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CURVE SPACE: CLASSIFYING CURVES ON SURFACES

XIN LI∗, XIANFENG GU∗ , AND HONG QIN∗

Abstract. We design signatures for curves defined on genus zero surfaces. The signature

classifies curves according to the conformal geometry of the given curves and their embedded surface.

Based on Teichmüller theory, our signature describes not only the curve shape but also the intrinsic

relationship between the curve and its embedded surface. Furthermore, the signature metric is stable,

it is close to identity between surfaces sharing similar Riemannian geometry metrics. Based on this,

we propose a surface matching framework: first, with curve signatures, we match the partitioning of

two surfaces defined by simple closed curves on them; second, the segmented subregions are pairwisely

matched and then compared on canonical planar domains.

1. Introduction. Shape analysis and shape comparison are fundamental prob-

lems in computer vision, graphics and modeling fields with many important appli-

cations. Lots of 2D and 3D shape analysis techniques have been developed in the

past couple of decades, most of which are based on comparing curvature or spacial

positions of the points on the curve.

A complete different way is to consider all the closed curves on the surface. The

curve space on surface conveys rich geometric information of the surface itself and is

easy to process. The philosophy of analyzing shapes by their associated curve spaces

has deep root in algebraic topology [8], infinite dimensional Morse theory [18] and

Teichmüller space theory in complex geometry [31].

Suppose M is a surface (a 2-manifold), a closed curve on M is a map

γ : [0, 1] → M, γ(0) = γ(1).

We define the set of all simple closed curves on M as curve space and denote it as

Ω(M). In algebraic topology, Ω(M) is classified by homotopy relation,

γ0 ∼ γ1 : ∃F : [0, 1]× [0, 1], F (·)|0 = γ0, F (·)|1 = γ1,

then the quotient space Ω(M)/∼ forms a group π1(M), the addition of π1(M) is the

concatenation of the curves. All the topological information of M is reflected by the

algebraic structure of its fundamental group π1(M).

Milnor pointed out the Ω(M) is an infinite dimensional manifold, a nature curve

length function is introduced

f : Ω(M) → R, f(γ) =

∫ 1

0

< ṙ, ṙ > dt,
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where < ·, · > is the inner product in R3. It is shown that f is a Morse function, its

critical points are geodesics. By analyzing the local structures of the critical points,

the topology of Ω(M) can be obtained. Furthermore, the topology of Ω(M) determines

the topology of M . In differential geometry, locally, the surface shape is completely

determined by the curves in the neighborhood. For example, the curvatures of the

sectional curves through one point specify the principle curvatures of that point.

Our current research follows this philosophy but is based on Teichmüller space

theory. Suppose M1 and M2 are two surfaces, φ : M1 → M2 is a diffeomorphism1

between them. Then any curve Γ1 ∈ Ω(M1) will be mapped to a curve in Ω(M2)

by Γ2 = φ ◦ Γ1. Therefore φ induces a one to one map φ∗ from Ω(M1) to Ω(M2)

by φ∗ : Ω(M1) → Ω(M2). Instead of studying φ, we can analyze relations between

surfaces by studying φ∗M .

Furthermore, we map the curve space Ω(M) to a canonical Lie group Diff(S1),

where Diff(S1) denotes the group of all diffeomorphism from the unit circle S1 to

itself. We denote this map as gi, with g1 : Ω(M1) → Diff(S1) and g2 : Ω(M2) →

Diff(S1). Φ∗ : Ω(M1) → Ω(M2) induces a mapping from Diff(S1) to itself by

Φ̄ := g2 ◦ Φ∗ ◦ g−1
1 .

The process discussed above is summarized as the following diagram:

M1 M2

Ω(M1) Ω(M2)

Diff(S1) Diff(S1)

-
φ

? ?

-
φ∗

?

g1

?

g2

-
φ̄

This diagram demonstrates our methodology: three mappings Φ, Φ∗, Φ̄ are closely

related. In fact, any one of them determines the other two. In other words, for the

purpose of studying surfaces M1, M2 and the maps Φ among them, we can study their

curve spaces Ω(M1), Ω(M2), signatures of the curves Diff(S1), and the mappings

Φ∗, Φ̄ among them. The following theoretic results clarify the intuition.

Theorem 1. M is a metric oriented surface, the curve spaceΩ(M) and Diff(S1)

are equipped with L2 metric, the map Ψ from its curve space Ω(M) to Diff(S1) is a

homeomorphism.

Therefore, to measure the distance between two curves on a surface, the distance

between two signatures in Diff(S1) is sufficient.

1A function is differentiable and has a differentiable inverse.
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Theorem 2. Suppose M1 and M2 are two oriented metric surfaces, φ is a

conformal map if and only if Φ̄ is the identity map of Diff(S1).

The mapping from Φ to Φ̄, F : Φ → Φ̄ discovers a lot of geometric information

about M1 and M2. It is highly possible that, by choosing appropriate metrics, F is

continuous. The kernel of F is all the conformal mapping between M1 and M2.

Contributions:

1 In theoretical aspect, we design curve signatures for curves on surfaces, which

can be used to study curves on the same surface or on different but similar

surfaces. (Section 2)

2 With the mapping φ̄, we can study the mapping Φ between surfaces, more

specifically, surface matchings are guided by feature curve matchings. (Sec-

tion 3)

Curve space on surfaces contains much richer information compared to planar

curve space. Planar curve space theory [27] characterizes the curves themselves,

whereas our curve space on surface emphasizes both the curves and their relations

with the embedded surfaces. In other words, our signatures classify and compare

curves based on how they segment the embedded surface. The curve space on sur-

face can be applied for geometric processing of surfaces such as shape comparison

and registration. Planar curve space can be treated as a special case of our general

surface curve space. Although in this paper, we focus on genus zero surfaces only, the

theoretic framework can be generalized to arbitrary surfaces.

1.1. Related work. In computer vision/graphics fields, existing effective curve

matching and comparison methods focused on properties of planar curve itself [5, 32,

2, 26, 30, 7, 15, 23, 3, 19].

Recent research on conformal geometry opens a new way to study curve and shape

matching. [27] modeled the planar simple closed smooth curves by diffeomorphisms

from a circle to itself via conformal mapping and proved the space of all such curves

modulo scaling and transformation is isomorphic to the diffeomorphism group of the

circle quotient Möbius transformations group restricted on the circle. Conformal

geometry was also applied by for surface classification and matching [13, 10].

Current available techniques for surface matching and comparison typically fall

into several categories. A large number of shape descriptors attempt to label shapes

using histograms collecting specific global properties of the underlying object. Ankerst

et al. [1] defined the histogram of the volume distributed on concentric shells and

sectors, and used a quadratic form to measure distance between two objects. Osada

et al. [22] used the probability of distances between two randomly sampled points

from the surface as its shape descriptor. Ohbuchi et al. [21] presented an inertial

principal axis histogram about many sampled axes for shape comparison. On each
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axis, the moment of the inertia, the average distance and its variance from surface

points to the axis constitute the histogram. Kazhdan et al. [17] introduced a reflective

symmetry descriptor as a surface analysis and rigid-body alignment tool, which is a

histogram consisting of distances from surface points to planes passing through the

mass center. Gal et al. [9] designed a histogram that comprises a so called local

diameter function and the D2 functions introduced in [22] to arrive at a pose-oblivious

descriptor. Another type of descriptors usually comes from signal decomposition

methods, Saupe and Vranic [25] introduced a ray-based spherical harmonic descriptor.

Kazhdan et al. [16] also used the spherical harmonics but they worked on voxel grids.

Novotni and Klein [20] proposed to use a more generalized 3D Zernike function as the

base function. Reuter et al. [24] designed the descriptor using the Laplacian shape

spectrum. The third type of descriptors relies on the skeleton or the topology structure

of the surface. Sundar et al. [29] designed a skeleton descriptor which converts the

object to its volume skeleton and they matched the skeleton graphs using methods

introduced in [28]. Hilaga et al. [14] and Biasotti et al. [4] used Reed graph as the

shape descriptor. Dey et al. [6] compared shapes by analyzing flow and their critical

points on surface. The vast majority of the existing work try to compare the objects

in a global sense relying on their geometry information, without any involvement of

semantic feature curves. In contrast, our method tackles the shape comparison in

a divide-and-conquer way so that the comparison between complex objects can be

greatly simplified, while at the same time, with the help of feature alignments, the

matching can be more flexible and application-specific. Furthermore, while we are

capable of quantitatively identify the overall, global shape difference, one key feature

of our curve-centric comparison is to offer the local shape variation and its distribution

in order to facilitate shape registration, segmentation, and analysis.

2. Signatures in Curve Space. This section outlines our theoretical results

on how to compute curve signatures for curves defined on a surface. Simple closed

planar curves can be represented as a diffeomorphism from unit circle to itself [27] up

to the scaling and translation. For spatial curves defined on a surface, we also use

a diffeomorphism2 from the unit circle to itself to represent it. This diffeomorphism

represents the spatial curve on surface uniquely up to a Möbius transformation. By

removing the Möbius ambiguity using some special markers, we obtain the signatures

corresponding to the curves bijectively.

2.1. Theory and Algorithm Overview. Given a simple closed curve Γ on

a genus zero surface M , the central idea to compute its signature is illustrated in

Figure 1(a), (b) and (c).

2Such a diffeomorphism can be viewed as a real periodic function from [0, 2π] to itself.
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(c) Curve signature from boundary mappings.

Fig. 1. Curves as equivalence classes of diffeomorphisms.

Case 1: If M is closed, as shown in Figure 1(a), then Γ partitions M into two

components Γ+, Γ−, both are topological disks and can be conformally mapped onto

planar unit disks ∆+, ∆− by Ψ+, Ψ−. Γ is the boundary of Γ+ and Γ−, denoted by

∂Γ+ = Γ and ∂Γ− = −Γ, and is mapped to the disk boundary, which is the unit circle

∆ = ∂∆+ = −∂∆−. The mapping induced by Ψ+ and Ψ− on the boundaries ∂∆+

and ∂∆− is a diffeomorphism. This diffeomorphism Ψ : ∂∆+ → ∂∆− is the signature

of Γ.

Case 2: If M is open, as shown in Figure 1(b), then Γ partitions M into a

topological disk Γ− and a topological annulus Γ+. Γ− can be conformally mapped

onto a unit disk ∆−, while Γ+ can be conformally mapped onto an annulus ∆+ with

unit inner radius. We denote such annulus with unit inner radius as canonical annulus,

the inner boundary of ∆+ as ∂1∆+, and use the diffeomorphism Ψ : ∂∆− → ∂1∆+

as the signature of Γ. One example is shown in Figure 2, the blue curve in genus zero

open surface David head model (a) has its signature shown in (b).

In [27], Sharon and Mumford used Teichmüller theory to prove that any simple

closed planar curve can be represented with such a diffeomorphism from a unit circle

to itself uniquely up to scaling and translation. In this paper, we generalize this idea

to arbitrary genus zero surface using Riemann surface theory.
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(a) Blue curve on (b) Signature of the

david head surface. blue curve.

Fig. 2. Curves on David Head surface and its signature.

In technical essence, we compute the conformal mapping for each component

segmented by the curve, and take the boundary mappings Ψ as shown in Figure 1(c)

as the signature. Some landmarks and constraints are used to eliminate the so-called

Möbius ambiguity.

2.2. Conformal Map from an Open Genus-zero Surface to a Disk. We

seek a conformal map Φ from a disk-like surface M to a unit disk. The map does

exist according to Riemann mapping theory. Extensive relevant work has been done on

finding a good parameterization for disk-like surfaces. However, complete conformality

is usually not guaranteed. Based on the fact that the harmonic map from a closed

genus zero surface to a sphere is also conformal, we use the double covering technique

[13] to convert an open surface to a closed one, and reduce computing Φ to computing

a harmonic map from double covering of M onto a sphere(Section 2.3).

For an open surface M , we compute the double covering of M and then compute

its harmonic mapping onto a sphere. Due to the exact symmetric property of double

covering, the boundary ∂M is harmonically mapped onto the equator of the sphere

and M is conformally mapped onto a hemisphere. Then we compose a stereo graphic

projection to get a conformal map from M to the unit disk. The procedure computing

conformal map from topological disk in the previous example(Figure 2) onto the unit

disk is shown in Figure 3(a)-(d).

2.3. Conformal Map from a Closed Genus-zero Surface to a Sphere.

To compute a conformal map Φ from a closed genus-zero surface M to a sphere, we

initiate a map between them and minimize the harmonic energy by diffusing the heat-
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(a) Upper patch of (b) Patch conformally (c) Patch conformally

David Head Surface mapped to sphere mapped to disk

(d) Patch conformal (e) Bottom patch of (f) Patch conformally

texture mapping David Head Surface mapped to rectangle

(g)Patch conformally (h) Patch conformal

mapped to annulus texture mapping

Fig. 3. Conformal Mappings of SubPatches.

flow on the sphere surface. This process is introduced and proved to converge to a

harmonic/conformal map [11].

The process is as follows:

1. Compute the normal vector for each triangle face. For each vertex, compute

its normal ~n(v) as the weighed sum of normals on the adjacent faces weighed

by their areas. Then set the initial map as the Gauss map: Φ(v) = ~n(v).

2. Compute Laplace-Beltrami operator at each vertex: ∆(v) =
∑

[u,v]∈M wu,v

(Φ(v) − Φ(u)), the weight wu,v associated with edge [u, v] is the well known

harmonic weight, calculated as wu,v = 1
2 (cot(αu,v) + cot(βu,v)), where αu,v

and βu,v are two angles opposite to the edge [u, v] in the two triangles sharing

the edge.
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3. Project Laplacian ∆(v) onto the tangent space of Φ(v),

∆s2 (v) = ∆(v) − (∆(v) · Φ(v))Φ(v).

4. Update the map Φ, Φ(v) = Φ(v) − ǫ∆S2(v) where ǫ is a small constant to

assure the numerical stability. In our experiment we set ǫ = 0.1.

5. Normalize the map Φ by

Φ(v) =
Φ(v) − c

|Φ(v) − c|
,

where c is the weighted mass center: c =
P

v
kvΦ(v)P
v

kv
where kv is the summation

of the areas of all faces adjacent to vertex v.

6. Repeat step 2 through 5 until it converges.

2.4. Conformal Map from a Topological Annulus to a Canonical An-

nulus. For curves on an open genus-zero surface, we need to compute a conformal

map Φ from a topological annulus M (with ∂M = Γ1 − Γ2 where Γ1 and Γ2 are two

boundaries) to a canonical planar annulus. First, we double-cover the surface to get

a closed genus-one surface; next we compute a conformal map from a closed genus-

one surface onto a rectangle planar domain by integrating a holomorphic 1-form [13]

which describes two vector fields perpendicular to each other everywhere on surface;

finally, we compose the conformal map from the rectangle to the canonical annulus

using e
2π

b
z to get the φ.

The algorithmic flow is detailed as follows:

1. Double-cover M to a closed genus one surface M̄ .

2. Compute a holomorphic 1-form basis of M̄ by using the method introduced

in [12]. Denote the basis as ω̄.

3. For an arbitrary path τ connecting Γ0 and Γ1, compute a holomorphic 1-form

ω such that
∫
Γ0

ω = 1, ω = 1R
Γ0

ω̄
ω̄.

4. Trace a vertical trajectory r of ω, such that r is an integration curve of ω

along imaginary direction. Namely, r is iso-u in the (u, v) domain.

5. Slice M along r to get a fundamental domain M̃ , by integrating ω, where M̃

is conformally mapped to a rectangle on the plane.

6. Conformally map the rectangle to an annulus with unit inner radius by e
2π

b
z.

The procedure computing conformal map from a topological annulus in the pre-

vious example(Figure 2) onto the canonical annulus is shown in Figure 3(e)-(h).

2.5. Eliminating the Möbius Ambiguity. Conformal mappings between sur-

faces are not unique; e.g., all conformal mappings from a unit disk D2 to itself form a

Möbius group, with the form: τ : z → w, w = eiθ z−z0

1−z̄0z
, z, z0 ∈ C, θ ∈ [0, 2π), where z0

is a constant point, θ is a constant angle. All such τ form a 3 real dimensional group.
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Two mappings from a topological disk to a unit disk differ by a Möbius transforma-

tion, this ambiguity affects the signature and has to be eliminated via certain extra

constraints.

For closed genus-zero surfaces, we first fix a marker point p on the surface and

define a tangent direction ~tp going out from p. A closed curve Γ separates M into two

disk-topology patches, the patch containing p is denoted as Γ+. We require that Ψ+

maps p onto the origin, and ~tp onto the positive x-axis direction. These constraints

uniquely determine Ψ+.

For open genus-zero surfaces, we fix the marker p on the boundary. Ψ+ maps Γ+

to ∆+, where ∆+ is a canonical annulus with unit inner radius. The outer radius of

∆+ is denoted as R, which is uniquely determined by the surface Γ+. Furthermore,

we require that Ψ+(p) = R. Such Ψ+ uniquely exists.

Through the above construction pipeline, every closed curve Γ ∈ Ω(M) cor-

responds to a diffeomorphism Ψ ∈ Diff(S1). Γ corresponds to two signatures

Ψ1, Ψ2 if and only if there exists a Mobsüs transformation τ : D2 → D2, such that

Ψ2◦Ψ−1
1 = τ |∂D2 . The above equation defines an equivalence relation ∼ in Diff(S1).

We claim that the mapping Ψ : Ω(M) → Diff(S1)/ ∼ is an one-to-one map. With

appropriate metrics on Ω(M) and Diff(S1), it is a homeomorphism. In other words,

each closed curve on M corresponds to an equivalence class of diffeomorphisms from

the unit circle to itself.

In some scenarios, we might want to completely eliminate the ambiguity of sig-

natures. For this purpose, we can further eliminate Möbius ambiguity using more

markers. To uniquely reconstruct a curve, Ψ and three markers are sufficient for the

closed genus-zero surfaces while for the open genus-zero surfaces, Ψ and two markers

are sufficient.

(1) (2) (3)

Fig. 4. The stability of curve signatures under isometry, perturbation and bending of

embedded surfaces.

2.6. Distances between Curves. For a genus-zero surface M , we create sig-

natures for curves defined on M . The deviation between two curves can be measured

by the distance between their signatures using Weil-Peterson metric on Diff(S1) as
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introduced in [27].

If surfaces M1 and M2 are with similar Riemannian geometries in R3, then there

exists a diffeomorphism φ : M1 → M2 close to an isometry, the induced map φ̄

between the signatures is close to the identity map from Diff(S1) to itself. In other

words, if the curve Γ1 ⊂ M1 corresponds to Γ2 ⊂ M2 with Γ2 = φ(Γ1), then Γ1 and

Γ2 have similar signatures. Hence, the signatures of curves have a property of strong

stability under the Riemannian metric perturbation of their embedded surfaces and

can be used to analyze curves on different surfaces as a robust tool.

Figure 4 demonstrates the stability of the signatures. All the curves and their

corresponding signatures are drawn in the same color. Note that the signature is a

diffeomorphism from a circle to itself, thus it can be considered as a periodic real

function from [0, 2π) to [0, 2π), and only one period is shown in our figures. In (1),

a planar rectangle is isometrically deformed to a cylinder, our computation shows

that the corresponding curves have exactly the same signatures. In (2), the planar

rectangle is perturbed about 6% in z direction, and about 1% in x, y directions,

signatures of the corresponding curves are very close to each other. In (3), the planar

surface in (a) is simulated as cloth and deforms as shown in (b), namely, it allows

large bending but little stretching, the signatures of the corresponding curves are also

almost identical(i.e., undistinguishable); also, the curve on surface in (a) is perturbed

a little and shown in red curve in (c), the signature perturbs little.

Therefore, curves on different surfaces, which are close to each other in terms

of geometry or differ by a near-isometric mapping, can be robustly and accurately

compared and analyzed using their signatures.

3. Surface Matching. Based on the analysis of curve space, we design our sur-

face matching framework for curve alignment, surface registration, and shape com-

parison.

3.1. Feature Alignment for Surface Segmentation and Matching. We

now decompose the entire surface comparison problem into two sub-tasks: (1) seg-

menting a surface via a set of feature curves and their alignment; (2) matching bound-

ary curves and surface patch interiors. The general framework is as follows.

Assume M1 and M2 are the two surfaces to be matched and compared, if they

share similar geometries, meaning there exists a mapping φ : M1 → M2, φ is close to

an isometry, then

1. Extract a set of feature curves {Γ1
1, Γ

1
2, · · · , Γ1

n} on M1, which can be either

marked by users as certain meaningful features, or automatically computed

based on geometric information of M1 such as the extremals of the principal

curvatures along the corresponding principal directions.
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2. Compute the curve signatures of Γ1
i on M1 using algorithms introduced in

Section 2, and obtain the signature set {Ψ1, Ψ2, · · · , Ψn}.

3. Compute the curve set {Γ2
1, Γ

2
2, · · · , Γ2

n}, such that the curve signature of Γ2
i

equals to Ψi.

4. The curve set {Γk
i } segment Mk to several connected components {ck

1 , c
k
2 · · · ,

ck
m}, k = 1, 2, such that the boundaries of c1

i correspond to the boundaries of

c2
i .

5. Match c1
i with c2

i pairwise. c1
i and c2

i are conformally mapped to the canonical

planar domains(done as a by-product from the process of computing signa-

tures). We reduce the mapping between 3D surface c1
i and c2

i to the matching

on their 2D planar domains.
From the theoretical perspective, the entire algorithmic pipeline can be formulated

as the problem of solving φ : M1 → M2 from knowing φ̄ = id : Diff(S1) → Diff(S1),

then the resultant φ is the one closest to an isometry. φ is the best diffeomorphism

for the surface registration between M1 and M2.

In practice, in Step 3 above, users may prefer to label the meaningful feature curve

set {Γ2
1, Γ

2
2, · · · , Γ2

n} on M2. Then we compute their signatures and by comparing the

signatures, we find an one-to-one matching between these two sets of feature curves.

Then following Steps 4 and 5, the matching φ can be constructed in the similar way.

Because the signatures depend on the curves continuously and stably, small deviations

of the labeled feature curves will have no or very little affect on the final comparison

result as far as the surface comparison is concerned.

3.2. Surface Comparison in 2D Planar Canonical Domains. When all

feature curves are matched, we segment the surfaces into several patches, each of

which is conformally mapped onto a canonical planar domain, then we reduce the 3D

surface comparison task to an much easier 2D matching problem on the planar domain,

which can possibly be solved with many existing techniques. A possible technique to

solve such a problem is to use the conformal representation[10], which consists of two

functions (λ(u, v), H(u, v)) defined on canonical domains, where λ is called conformal

factor, representing the area stretching of the mapping from the original surface to the

planar domain and H is the mean curvature implying the bending information of the

surface. In our experiments, we normalize the original surface and then compute its

conformal factor of each vertex by dividing its one-ring-neighbor area on the surface

by its counterpart on the planar domain.

There are several advantages to measure surface patch difference using conformal

representation. First, the conformal representation is complete in the sense that it

allows us to fully reconstruct the original surface from the representation, which is

guaranteed by the following theorem.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Conformal representation. (a) and (b) are surfaces to be compared, (c) is the color

scheme we use in this paper, (d) and (e) are conformal factor and mean curvature of (b) drawn in

2D planar domain, and (f) is the conformal representation difference distribution between (a) and

(b).

Theorem 3 (Conformal Representation). If a surface S(u, v) is parameterized by

some conformal parameter (u, v) on a domain D, then the conformal factor function

λ(u, v) and mean curvature function H(u, v) defined on D satisfy the Gauss and

Codazzi equation. If λ(u, v) and H(u, v) are given, along with the boundary condition

S(u, v)|∂D, then S(u, v) can be uniquely reconstructed.

Second, according to [10], conformal representation stably represents the geometry

distance between surfaces in R3; the perturbation in geometry leads to stable and

continuous perturbation in their conformal representations.

Third, as a by-product, the computation process of curve signatures has already

computed conformal maps from most 3D patches to the planar domains, so the surface

matching based on these mappings can be done without further computation cost.

The matching energy between two corresponding surface patches M0 and M1

is defined on their common canonical planar domains D: E =
∫
(u,v)∈D

||λ0(u, v) −

λ1(u, v)||2dudv +
∫
(u,v)∈D

||H0(u, v) − H1(u, v)||2dudv.

Figure 5 shows an example on how to make use of conformal representation for

surface comparison. A unit disk planar surface M0 as shown in (a) is compared with

a center-bulb surface M1 shown in (b). The conformal factor and mean curvature

of planar surface is constant everywhere; the conformal factor and mean curvature

of surface (b) in 2D planar domain are color coded and shown in (d) and (e); the

deviation d(u, v) = (λ0(u, v)−λ1(u, v))2+(H0(u, v)−H1(u, v))2 between the matched

surfaces are color-coded in surface M0 and shown in (f).
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4. Experimental results.

0 3.14 6.28
0

3.14

6.28

(a) f0 (b) f1 (c) (d) (e)

Fig. 6. Curves on faces((a),(b)), their signatures(c), and the segmentations for the

matching purpose((d),(e)).

4.1. Human Faces. To illustrate our framework, we firstly present a human

face matching example. Two human faces, f0(female) and f1(male), as shown in

Figure 6 (a) and (b), are compared by aligning feature curves enclosing eyes, noses

and mouths. Assuming that the geometries of human faces are similar, namely, there

exist mappings Φ : f0 → f1 that are close to isometry, we manually label on each face

four feature curves and compute their signatures. The curves and their signatures

are highlighted with the same color. For example, curves enclosing the right eyes and

their signatures are colored in red. As shown in Figure 6 (c), signatures with the same

color are quite similar to each other.

The experiment shows that similar feature curves on two faces have similar sig-

natures, while different feature curves on the faces have dramatic different signatures.

Therefore, the curve signature is a reliable tool to align the same features across dif-

ferent human faces. The faces can then be segmented and mapped onto common

canonical planar domains for subsequent registration and comparison, as shown in

Figure 6 (d) and (e).

4.2. Brain Cortex Analysis. Another example is brain cortex comparison,

we locate feature curves segmenting the whole surface into disks and annuli. These

features are functional ”landmarks” given by users. Our practical example is for

medical imaging: The two cortex surface data are reconstructed using MRI images of

one paralytic acquired at different times. The feature curves are manually labeled by

the clinical doctor who is monitoring the recovery of this patient’s brain. It is desirable

to compare the cortex surfaces such that the corresponding curves and regions are

matched. Noted here although these two brains are similar in terms of Riemannian

metric, they cannot be matched simply via a rigid transformation. 3

We apply our matching procedure as explained above. The feature curves for the

first and the second brain are shown separately in Figure 7 (a) - (d) and (e) - (h)

3Because the cortex surfaces are highly convoluted, two points on the surface with small Euclidean

distance in R
3 may have huge geodesic distance on the surface.
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(a) First brain (b) First brain (c) First brain 2 (d) First brain

view from left view from top view from bottom view from right

(e) Second brain (f) Second brain (g) Second brain 2 (h) Second brain

view from left view from top view from bottom view from right

(i) Green Patch (j) Yellow Patch (k) Red Patch (l) Blue Patch

conformally conformally conformally conformally

mapped to disk mapped to annulus mapped to annulus mapped to disk
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(m) Three curves on (n) Signatures of (o) Three curves on (p) Signatures of

first brain curves on 1st brain second brain curves on 2nd brain

Fig. 7. Surface match on brains using curve features similarity comparison.

from different view directions. Feature curves and their corresponding signatures are

shown in (m),(n) and (o),(p). By comparing their signatures, each curve on the first

brain is mapped to the the curve on the second brain with the same color. The curves

segment the cortex surfaces to four components, each of which is either a topological

disk or an annulus; the segmentation is color encoded as shown in Figure 7 (a)-(h).

Each component on the cortex surface is conformally mapped to either the unit

disk or the canonical planar annulus. Figure 7 (q) through (t) show the conformal
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mappings for the 4 components of the first cortex surface. Similarly, the components

on the second cortex surface are conformally mapped to the unit disks or canonical

annuli. By matching these canonical planar domains, the map between two cortex

surfaces can be easily induced using existing method such as [10].

(1) Nose (2) Tail (3) Leg 1 (4) Leg 2 (5) Leg 3 (6) Leg 4

(7) Nose (8) Tail (9) Leg 1 (10) Leg 2 (11) Leg 3 (12) Leg 4
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(13) (14) (15) (16) (17) (18)

Fig. 8. Feature curves and their signatures on two elephant models with different postures. The

first row: (1)-(6) shows one geometric configuration of the elephant from different view directions;

the second row: (7)-(12) shows another model from different view directions; the third row: (13)-

(18) shows the signatures. Note that, each column shows a special curve on two models and their

signatures, and the curve is depicted with the same color as its signature. In (13), the red and blue

signatures are almost identical so that they overlap and are not distinguishable.

4.3. Elephant Gallop. We use an elephant gallop example to further evaluate

our curve signatures and our surface comparison framework. As shown in Figure 8,

there are two models of one elephant in different postures. Suppose we want to

compare these two models, we first label feature curves which segment the elephants

into several parts. We compute signatures for all curves on both surfaces, as shown

in the third row. Every signature of curve on one surface is matched to the most

similar signature of curve on another surface. The matched pairs are all placed in the

same column, and each feature curve and its corresponding signature are drawn in

the same color. The experiment results demonstrate that the correct matching can

be induced automatically without human intervention. This attractive property on

curve signatures results from the fact that the signatures for corresponding curves are

very similar, and the underlying reason of this fact is that the skin deformation is

very close to isometry because the stretch of skin under these kinds of deformation is

relatively small.

Once the corresponding feature curves are matched, the surfaces are segmented
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(1) (2) (3) (4) (5) (6) (7) (8)

(9) (10) (11) (12) (13) (14) (15) (16)

(17) (18) (19) (20) (21) (22) (23) (24)

(25) (26) (27) (28) (29) (30) (31) (32)

(33) (34) (35) (36) (37) (38) (39) (40)

Fig. 9. Segmented parts from the elephant model and their color-coded function distributions,

highlighting their intrinsic differences. The first row: (1)-(8) show the conformal factor function

distributions mapped on the original surface of the first model; the second row: (9)-(16) show the

conformal factor distributions of the second model; the third row: (17)-(24) shows the mean curva-

ture distributions of the first model; the fourth row: (25)-(32) shows the mean curvature distributions

of the second model; the last row: (33)-(40) shows the difference of conformal representation between

two models.

into several parts with explicit correspondence established by the segmenting curves.

These parts are then considered separately on their own canonical planar domains,

as shown in Figure 9. On each domain, we use the stretching and bending functions

to compare their differences. The conformal factor and mean curvature are computed

and colorized in the original surface to show the function value distributions. We

color-code the conformal factor of the first model in the first row, (Figure 9 (1)-(8)),

and color-code this model’s mean curvature in the second row ((9)-(16)); similarly

we color-code the conformal factor and the mean curvature of the second pose in

the third ((17)-(24)) and fourth rows((25)-(32)). The matching difference between

two surfaces based on the functions on 2D domains are color-coded on the first pose

and shown in the last row ((33)-(40)). The color-code scheme is the same as in the

previous example (Figure 5 (c)), where “red” represents the max value and “blue” is

for the min value. Note that, the last column is color coded in one uniform scheme.

And the results shows that largest stretching and bending differences locate on leg

joints and ankles.
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Fig. 10. The first row views feature curves on the standing-horse model; the second row

shows their corresponding signatures; the third row displays the accordingly reconstructed

curves on the collapsed-horse model.

(a) (b) (c) (d) (e)

Fig. 11. The first and the second row color-code conformal factor λ and mean curvature H

of the standing horse model; the third and fourth rows are of the collapsed horse model; the last

row shows the final matching results between the standing model (a) and the collapsed model

(b), with (c)-(e) color-coding differences on conformal representation, λ, and H respectively.

(Mesh size: 17k Triangles)

4.4. The Collapsing Horse. The next experiment is to compare a horse and

its collapsed pose. Users first mark feature curves on one pose. With their signatures,

we could reconstruct the curves on the second surface. Techniques introduced in [27]

can be used to reconstruct the curve on the complex domain, which corresponds to

a unique curve on the spherical domain. Combined with three predefined markers

introduced in section 2.5 and the mapping from the original surface to the sphere, the
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unique curve on the original surface can be reconstructed. With this process, feature

curves can be transferred onto the second object as shown in Figure 10. The original

feature curves on rest pose, their signatures, and the transferred curves are shown in

the three rows in Figure 10 respectively.

The conformal factor and the mean curvature distributions of all parts are com-

puted and color-coded in the first four rows of Fig 11 (the first two rows are for the

standing pose, while the third and fourth rows are for the collapsed pose).

The surface comparison framework can be interactively controlled by changing

weights of the two terms in our matching energy. For example, if isometry-invariant

comparison is preferred, only stretching factor needs to be considered. So by ignoring

the mean curvature, a metric invariant under bending is designed, which naturally

leads to a bend-invariant or pose-invariant result. The conformal representation dif-

ference between the two horse models (a) and (b) is color-coded on the first model

as shown in Figure 11 (c) and the difference ignoring the bending term is shown in

Figure 11 (d); also, the difference with only the bending term is color-coded in (e).

As shown in the above examples, our matching algorithm finds out between two com-

plicated objects a difference distribution which can be flexibly adjusted for different

goals such as the bending-invariant purpose. Since it can catch the difference on

the metric ignoring the embedding of the surface in R
3, it becomes a useful tool for

non-rigid matching applications. One example is the colons matching and analysis

in medical imaging. People with different poses under CT scans might have large

bending differences on their colons with little changes in metric, in which case such a

bending-invariant matching is ideal for the analysis purpose.

5. Conclusions and Future Work. We have designed a metric space for simple

closed curves on genus-zero surfaces via conformal mappings. Curves on surfaces are

represented by equivalence classes of diffeomorphisms of the unit circle to itself. The

proposed curve signature corresponds uniquely to the curve defined on a surface. It

includes information of how the curve segments the surface, which are invariant under

isometry and stable under near-isometric transformation of surfaces. Therefore, the

signature enables a powerful practical tool for the effective analysis of curves and

surfaces among geometrically similar objects.

Besides the above theoretical results, we develop a framework for shape regis-

tration and comparison guided by feature curves alignments. After curves with the

most similar signatures are correctly identified and aligned, genus-zero surfaces are

then segmented into several parts and registered separately. This automatic process

accurately forces the alignment of feature curves and alleviates the difficulties of 3D

surface matching by reducing it to the simple comparison of functions defined on

canonical planar domains. Also, the algorithm can be flexibly adjusted to provide a
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pose-invariant shape descriptor.

One potential limitation is that the curve signature developed in this paper is

perhaps best suitable to analyze curves defined on one surface or two surfaces of

similar geometry. When the signature is compared for curves defined on surfaces with

large difference, it is only stable when there exists a near-isometric mapping between

the surfaces. In general, aligning curves defined on surfaces with dramatically different

geometry is technically challenging.

Constructing shape space of curves on surfaces with arbitrary topology is promis-

ing and challenging. We plan to explore further along these directions in the near

future.
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