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Abstract Hybrid approaches such as combining video data with pure physics-based simulation have been popular in

the recent decade for computer graphics. The key motivation is to clearly retain salient advantages from both data-driven

method and model-centric numerical simulation, while overcoming certain difficulties of both. The Eulerian method, which

has been widely employed in flow simulation, stores variables such as velocity and density on regular Cartesian grids,

thereby it could be associated with (volumetric) video data on the same domain. This paper proposes a novel method for

flow simulation, which is tightly coupling video-based reconstruction with physically-based simulation and making use of

meaningful physical attributes during re-simulation. First, we reconstruct the density field from a single-view video. Second,

we estimate the velocity field using the reconstructed density field as prior. In the iterative process, the pressure projection

can be treated as a physical constraint and the results of each step are corrected by obtained velocity field in the Eulerian

framework. Third, we use the reconstructed density field and velocity field to guide the Eulerian simulation with anticipated

new results. Through the guidance of video data, we can produce new flows that closely match with the real scene exhibited

in data acquisition. Moreover, in the multigrid Eulerian simulation, we can generate new visual effects which cannot be

created from raw video acquisition, with a goal of easily producing many more visually interesting results and respecting true

physical attributes at the same time. We demonstrate salient advantages of our hybrid method with a variety of animation

examples.

Keywords video reconstruction, velocity estimation, fluid simulation, volume modeling and re-simulation

1 Introduction

Flow/fluid simulation has received considerable at-

tention in recent decades in computer graphics, thanks

to its ubiquitous and powerful capability towards mod-

eling a wide variety of natural phenomena with details

such as vortex and splash. The model-centric numeri-

cal simulation is necessary in flow simulation, and the

research on this subject has resulted in widespread ap-

plications, including special effects in movies and reali-

stic environment in computer games. Especially in the

most recent years, the uprising trend of virtual reality

technologies in our everyday life gives a strong prospect

for the broader application of flow/fluid simulation.

Physically-based flow simulation mainly has offered two

types of approaches: the Lagrangian[1] method and

the Eulerian method[2]. Both approaches have their

advantages and drawbacks. Since it is convenient to

numerically approximate spatial derivatives on a fixed

grid, the Eulerian method receives a lot of researchers’

attention[3-5] with increasing popularity. In our paper,

we mainly consider the Eulerian method. However, in

order to obtain better results, the time consumption is

enormous as resolution increases. Moreover, it is some-
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times difficult to achieve a visual effect of a particular

scene, due to the requirement for appropriate initial

values and strict boundary conditions.

In contrast, as the inverse problem of flow simula-

tion, the purpose of flow capture is to measure the flow

state and its physical properties in the real world, such

as velocity and density. With the rapid development of

data acquisition hardware, it is convenient to obtain a

sequence of flow in video data. However, some details

of the flow may be lost due to the equipment and envi-

ronmental constraints. Moreover, it is hard to obtain a

particular phenomenon with varying boundaries and/or

initial value conditions. Despite this, we can obtain a

rough volume of the flow and its plausible density field

and velocity field, which are what we wish to utilize to-

wards possibly enhancing the physical simulation with

correct and meaningful physical quantities.

The key motivation of this paper is to clearly retain

prominent advantages from both video-based method

and model-centric numerical simulation, while overcom-

ing certain difficulties of both. With the guidance of the

video data, including density and velocity, the simula-

tion results shall match with the real scene. In addition,

we can inject the lost yet interesting details and change

the boundary condition through physical approaches,

which are difficult in video reconstruction, with a goal

of creating many more vivid effects. Since the Eulerian

method relies on regular grids, it is a natural choice for

us to explore the Eulerian method, which could be asso-

ciated with volumetric video data on the same domain.

Our goal is to seek realistic simulation results that are

matching with natural scenes.

In the past few years, researchers have explored the

connection of flow simulation and the inverse problems,

providing a few novel ideas. Okabe et al.[6] used the

modeled volume from videos as a guide and Gregson

et al.[7] used the reconstructed velocity field to restart

fluid simulations. As a follow-up, Zhai et al.[8] further

estimated the physical parameters of the fluid and ap-

plied physical editing on existing flows. Nonetheless,

the above methods lack a tight coupling. Quan et al.[9]

combined image analysis and physical method to recon-

struct fluid in real time but lacking follow-up interac-

tions. Combining with multi-fluid simulation, Ren et

al.[10] modeled real-world bubble phenomena. In addi-

tion, Wang et al.[11] combined video-based fluid surface

reconstruction and SPH (smoothed particle hydrody-

namics) simulation to re-animate fluid surface. But the

connection between video reconstruction and SPH is

not natural. Inspired by the prior research work, we

wish to use the reconstructed velocity field and den-

sity field to guide the physical simulation with stronger

connection and tighter coupling.

We propose a novel method for flow simulation that

is tightly coupling physical simulation with fluid cap-

ture and making use of meaningful physical attributes

during re-simulation. Given a single-view video, we re-

construct the density field first. Then we estimate the

velocity field using the reconstructed density field as

prior. During iterations, the pressure projection can

be treated as a physical constraint and the results of

each step are corrected by obtained velocity field in the

Eulerian framework. Finally, we use the reconstructed

density field and velocity field to guide the Eulerian

simulation with anticipated new results. Within the

framework, we conduct experiments for certain graph-

ics applications, such as detail enhancement and solid-

fluid coupling under different boundaries and/or initial

value conditions. The contributions of this paper are

as follows.

• Fluid Density Field Reconstruction from a Single

Video. We make a reasonable assumption to recon-

struct the approximate density field and obtain plausi-

ble volume from a single-view video.

• Tight Coupling Between Video Reconstruction and

Eulerian Models. In our method, pressure projection

can be treated as a physical constraint of the recon-

struction of velocity fields, and the reconstruction re-

sults of each step are corrected by physical simulation.

Then the final reconstruction results can be used to

guide the simulation. In such a way, we are capable of

coupling the two tightly towards hybrid modeling over

pure numerical simulation and video data acquisition.

• Augmented Flow Simulation with Controllable De-

tails. Matching with the real scene, we can also add

a lot of interesting details, such as complicated solid-

liquid coupling subject to new boundaries and/or initial

value conditions.

In the following sections, we briefly discuss some re-

lated work. Section 3 gives an overview of our approach.

Section 4 discusses the density field reconstruction, and

Section 5 details the coupling of multigrid Eulerian sim-

ulation and reconstruction. We discuss some control-

lable details and demonstrate graphics results of our

work in Section 6, and draw the conclusion and outline

future work in Section 7.

2 Related Work

Our approach is mainly relevant to fluid simulation,

volume modeling, and velocity estimation. We intro-
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duce them in the subsequent parts.

• Fluid simulation aims to obtain the states of the

fluid by solving the complex incompressible Navier-

Stokes equation governing the motion. There have been

lots of fantastic studies. Foster and Metaxas[12] intro-

duced fluid simulation for computer graphics applica-

tion. The SPH method[13] and its improvements[14-17],

vortex methods[18], and position-based fluid[19] are ex-

citing researches using the Lagrangian method. Since it

is convenient to numerically approximate spatial deriva-

tives on a fixed mesh, the Eulerian method also attracts

much attention. Bridson’s book[2] provides a brilliant

overview. Stam[20] proposed an unconditionally stable

model which can obtain complex fluid phenomena, lead-

ing to a large number of applications of fluid simulation.

Zhu and Bridson[21] proposed a hybrid particle-in-cell

solver to get a more accurate solution. Zhang et al.[4]

proposed an IVOCK (integrated vorticity of convective

kinematics) method which cheaply captures much of

what is lost in self-advection to enhance the details.

Focusing on solid-liquid interaction, researchers have

proposed a lot of interesting algorithms. Batty et al.[22]

presented a tricky variational approach that obtains re-

liable and accurate solutions, focusing on the classical

pressure projection step and employing the idea of en-

ergy. Teng et al.[5] proposed a method to achieve a two-

way coupling in which the underlying geometric repre-

sentation is exactly Eulerian. In this paper, we use the

Eulerian method to establish the connection with the

inverse problem.

Acceleration of the solver is critical in fluid simu-

lation, especially in the applications which demand high

efficiency such as computer games. Many methods

were proposed to speed up the algorithm. Losasso and

Fedkiw[23] presented a method for simulating fluid on

an unrestricted octree data structure and a technique

for discretizing the Poisson equation on octree grid.

Chentanez and Mueller-Fischer[24] presented a multi-

grid method for pressure projection and McAdams et

al.[25] employed a multigrid cycle as a preconditioner

for the conjugate gradient method. Hardware-based

acceleration is also very attractive. Chentanez[26] per-

formed real-time Eulerian simulation on a GPU opti-

mizing the grid representation. The proposed solutions

by Ihmsen et al.[27] focused on systems with multiple

CPUs. In this paper, we adopt the multigrid method

and parallel method to accelerate the whole process.

• Volume modeling aims at the measurement of

the fluid density field through a series of fluid im-

age sequences. Ihrke and Magnor[28] reconstructed a

volumetric model from a number of pictures of flame

through a tomographic method. Atcheson et al.[29] cap-

tured full 3D, non-stationary fluid on a Cartesian grid

using a Schlieren tomography system. Gregson et al.[30]

presented a method for tomographic reconstruction of

3D volumes by a new stochastic tomographic recon-

struction algorithm based on random walks. However,

these methods involve sophisticated hardware setups.

Some algorithms were proposed to solve this problem.

Liu et al.[31] proposed an approach of modeling of smoke

from a single view, which does not model volumetric

smoke. Stephan et al.[32] proposed an algorithm for

the single-view modeling of approximately symmetric

volumetric phenomena. Okabe et al.[6] proposed an ap-

proach of 3D modeling of fluid phenomena formulating

the problem as an energy minimization problem. The

method just needs sparse multi-view images, such as

only a single-view input. In this paper, we mainly con-

sider single-view videos, which do not require sophisti-

cated equipment. Although it is impossible to recon-

struct the volume from a single-view video precisely,

we can get the rough shape of the fluid and plausible

density field. As a guide of subsequent fluid simulation,

the method can be applied in many scenarios.

• Velocity estimation for 3D fluid flows has been a

challenging problem. Particle Image Velocimetry (PIV)

was used in the early work [33]. However, the esti-

mated fields are too coarse for the application. Liu and

Shen[34] explored the connection between fluid flow and

optical flow. The method provides a rational founda-

tion for the application of optical flow method to the

estimation of fluid velocity based on images. Kadri-

Harouna et al.[35] estimated fluid velocity based on

divergence-free wavelet in the incompressible constraint

and a biorthogonal wavelet expansion of optical flow.

Zuo and Qi[36] proposed a spatial-temporal optical flow

method to estimate the velocity fields of fluid flows,

taking physical principles into account. However, most

of these methods are only applicable for 2D flows.

Gregson et al.[7] focused on tracking 3D fluid ve-

locities based on density fields modeled by prior fluid

imaging methods. They interpreted the pressure pro-

jection solver as a proximal operator. Inspired by this,

we not only guide the physical simulation by recon-

structed data from the video but also impact velocity

estimation through the physical process. In such a way,

we are capable of coupling the pure physical simulation

with video data acquisition tightly.
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3 Overview of Our Method

The input of our approach is a single video of fluid,

which contains much valuable information, such as den-

sity and velocity. The information is stored in pixels

constructed by grids, just like voxels in two dimensions.

Therefore we connect it with the Eulerian method,

which divides the space into a lot of small grids, just like

pixels in three dimensions. Thereby, the reconstruction

problem could be associated with physically-based flow

simulation naturally. A pipeline of our system can be

found in Fig.1.

Video of 
Flows

Velocity 

Fields

Volume 

Density

Guided 

Flows

Multigrid 

Eulerian 

Volume

 

Modeling

Rendering

Guiding

Velocity 
Estimation

Coupling

Fig.1. Pipeline of our method.

First, we model the 3D density field of the fluid from

the input video and store it in voxels. Although there

are many methods to reconstruct the density field, a

similar system in [6] which can model volumetric fluid

phenomena from only a single-view input is adopted in

our framework.

Then we use the reconstructed density fields as prior

to estimate physically plausible 3D dense velocity fields.

The state-of-the-art fluid capturing process is from [7],

connecting forward and inverse problems in fluids. In

this manner, the pressure projection term in the Eu-

lerian method is regarded as a proximal operator. In

our method, the results of each step are corrected by

physical simulation to improve the accuracy of match-

ing physical property. In the following simulation, the

estimated velocity fields are used to guide the physi-

cal results. Thus we can achieve a tight coupling of

physical model and reconstructed data.

The following step is a physical-based flow simula-

tion. Due to the reasons mentioned above, the Eulerian

method fits our framework. The velocity fields and den-

sity fields recovered from the first frame image of the

video are regarded as initial settings. In the evolution,

the velocity fields guided by the reconstructed velocity

fields are regarded as the last results and advect the

density. The density fields are also guided by that re-

constructed from the video. Then we can generate se-

quences that match the captured flows with simulation.

We can also make use of this method to generate new

visual effects, such as details enhancement and aug-

mented fluid-rigid coupling. In every step, there is one

time-consuming part. In order to improve the efficiency,

we adopt a general multigrid method and implement

the algorithm in parallel.

4 Density Field Reconstruction

The density field reconstruction is essentially vol-

ume modeling, which can be regarded as a minimization

problem, formulated as follows:

d = arg min
d

|Bd− p|2,

where matrix d represents a 3D volume that belongs

to the flow space, B represents the volume rendering

operation under the space, and p represents the input

image. Using the emission model, each voxel can be

seen as a source of emission and B describes the weight

of each voxel along the ray. In order to make the sys-

tem as simple as possible, we omit the nonlinear optical

effects, such as scattering, and form a linear operation

Bd, which renders the image of the 3D volume.

The entire system can be seen in Fig.2, which is

similar to [6]. First, the least squares method (LSM)

is used to solve the problem and we transform it into a

linear system described as

Bd = p.

To solve the linear system, we would like to generate

the sparse matrix B by choosing basis functions with

local support. To simplify matters, we use the box basis

function and arrive at

Bij = ‖x1 − x2‖,

where x1 and x2 are the points of intersection of the i-

th casting ray and the j-th voxel respectively, and Bij

is the corresponding entry that is the distance between

the intersections of the ray and the corresponding voxel.

After getting the matrix, we compute a least squares

solution:

d = (BTB)−1BTp.

The conjugate gradient method is a good choice to

solve this equation because of the following good pro-

perties: low cost, simplicity of coding, and parallel im-

plementation. Since we have only one direction of the

video information, in order to recover the 3D density

field, we assume that there is the same image in the
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Fig.2. System of density field reconstruction.

orthogonal direction and get an approximate symmet-

rical result. Although it is not very accurate, for many

situations, we can get reasonable results.

The pixel number of each frame in the video is fixed.

However, we want to get the density fields in different

scales. To solve this question, we conduct a sampling

operation at first and then have a unified framework.

Initial volume has obvious grid artifacts. Especially,

the rendered image is very blurry when we take a new

viewing angle. Then we choose the expectation maxi-

mization (EM) like iterative approaches to improve the

appearance of the volume. During each iteration, we

alternately minimize the energy fixing p and d.

First, the volume is rendered by a simple matrix

multiplication p = Bdwith the original and several new

viewing angles. At this time, the images are blurry and

unnatural. Therefore the next operation is to improve

the images to eliminate the artifacts, which includes

preprocessing and histogram-matching operation. The

preprocessing can be divided into three steps. In the

first step, we apply a morphological dilation operation

to the image. In the second step, a Gaussian blur is ap-

plied to eliminate the artifacts. And in the third step,

we apply a morphological erosion operation which is

opposite to the first step. After preprocessing, the grid

artifact and some other interference in the image can

be eliminated. One problem is that the image becomes

blurred. To solve the problem, we apply histogram-

matching operation to modify the rendered images to

have the same histogram as the input image.

Second, we model the volume from all the improved

images using LSM again. The input at this time in-

cludes not only the original view, but also the rendered

new views after improvement. When the system con-

verges or the number of iterations reaches the maximum

(in our work the maximum is set to 10), the iteration

stops.

We can get a smooth result with only a single-view

video and the blur operation in improving the image.

Actually, it is impossible to reconstruct the density field

precisely in such a situation. However, it can be used to

guide the result of Eulerian simulation. It can also be

treated as prior of the following velocity estimation. In

addition, we can recover the lost details and generate

new visual effects in the simulation. The density field is

stored in discrete grids, which could be easily accessible

by the Eulerian method.

5 Coupling of Simulation and Reconstruction

5.1 Multigrid Eulerian Simulations

In the Eulerian simulations, a time splitting method

is usually adopted to solve the incompressible Euler

equation:

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p+ f,

∇ · u = 0,

where u denotes the velocity of the fluid, ρ is the den-

sity, p is the pressure, and f is a body force.

Fluid states are updated from an initial state u0 by

marching through time with a time step ∆t. First, we



Feng-Yu Li et al.: Augmented Flow Simulation Based on Tight Coupling 457

solve the momentum equation to obtain an intermedi-

ate velocity field u∗ resulting from self-advection and

body force f such as gravity and buoyancy:

u∗∗ = advect(un,∆t),

u∗ = u∗∗ +∆tf.

In the first step, advection is very important.

Semi-Lagrangian advection[20] is a mature method to

solve it. Other methods are also available, such as

BFECC[37] and FLIP model[21]. Then we project it to

be divergence-free by subtracting ∇p, and p is derived

by a Poisson solver from u∗:

un+1 = u∗ −∆t
1

ρ
∇p,

∇2p = ρ∇ · u∗/∆t,

where ∇2 is the Laplacian operator.

After getting the divergence-free velocity field,

scalar field φ such as density is advected using

∂φ

∂t
= −u · ∇φ. (1)

Moreover, in one typical step, the most time-

consuming part is the updating of pressure p. Incom-

plete Cholesky preconditioned conjugate gradient has

been widely used to solve this linear system, and it is

effective for moderate grid resolutions. However, its

performance deteriorates as grid resolution increases.

For the projection step, we apply a multigrid method

because of advantages including less storage, more con-

vergence, and more parallelization.

A multigrid solver operates on hierarchical grids

from fine to coarse. On each level, we have to solve a

linear system of Alpl = bl. To downsample from coarse

to fine, a standard 8-to-1 average can be used. For the

restriction and the prolongation operator, tri-linear in-

terpolation is a good choice. For smoothing operator,

the Red-Black Gauss-Seidel (RBGS) method is used.

5.2 Velocity Estimation and Coupling

We can estimate the 3D velocity fields using the

density fields obtained in Section 4 as prior. The re-

construction of velocity can be seen as a minimization

problem similar to the optical flow:

E(u) = ET(u) + αESM(u) + βEKE(u) + EDF(u),

where ET(u) is the fluid transport term, ESM(u) is a

smoothness term, EKE(u) is a kinetic energy penalty,

and EDF(u) is a physical constraint to ensure the ve-

locity divergence-free. The optimization parameters α

and β can be adjusted (we use α = 1e−4, β = 1.0).

Gregson et al.[7] found that transport equation is

equivalent to the brightness constancy of optical flow,

which is considered as a data item. According to (1),

the transport term is defined as:

ET(u) =

∫
Ω

(
∂φ

∂t
+ u · ∇φ)2dΩ,

where φ is the reconstructed density at each voxel and

∇φ is its spatial gradient. The equation compares the

change in density due to advection to the change in

captured density, which is actually a fitting term.

In optical flow, since the first term only is ill-posed,

a smooth prior is usually added. As a 3D extension of

the prior based on the gradient of the flow, which is

used by Horn and Schunck[38], the smoothness term is

defined as:

ESM(u) =

∫
Ω

|∇ui|
2 + |∇uj |

2 + |∇uk|
2dΩ,

where ui, uj and uk are the components of velocity in

each direction.

To avoid the smoothest solution and spurious velo-

cities, a kinetic energy penalty is important:

EKE(u) = u2.

To solve this problem, we divide it into two parts

and define F (u) = ET(u) + αESM(u) + βEKE(u) and

G(u) = EDF(u). Given the proximal operators, we

choose the alternating direction method of multipliers

(ADMM)[39] method which is most popular and easy

to implement. Algorithm 1 summarizes the variational

ADMM method in our work. In the algorithm, k is

the iteration index, v is a slack variable, and q is the

Lagrange multiplier. We initialize v and q to zero. In

line 6, un+1 denotes the velocity solved by the Eulerian

method, which is used to correct the result, and Ga()

denotes a 3D Gaussian blur operation. In this process,

proxλF and proxλG denote the proximal operators for

F and G, which are defined by

proxλf (x) = arg min
w

f(w) +
1

2λ
‖w− x‖22,

where f is a function, which can be F or G, and w

represents u or v.

For the first subproblem (proxλF ), after discretiza-

tion, we turn it to a simple linear least-squares problem.

Conjugate gradient is a feasible solver for this linear sys-

tem. Also, this process is very time-consuming, thereby



458 J. Comput. Sci. & Technol., May 2018, Vol.33, No.3

we adopt a multigrid method to achieve it. For the sec-

ond subproblem (proxλG), it is the pressure projection

exactly. We solve it in the Eulerian simulation.

Algorithm 1 . Variational ADMM Method

1: procedure ADMM(proxλF , proxλG)
2: while k < maxIters do

3: uk+1 = proxλF (vk − qk)

4: vk+1

P
= proxλG(uk+1 + qk)

5: vk+1
r = vk+1

P
− Ga(vk+1

P
)

6: vk+1 = vk+1
r + Ga(un+1)

7: qk+1 = qk + uk+1
− vk+1

8: end while

9: return uk

10: end procedure

Since our input video has only one view, the recon-

structed density field will be roughly symmetrical and

smooth with the necessary assumption and blur ope-

ration to eliminate artifact. Especially in the interior

of the flow space, the error will cause little change in

the density field between the adjacent frames, and the

velocity information of this part may be lost. There-

fore, in line 5 and line 6 of the algorithm, we add a

physical correction. Through the Gaussian blur ope-

ration, the detail components can be extracted and the

lost information can be filled with physical results.

The entire interaction process of velocity can be seen

in Fig.3. The projection is just the proximal operator

for G(u) as one part of velocity reconstruction. At the

end of each iteration, the result is corrected by physical

simulation. In the process, we set a threshold as the

termination criterion. If the average variation between

two iterations is less than the threshold or the number

of iterations is larger than the maximum (here we set

the maximum to 5), the iteration terminates.

After recovering the velocity field, it can be used to

guide the velocity field in the Eulerian simulation using

the same approach in line 5 and line 6 of Algorithm 1:

r = un − Ga(un),

un = r+ Ga(uk),

where uk is the result in the ADMM iteration, un

is the velocity in the Eulerian simulation, and resi-

dual r stores the extracted high frequency components.

Through this operation, the information of video and

physical simulation can be retained.

In the Eulerian simulation, a new density field is

obtained by the advection. We can also use the density

field modeling in the previous part to correct it:

s = s · η + sr · (1− η),

where s is the density field in the Eulerian simulation,

sr is the density field recovered from the video, and η is

a weight denoting how much the density is dominated

by the simulation (here η = 0.8). Through coupling

of data from video and physical model, the results not

only match with the real scene exhibited in data acqui-

sition, but also have new visual effects which cannot be

created from raw video acquisition at the same time.

Based on this, we can have many applications.

6 Controllable Details and Experimental

Results

In this section, we discuss several controllable de-

tails and show the graphics results of our approach,

with the characteristic of maintaining the information

from both video data and physical model.
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Considering the input video, tracking the fluid phe-

nomenon with the camera is a great way. The cap-

tured data from Gregson et al.[30] is representative. We

choose the “captured smoke” dataset as the input of

our experiments. However, this approach also requires

hardware setups to eliminate the unwanted effects of

the real world. Moreover, the subsequent processing

such as camera calibration is complex. To avoid these

problems, we also generate realistic fluid videos instead

of real acquisition using Maya2015 with FumeFX as

the input of more experiments. We implement our al-

gorithm on a PC with an Intelr CoreTM i5-4570 CPU

(3.20 GHz), 8.0 GB of memory, and a NVIDIA GeForce

GTX 750 Ti GPU.

Given a flow video, we first recover the density field

and model the volume. Fig.4 shows the results of diffe-

rent methods. We can find that the volume of the

smoke has been recovered compared with the ground

truth in Fig.4(a). Compared with LSM, the iterative

method has a better appearance. The size of the vol-

ume is 128 × 256 × 128 voxels, and the average time

consumption per frame is 24.6 seconds. As a priori, this

part can be pre-processed. In addition, since tempo-

ral coherence is not taken into account, frames can be

processed independently. Fig.5 shows one slice of ve-

locity fields visualized by the color map. The result of

the original ADMM method has a rough shape. How-

ever, some information is missing in the middle of the

volume. By comparison, our variational ADMM has a

more accurate result. On the resolution of 64×128×64,

the average time consumption is 44.7 seconds. Then

Iterative
Method

LSM

0Ο 45Ο

(b)

(a)

(c)

(d) (e)

Fig.4. Reconstructed density field of “captured smoke”. The
input is the 70th frame of the dataset. Fig.4(d) and Fig.4(e)
are the results of LSM. (b) (c) Results of iterative method. (b)
(d) Results rendered in original viewing angle. (c) (e) Results
rendered in a new viewing angle (45◦).

(a) (b)

Fig.5. Central slice of reconstructed velocity fields visualized by
color map. (a) Our variational ADMM. (b) Original ADMM.

after the coupling of reconstruction data and physical

simulation, we obtain the animation matching realistic

scene, which can be seen in Fig.6(d). Compared with

the results of pure physical simulation in Fig.6(c), our

results are more realistic, and match with the ground

truth.

(a) (b) (c) (d) (e)

Fig.6. Results of smoke animation in five cases. (a) Input
ground truth of “generated smoke”. (b) Volume modeling. (c)
Pure physical simulation. (d) Our method without additional
details. (e) Our method with additional details. From top to
bottom: frame 50, frame 100 and frame 150.

6.1 Details Enhancement

Because of the limitation of the devices, the input

video may be blurred, losing a lot of interesting fea-

tures, such as whirlpool. Therefore in the Eulerian

simulation, we wish to restore the missing information.

We mainly have two approaches to achieve it.
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First, we simply increase the resolution of the grids.

With the growth of resolution, the numerical calcula-

tion result will be more accurate and some details will

appear. However, the time consumption will be in-

credible when the grids are very dense. Second, some

physical schemes of recovering details, such as vorticity

confinement, can be utilized. IVOCK[4] is the modern

method to enhance details and we add it to our system.

In Fig.6(e), we can see the smoke pictures which

have added the details. The results have much im-

provement compared with Fig.6(d), without additional

details.

6.2 Solid-Flow Coupling

The solid-flow coupling is a very common phe-

nomenon attracting much attention. With the input

flows, we want to get the phenomenon of coupling with

the solid in similar scenes.

In order to achieve this effect, we make some

changes to our approach. In the Eulerian simulation,

we enforce the solid boundary conditions via the varia-

tional approach[22] in the pressure solving phase. Dur-

ing velocity estimation, we replace the kinetic energy

penalty term EKE with the total kinetic energy of the

system:

EKE =

∫
Ω

ρ‖u‖2 +V∗MSV,

where ρ and u are the density and the velocity of the

fluid respectively, V is the generalized velocity of the

solid, V∗ is the adjoint of V, and MS is the mass lin-

ear operator. Then we solve the similar equation to the

previous part. And in the projection term, we process

the boundary condition again.

The simulation results of solid-flow coupling can be

seen in Fig.7. The animation not only retains the vol-

ume matching with the real world but also creates a

new scene of collision with solid.

Fig.7. Results of solid-fluid coupling.

6.3 Artistic Control

We wish to provide an easy way for artists to control

the fluid. Assume that there is a wind in the environ-

ment, we can add an external force to the N-S equation

in the Eulerian simulation. Besides, we should make a

correction in the velocity estimation problem via

u = u+∆tf,

where f is the force of wind. Moreover, we can control

the fluid to a particular shape in the local position. f in

the above formula can be a control force. Fig.8 shows

an example of the simulation result of adding a wind.

There is a wind that blows to the right and later turns

to the left.

Fig.8. Results of adding a wind.

There are several similar methods, such as “Vol-

ume Modeling”[6], “Video-Based Reconstruction”[11]

and “From Capture to Simulation”[7]. Compared with

these methods, our method has advantages in some as-

pects. Only one single-view video is needed, thereby our

approach does not require sophisticated hardware se-

tups. Based on reasonable assumptions, plausible den-

sity fields can be reconstructed. Corrected by physi-

cal simulation, the reconstructed velocity fields can be

more accurate. In addition, we can add controllable

details with a tight coupling.

Our work still has several limitations. Since we have

only a single video available, the volume of flow should

be approximately symmetrical. Otherwise, the derived

physical attributes might not be very meaningful to-

wards re-simulation, animation control, and detail aug-

mentation. In addition, our method is limited to simu-

lation over uniform grids at present.

7 Conclusions

In this paper, we presented a novel technique cou-

pling the video-based reconstruction and physically-

based simulation tightly, and our goal is to make some
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contributions to possible hybrid modeling for flow simu-

lation. The density and velocity fields have been re-

constructed from a single-view video, and are then

used to guide the Eulerian simulation. Through vari-

ous graphics examples, we found that our method

can not only generate physically-meaningful animation

matching with realistic scenes and retaining properly-

reconstructed physical quantities, but also enhance

missing yet interesting visual details.

In the future, we wish to extend this approach to

other flow types, such as fountain and flame. We believe

that the methodology is also compatible in these situa-

tions. In terms of algorithm framework, we want to

achieve a stronger two-way coupling between video data

and physical simulation. In this way, reconstructed

data can be improved through simulation and then be

used to edit flows. In addition, we wish to conduct

more graphics experiments and seek possible extensions

based on our current framework.
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