampling grids are

computed by the fast-tagging algorithm introduced by Zhao

et al. [46] based on their signed distance to the data point

constraints and we then use iterative solvers to conduct a

smoothing task. Two examples are shown in Fig. 8.

5. Sculpting and manipulation toolkits for implicit PDEs

Our system provides a set of toolkits for global

deformation and local editing of the implicit objects. Fig. 9

shows a snapshot of our prototype system while manipulat-

ing a selected sketch curve.

5.1. Modifying blending coefficients

The coefficient functions aðx; y; zÞ; bðx; y; zÞ; and

cðx; y; zÞ can influence the solution of the implicit

PDEs. They control the relative intensity blending and

the level of variable dependence among x, y, and z

directions, thus they can be treated as generalized

material properties over the volumetric working space.

Consequently, users can control how the boundary and

additional conditions influence the interior intensity

distribution by modifying the length scale at arbitrary

locations (i.e. ai;j;k; bi;j;k; and ci;j;k). In general, users can

Fig. 5. Illustration of computing the gradient direction. p1; p2; and p3 are

neighboring points on a discretized curve; ~n is the normal of their local

plane; and ~g is the gradient vector for p2:

Fig. 6. Examples of shape reconstruction from sketch curves. (a) is a set of open curves without specified gradient information; (b) and (c) are iso-surfaces at

different iso-values, respectively; (d) is a cross-section view of the implicit shape; (e)–(g) show an example of generating implicit shapes by incrementally

defining a set of B-spline curves; (e) is an object defined by two curves; (f) is the refined object by adding two additional sketch curves; (g) is the shape

reconstructed from six B-spline sketch curves; and (h) is a cross-section view.
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define the control functions aðx; y; zÞ; bðx; y; zÞ; and

cðx; y; zÞ interactively over the specified grid point

{i; j; k}: Our system allows users to modify them locally

to deform the shape. Fig. 3 has examples of implicit

PDE objects subject to different coefficient values.

5.2. Sketch curve sculpting

Implicit objects can be defined by specifying a set of

sketch curves which outline the rough shape of the objects.

Our implicit PDE model provides interactive shape design

toolkits to allow users to manipulate the sketch curves in

order to deform the underlying reconstructed implicit

object. The sketch curves defining the rough shape of the

object can be obtained by either predefined curve network or

B-spline curves from users’ direct input. Our system allows

users to modify the geometric shape, intensity value, as well

as gradient directions of the sketch curves interactively in

order to get the desired object.

In order to modify the sketch curves smoothly, B-spline

approximations for those curves are calculated at the

initialization stage, then users can sculpt the curves

interactively by manipulating the B-spline control points

via sculpting, translation, and rotation. Because the

reconstructed implicit object is required to interpolate

those sketch curves, which define its outlining shape

approximately, it will follow the shape changes accordingly.

Fig. 11 has an example of sculpting the shape of a selected

sketch curve. The intensity values of sketch curves decide

where the final shape of the implicit objects should pass

through at the level-set of its value. By modifying the

intensity values of selected curves, users can manipulate the

objects accordingly. Furthermore, according to the gradient

definition, the intensity values increase along gradient

directions of sketch curves and decrease in the opposite

directions in general. Gradient directions provide

information of the intensity distributions starting at the

sketch curves and propagating to the neighborhood, which

Fig. 7. Example for performing the RBF initialization locally. (a) Two set of sketch curves; (b) and (c) are reconstructed implicit shapes rendered at different

iso-values; (d) a cross-section view.

Fig. 8. Examples of shape reconstruction from scattered data points (b) and (c) are iso-surface at different intensity values of the object reconstructed from point

set (a); (f) and (g) represent the reconstructed shape from dataset (e) at different iso-values; (d) and (h) are cross-section views.
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defines the inside and outside of the object. Without the

predefinition of gradient directions, the solution will be

trivial. Therefore, gradient information of sketch curves is

required for reconstructing a unique shape. Accordingly,

changing the gradient directions at selected sketch curves

means modifying directions of intensity changes in the

implicit working space and will result in different implicit

shapes. Our system allows users to specify the gradient

direction of each individual sketch curve to construct

different implicit PDE objects. Refer to Fig. 10 for examples

of specifying and modifying gradient directions of the

sketch curves. Without further specification, other examples

in this paper have gradient directions pointing inward the

curves by default.

5.3. Local manipulation of implicit PDE solids

Usually the sketch curve sculpting will deform the

entire reconstructed shape, which only offers global

manipulation and is less intuitive for ordinary users to

handle. Even with the specification of local areas of

interests containing the sculpted sketch curve,

the sculpting will affect all the points in the selected

regions. Moreover, sometimes the input constraints alone

cannot guarantee a satisfactory solution of constructed

shape. Therefore, direct modification in selected areas is

desirable, especially when the overall recovered shape is

satisfactory but minor changes in small localized areas

are needed. Our system provides interactive tools for the

intensity value modification in selected regions to sculpt

the reconstructed shape. The modification will be

enforced into Eqs. (6) or (7). Using the aforementioned

techniques, we can solve Eqs. (6) and (7) to obtain the

modified objects. Because for local manipulations, we

only calculate the intensity updates in the neighborhood

of selected regions, where the intensity values are

governed through the PDE and the selected regions

usually have relatively small number of grids comparing

Fig. 9. Snapshot of the interface of our implicit PDE system.

Fig. 10. Examples for specifying and changing gradient directions of sketch curves. (a) and (c) are two sets of curves with same geometric shape but different

gradient directions, where the arrows show intensity increasing directions; (b) and (d) are corresponding implicit objects.
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with the entire working space, the update of the new

intensity values for such regions will be quickly obtained

through our finite-difference solver. Therefore, we can

achieve interactive manipulations for local sculpting of

implicit PDE objects.

Traditional implicit techniques for data reconstruction

do not support direct manipulations on the arbitrary

locations in the volumetric working space. The changes

on the predefined constraints will cause global defor-

mation. It is more desirable to offer users editing

functionalities on the interior properties with interactive

interface.

5.3.1. Local intensity modification

Besides the local RBF approximation for local sketch

curve sculpting, our system also allows users to specify any

interior region of the sampling grids, and applies intensity

changes only within the specified region. Alternatively, we

can freeze the selected region and disallow any changes in

the specified region. In our system, this can be done through

interactively specifying the maximum and minimum

sampling grid in x; y; and z direction of the desired region

in the sampling volumetric working space. Subsequently,

any change within the region will have no influence on

sampling points outside the region. The localized defor-

mation can be easily achieved because only those equations

corresponding to the points of the specified regions in Eq. (6)

will be solved. In addition, the number of computations is

reduced due to fewer number of equations involved in the

local sculpting. In principle, all hard constraints can be

viewed as some sort of local deformation. Fig. 11 shows

examples of local deformation.

5.3.2. Iso-surface sculpting

Users can also specify an iso-surface at a particular

intensity value and use a cutting plane inside the volumetric

working space to get a 2D iso-contour on the plane, then

stretch, push, rotate the contour, as well as add desired

intensity values at specified locations to modify the shape of

the iso-surface and the intensity distribution of the interested

areas. Refer to Fig. 11 for illustrative examples.

5.3.3. CSG operations

We also offer several CSG sculpting tools such as using

spheres and cubes to trim/extrude/sculpt implicit objects by

adding more constraints on the sampling grids of the

working space. This is extremely useful for such situations

when there are some minor changes needed to be done in

some local small regions. Such sculpting tools make our

system compatible with CSG-based implicit models by

treating those models as modeling tools. Examples are

shown in Fig. 11.

5.3.4. Gradient constraints

The intensity gradient 7 at a point ðx; y; zÞ in the intensity

field can be defined as

7dðx; y; zÞ ¼
›dðx; y; zÞ

›x
;
›dðx; y; zÞ

›y
;
›dðx; y; zÞ

›z

� �
:

By applying the finite-difference techniques, the gradient

vector 7di;j;k at a discretized grid point {i; j; k} can be

approximated as:

diþ1;j;k 2 di21;j;k

2Dx
;

di;jþ1;k 2 di;j21;k

2Dy
;

di;j;kþ1 2 di;j;k21

2Dz

� �
:

It provides information about intensity changes in the

neighborhood of ðx; y; zÞ in the working space. Therefore,

changing the direction and length of the gradient vector of a

selected grid point will affect the intensity distribution in its

neighborhood, and as a result, deform the object. Our

system allows users to pick a point inside the working space,

specify the local region surrounding the point, and modify

its gradient vector interactively, then the shape bounded by

the specified local region will be deformed accordingly

(refer to Figs. 12 and 13(a)).

5.3.5. Curvature constraints

The mean curvature at point ðx; y; zÞ in the intensity field

can be computed from the divergence of the intensity

Fig. 11. Examples of enforcing curve and direct manipulation constraints. (a) Original object with sketch curves; (b) deformed object by sculpting a selected

curve; (c) changing an iso-contour; (d) deformed object subject to local region constraints; (e) adding a sphere in the working space; and (f) is the

corresponding deformed object subject to (e); (g) adding constraints for an object with sharp edges; (h) and (i) are two trimming examples.
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gradient of ðx; y; zÞ; i.e. 7·7dðx; y; zÞ [33]. In the discretized

form, it can be approximated as 7·7di;j;k: Its definition is

also related to the intensity value of the point’s neighbors.

By changing the curvature value at a point, the shape of

the object will be changed. Our system allows users to

manipulate the curvature at a selected grid point for implicit

shape deformation. Fig. 13 shows examples.

6. Implementation and discussion

We develop a prototype software system that permits

users to reconstruct geometric shapes defined by PDE-based

implicit functions from a set of sketch curves, scattered data

points, or volumetric datasets. Our system also allows

interactive manipulation of reconstructed implicit PDE

objects with various intensity constraints in the volumetric

working space. The interactive sculpting of implicit PDE

objects can be obtained via modification of predefined

conditions and interior operations. The system is written in

Visual Cþþ and runs on Windows95/98/NT/2000/XP.

Fig. 14 illustrates the architecture of our modeling

environment for implicit PDE objects. In particular, our

system provides the following functionalities:

Missing information recovery and shape blending. The

underlying implicit PDEs of our system provide a simple yet

systematic mechanism to obtain the volumetric information

satisfying specified constraints automatically. Such an

advantage makes it possible to recover missing information

of input datasets with our system. It can also be used to

compute connecting parts between different objects in the

working space which leads to shape blending.

Shape reconstruction. Users can interactively input and

edit scattered data points or sketch curves with specified

intensity values, then the system uses the RBF method or

distance field approximation to calculate intensity values on

the sampling grids within the volumetric working space as

initial guesses for the iterative solver of the discretized

implicit PDE to obtain approximated solutions for implicit

PDE objects satisfying these conditions. Our system can

model both close and open implicit shapes.

Discrete models. Our system supports implicit PDE

objects obtained from solving the fourth-order and second-

order elliptic PDEs using: (1) finite-difference discretization

for the numerical solution of the elliptic PDEs in 3D

working space; and (2) RBF approximation at arbitrary sub-

regions in the working space for modeling localized details

and performance speedup.

Interactive and direct operations. Users can also work

directly on implicit PDE objects through: (1) local

modification of blending coefficient functions; (2) sketch

curve sculpting using B-spline manipulation; (3) gradient

specification of selected curves; (4) local RBF approxi-

mation for improved time performance and interactive CSG

manipulation; (5) interior deformation with additional

constraints inside the working space; (6) iso-surface

manipulation and direct manipulation of iso-contours at

selected intensity values; and (7) gradient and curvature

constraints inside the working space.

We employ iterative methods (e.g. Gauss-Seidel

iteration) with multi-grid-like techniques to solve the

implicit PDEs subject to various constraints. Besides

original datasets or predefined sketch curves, our system

allows users to interactively define and sculpt sketch

Fig. 12. Examples of enforcing gradient constraints. (a) Original object with the gradient vector at a selected point; (b) and (c) are deformed objects by

changing the gradient at the point.

Fig. 13. Examples of enforcing gradient and curvature constraints. (a) Deformed object by changing gradient; (b) and (c) are deformed objects by changing

curvature at a selected point (shown in green) from (a).
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curves directly and specify gradients at selected curves.

These constraints provide more freedom to designers and

make intuitive design of implicit objects more cost-effective.

We also enforce additional constraints directly inside the

volumetric working space, apply local operations, and

provide sculpting toolkits for the implicit objects, which

facilitate the construction of implicit PDE objects of arbitrary

topology. The PDE is solved by finite-difference techniques

because they are simple, easy to implement, and suitable for

complicated, flexible constraints. In general, the time and

space complexity are increased with higher resolution as well

as increased accuracy. Examples in this paper are rendered by

POV-RAY.

Table 1 summarizes the numbers of constraints and

CPU time of numerical solvers for the second-order and

fourth-order implicit PDE examples when running on

a Pentium 4.1.4 GHz PC. The resolution of the working

space is 64 £ 64 £ 64 for Fig. 3 and 65 £ 65 £ 65 for other

examples. The stopping threshold (difference between two

iteration steps) is 1029. ‘Initial’ stands for the initial guess

where we use RBF method for sketch curve datasets and

fast-tagging approximation for the scattered data points

input. ‘2nd(s)’ and ‘4th(s)’ indicate the CPU time in

seconds for solving the entire implicit second-order and

fourth-order PDE working spaces based on the initial guess

using multi-grid Gauss-Seidel iteration. The time perform-

ance of RBF and fast-tagging algorithms depends on the

number of enforced constraints, while the convergent

speeds of iterative methods are mainly determined by

the sampling rates of the implicit working space.

Although the initialization of the implicit models are

time-consuming because of the approximation of the

entire working space, the local sculpting afterward will

be interactive because only small number of sampling

grids are involved. Table 2 summarizes the CPU time for

the examples of our direct sculpting in local selected

regions. ‘Cons’ stands for the number of constraints

involved for the operation, ‘Grids’ represents the number

of grid points in the selected region, and ‘4th(s)’ gives

the CPU time (seconds) for updating the intensity values

in the selected area using the fourth-order PDE. The

CPU time depends on the scale of the intensity change

by the sculpting operation as well as the number of

constraints and the size of the selected region. For

instance, CSG operations usually enforce relatively larger

intensity changes for constraints in selected regions than

other operations such as gradient and curvature sculpting,

hence they need more CPU time to update the region’s

intensity values.

Despite the direct and powerful modeling advantages

of our PDE framework, the major difficulty associated

with our PDE techniques is the convergent speed of

finite-difference approximation for initial shapes. Thus,

faster numerical approximation techniques for solving

PDEs need to be considered to improve the time

performance of our PDE modeling system.

Fig. 14. System architecture and functionalities.

Table 1

CPU time (seconds) of different solvers for several examples of implicit

PDE objects with different number of constraints

Examples Constraints Initial 2nd(s) 4th(s)

Fig. 3 169888 N/A 1.542 7.992

Fig. 4 274086 N/A 3.04 13.7

Fig. 6a 180 5.889 N/A 379.766

Fig. 6b 720 18.872 N/A 416.312

Fig. 8a 1219 267.925 N/A 113.432

Fig. 8e 3154 359.657 N/A 148.283

Table 2

CPU time (seconds) of local direct manipulation examples of implicit PDE

objects

Examples Cons Grids 4th(s)

Iso-contour Editing (Fig. 10c) 8 1792 0.45

Region Deformation (Fig. 10d) 507 6358 3.17

CSG-like Blending (Fig. 10f) 108 1000 1.15

Sharp-feature Creation (Fig. 10g) 98 5046 0.23

Cutting-1 (Fig. 10h) 216 1000 0.82

Cutting-2 (Fig. 10i) 216 1000 0.82

Gradient Sculpting (Fig. 12) 7 294 0.09

Curvature Manipulation (Fig. 13) 7 294 0.09
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7. Conclusion

We have unified the popular implicit function techniques

with the powerful parametric PDE framework to demonstrate

more modeling advantages of the PDE-based paradigm. Our

prototype system supports interactive shape design of

implicit PDE objects through global and local deformation

of scattered data points or sketch curves. The implicit PDE

model can be defined as the solution of the elliptic PDEs over

a scalar intensity field with either scattered-point datasets or a

set of sketch curves as generalized boundary and additional

constraints. Our implicit PDE approach can also provide an

approximation for the missing or blending part in the

working space with most of the intensity information already

known. Our software environment offers users a set of

interactive and direct shape modeling toolkits including:

sketch curve sculpting and gradient manipulation, intensity

value modification in selected regions, gradient and curva-

ture manipulations inside the working space, and iso-contour

manipulation of specified intensity value inside the volu-

metric domain. These toolkits provide users an intuitive

interface to model implicit PDE objects satisfying a set of

design criteria and functional requirements. Our integrated

approach and novel PDE techniques further expand the

geometric coverage and the topological flexibility of the

conventional PDE methodology to implicit functions, and

forge ahead toward the realization of the full potential of PDE

technology in shape modeling and other visual computing

fields.
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