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Abstract—Thyroid ultrasonography is a widely-used clinical
technique for nodule diagnosis in thyroid regions. However, it
remains difficult to detect and recognize the nodules due to
low contrast, high noise, and diverse appearance of nodules. In
today’s clinical practice, senior doctors could pinpoint nodules by
analyzing global context features, local geometry structure, and
intensity changes, which would require rich clinical experience
accumulated from hundreds and thousands of nodule case stud-
ies. To alleviate doctors’ tremendous labor in the diagnosis proce-
dure, we advocate a machine learning approach to the detection
and recognition tasks in this paper. In particular, we develop a
multi-task cascade convolution neural network framework (MC-
CNN) to exploit the context information of thyroid nodules. It
may be noted that, our framework is built upon a large number
of clinically-confirmed thyroid ultrasound images with accurate
and detailed ground truth labels. Other key advantages of our
framework result from a multi-task cascade architecture, two
stages of carefully-designed deep convolution networks in order
to detect and recognize thyroid nodules in a pyramidal fashion,
and capturing various intrinsic features in a global-to-local way.
Within our framework, the potential regions of interest after
initial detection are further fed to the spatial pyramid augmented
CNNs to embed multi-scale discriminative information for fine-
grained thyroid recognition. Experimental results on 4309 clinical
ultrasound images have indicated that, our MC-CNN is accurate
and effective for both thyroid nodules detection and recognition.
For the correct diagnosis rate of malignant and benign thyroid
nodules, its mAP performance can achieve up to 98.2% accuracy,
which outperforms the common CNNs by 5% on average. In
addition, we conduct rigorous user studies to confirm that our
MC-CNN outperforms experienced doctors, yet only consuming
roughly 2% (1/48) of doctors’ examination time on average.
Therefore, the accuracy and efficiency of our new method exhibit
its great potential in clinical applications.

Index Terms—Thyroid Nodules, Detection, Recognition, Pyra-
mid Convolution Neural Networks.

I. INTRODUCTION AND MOTIVATION

THYROID nodule is one of the most commonly-observed
nodular lesions, with the prevalence of 19% to 68% in

general population. Now, we have been witnessing about 240%
increase in thyroid cancer during the past thirty years [1],
which is one of the worst among all types of cancers [2], [3].
At the imaging front, ultrasonography has been a dominant and
preferred screening modality towards the clinical diagnosis of
thyroid nodules, which is also used as guidance for fine-needle
aspiration biopsy (FNAB) and subsequent treatments [4], [5],
[6]. Recently, many guidelines have been established for
radiologists to evaluate thyroid nodules based on ultrasound
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characteristics [7], [8], [9]. However, since ultrasonography
is susceptible to echo disturbances and speckle noises, ultra-
sonography based thyroid nodule diagnosis still heavily relies
on rich experiences and delicate skills of senior radiologists.
Less experienced practitioners may potentially have high mis-
diagnosis rate due to their inability of accurately compre-
hending ultrasonography characteristics. Mis-diagnosis might
consequently call for unnecessary biopsy and surgery, that
would make patients have much more pressure and anxiety,
and at the same time unavoidably increase medical expense.
To effectively leverage the high-quality diagnosis experiences
gained by senior radiologists, smart thyroid diagnosis CADx
system is urgently needed. Yet, the key success of the smart
thyroid diagnosis CADx system build-up may be hindered
by the fact that, the ultrasound thyroid’s appearances are
frequently influenced by internal content, shape, echogenicity,
and many other factors, as shown in Fig. 1.

The benign nodules and the malignant nodules both have a
wide variety of styles and layouts. Fig. 1(a) shows the benign
nodules, and most of them have irregular shapes, smooth re-
gions, and boundaries. Fig. 1(b) shows the malignant nodules,
and most of them have irregular shapes, coarse regions, and
boundaries. Therefore, the thyroid nodules are hard to be
directly recognized based on color and shape features.

In recent years, there exist many studies that employ sono-
graphic features for thyroid malignancy diagnosis, which can
be roughly classified into two main categories: hand-crafted
feature based classifiers [10], and the data-driven methods.

Hand-craft Feature Methods. The pipeline of these meth-
ods frequently involves feature extraction and classification.
Typical methods in this category may include, GLCM, LBP,
Discrete Wavelet Transform (DWT), K-Nearest Neighbor (K-
NN), Probabilistic Neural Network (PNN), Decision Tree
(DT), Gaussian Mixture Model (GMM), Support Vector Ma-
chine (SVM), Adaboost classifier, [11], [12], [13], [14], [15],
[16], [17] Bayesian classifier, GBDT [16] and random for-
est [17]. Despite their rapid development in recent years, hand-
crafted features in some sense can only exploit the low-level
information, such as image texture [12], [13], geometry mor-
phology [14], and statistical distributions [11]. Such methods
usually need to further employ classifiers to conduct classi-
fication. Hence, only if given highly-discriminative features,
such methods could well solve the recognition problem.

Recently, some works focused on the characteristics of
malignant thyroid in high resolution ultrasound images and
ultrasound elastography. For example, Acharya et al. [18]
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proposed a novel Gabor transform based automated system
for the classification of benign and malignant thyroid nodules
using high resolution ultrasound (HRUS). Sun et al. [19]
demonstrated that ultrasound elastography had high sensitiv-
ity and specificity for the identification of thyroid nodules.
Meanwhile, Raghavendra et al. [20] fused the spatial gray
level dependence features (SGLDF) with the fractal textures
to decipher the intrinsic structure of benign and malignant
thyroid lesions. Nevertheless, for thyroid nodules, the high
variability of the ultrasound image makes it hard to effectively
distinguish benign nodules from malignant ones. So it is
even more critical to design and select the most significant
features, let alone comprehensively fusing different scales of
local and global features as experienced radiologists would
do. Besides, available classifiers mostly tend to over-fit the
training dataset,since the features locally designed at single
scale and in single region are insufficient to encode critical
information in order to determine different types of nodules.

Data-driven Learning Methods. As for the data-driven
methods, recently the convolution neural networks (CNNs) can
greatly improve the classification and detection performance
on natural images without the need of hand-crafted feature
description, such as, Alexnet [21], GoogLenet [22], Residual
net [23], Faster RCNN [24], Single Shot Detection (SSD) [25].
etc. One salient advantage of CNNs is that, they could over-
come the aforementioned difficulties by extracting multi-level
features automatically. Now, even though it is possible to use
hybrid CNNs to classify the thyroid nodules [2], it is still much
more complex and redundant to extract features with multiple
scales in CNNs. For example, existing methods oftentimes fail
to recognize nodules of smaller scales or lower contrast, and
this is especially true for thyroid nodules that would rely on
proper recognition of their neighboring tissues towards correct
diagnosis. The features translated by CNN are aggregated in
multiple-level layers. The lower levels represent the shallow
features like shapes, gradient, and color appearance, while
the high level features represent the semantic discriminative
features.

Compared with the traditional feature extraction methods,
it is demonstrated in [25] that CNN has two advantages. (1)
The detection based on CNN features is robust to distortions,
including changes caused by camera lens, different lighting
conditions, different poses, partial occlusions, horizontal and
vertical shifts, etc.; (2) The computational cost of CNN-
based feature extraction is relatively low, because the same
coefficients in the convolutional layer are used across the input
images. Motivated by the success in natural image recognition,
some recent works were proposed to apply the CNNs to
thyroid recognition.

However, the instinct limitation of existing CNNs is that,
they only consider single-region features, wherein feature
kernels locally focus on the single scale perception while
ignoring the corresponding context information. Moreover,
almost all of the existing methods tend to separately conduct
detection and classification tasks, which may easily make
the information isolated between the two tasks. However,
the features should be shared and complemented with each
other in both scales and context. In this circumstance, Liu

(a) Benign (b) Malignant

Fig. 1: Illustration of thyroid nodules: (a) Benign nodules;
(b) Malignant nodules. Calipers labels are shown for better
understanding only, and are not used for training and testing.

et al. [25] propose a single shot detection (SSD) network
to detect and recognize objects from high-quality natural
images. Inspired by such method, we employ a coarse-to-fine
pyramid framework Ec for the thyroid nodule classification
on 2D ultrasound images. One advantage of the coarse-to-fine
network is that, a multi-task joint network would enable to
learn the detection and classification tasks at the same time
in a mutually-supplementary way, just in the same way as
what experienced radiologists would do. Moreover, the spatial
pyramid network could extract features that would continu-
ously change from global to local, which in fact imitates the
process of simultaneously considering the neighboring regions
and the high-level semantic features.

To achieve the goal of incorporating effective global features
into our smart diagnosis system, we propose a multi-task
cascade pyramid CNN framework (MC-CNN) to jointly learn
multi-level features, as shown in Fig. 2 and detailed in Algo-
rithm 1. In contrast to the existing CNN methods [21], [23], we
extend the single-scale network to the pyramid based coarse-
to-fine spatial convolution network, where the integrated local
and global clues in concert could make the final prediction
much more reliable. The critical clinical testing has shown
that, our approach could achieve the state-of-the-art perfor-
mance in a variety of real patients’ datasets, including the
datasets with different scales and from patients with different-
age groups. Specifically, the salient contributions of this paper
can be summarized as follows:

• We propose a multi-task cascade CNN framework, to
jointly perform thyroid detection and recognition in a
coarse-to-fine manner, which supports coarsely locating
and classifying nodules on the entire ultrasound image
to produce potential nodule proposals first, and then
pinpointing nodules in a much-finer scale based on spatial
pyramid CNNs in real time.

• We propose a multi-scale single shot detection (SS-
D) network guided by the nodule prior, which could
greatly simplify the diagnosis process and could well
accommodate ultrasound datasets with different scales
for patients of different-age groups compared with the
currently available methods.

• We propose to embed a spatial pyramid module into
traditional CNNs in order to refine thyroid nodule recog-
nition, which could leverage both the global context and
locally detailed information, thus giving rise to much
better discrimination capability on nodule types.
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Algorithm 1 Pipeline of MC-CNN framework

Input:
1: x: The set of samples with labels y (class labels) and l

(bounding boxes position);
2: E0: Pre-trained VGG-16 Network model on Imagenet

dataset;
Output: Cascade models Ec (Detection and Coarse Recog-

nition model), Ef (Fine Recognition Model)
3: repeat
4: Training detection and coarse recognition model

weight w with multi-scale SSD network Ec, and finely
tuning on the VGG-16 network E0;

5: Using the trained model Ec to predict the bounding
boxes and types of the nodules;

6: The results are further refined with a fine recognition
network Ef ;

7: until (Lx < δ(0.01))

Instance Decoder

Spatial Pyramid based Recognition Network

 Benign

: Nodules Prior Guided Layers

Malignant

Detection and Coarse Recognition

...

Nodules Prior Guided Multi-scale Detection

Fine Recognition

NMSVGG-16 Network

Softmax Layer
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5*5Multi-scale Feature Maps

Multi-task Cascade CNNInput

Fig. 2: Architecture of our MC-CNN framework. The frame-
work contains two stages. (1) Detection and coarse recogni-
tion: to detect the nodule locations and coarsely recognize the
nodules; (2) Fine recognition: to recognition the nodules finely.

II. DETECTION AND RECOGNITION BASED ON
MULTI-SCALE SSD NETWORK

In construction of Ec in Algorithm 1, our training strategy
is inspired by the SSD and multiple box framework [25].
Nonetheless, as shown in Fig. 3 (the pipeline of multiple
scale detection network) and Fig. 5, we extend them to handle
highly-varying thyroid nodules. We further re-construct the
SSD detection network by adding multiple full convolution
layers followed by nodules prior-guided anchors (extends from
faster-rcnn [24]) generated layer to extract different scales of
features from global to local. The detection approach is based
on a feed-forward convolution network, which produces a
fixed-size collection of bounding boxes and the corresponding
class-assigning scores for the object instances in those boxes,
followed by a non-maximum suppression (NMS) step to pro-
duce the final detection candidates(detailed in our supplement
material). The shallow network layers are based on a standard
architecture used for high quality image classification (truncat-
ed before any classification layers), wherein we leverage the
base network used by SSD to extract feature maps. Different
from the original SSD, we add multi-scale layers to fit for the
thyroid nodules and arrive at coarse recognition.

Multi-scale Detection Network. Based on the two distri-
butions of the thyroids’ ratios and scales, which are shown in
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Fig. 3: Detection and recognition based on multi-scale SSD
network. Based on the output of the feature maps from the
base net of VGG16, we add the anchor boxes embedded with
the thyroid scales and ratio prior (green and purple boxes).
Furthermore, to cover the large and small scales of nodules,
we concatenate all the newly added convolutional layers to the
final detection layer.

Fig. 4, the multi-scale SSD layers involve two-fold improve-
ments.

The first one is to detect all the ratios of the nodules by
using a set of anchor boxes ranging from 0.75 to 1.5, which are
pre-computed in the training datasets. Specifically, the anchor
boxes slide over the feature map in a convolutional manner,
so that the nodule position relevant to the boxes will have
a high response. In this way, we predict the offsets related
to the default box shapes and the scores, which indicate the
presence of a malignant nodule in each of those boxes. The
newly-proposed anchor boxes can largely decrease the number
of the false positive candidates.

The second one is suitable for the thyroid scales by in-
corporating multi-size perception fields of the anchors into
multiple fully convolutional layers. Since it is hard to cover
all the nodules with single-layer perception based conventional
detection methods. We add multiple convolutional feature
layers at the end of the truncated base network as [25] does.
These layers gradually decrease in size, and allow multi-scale
detections and predictions continually. Each of the newly-
added convolutional layers predicts a result at different scales
of perception fields. The size ranges from 5% (50*35) to
100%(1024*768) with respects to the input image (1024*768),
and covers most of the nodules, whose sizes range from 35*40
pixels to nearly 774*573 pixels. All the feature maps are
followed by a set of anchor boxes, which are determined by
the distribution of the thyroid nodules. The anchors slide over
the feature maps in the same way as the ratios guided anchor
boxes do.

For a convolutional feature map with a size of W × H ,
there are WHk anchors in a single nodules-guided layer. To
add global high-level semantic features and local low-level
detail features, this specially-defined layer is added after each
full convolution layer to extract different-resolution features.
Specially in Fig. 5, the left nodule has an aspect ratio close
to 1:1. Our model adds several nodule prior guided feature
maps at the end of the base network, which predicts the
offsets to the thyroid boxes with different scales and aspect
ratios, and predicts their associated confidences. The top 4
high confidence boxes are with the aspect ratios of 1:1, 1:2,
1:3, and 1:4, respectively. The top-ranked candidate boxes of
the right nodule have similar aspect ratio with the nodules. We
show two scales of the feature maps, which are 4*4 and 8*8.
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(a) Ratio (b) Scales

Fig. 4: Illustration of the thyroid nodules: (a) The ratio
histogram of the thyroid nodules; (b) The scale histogram of
the thyroid nodules (pixels). ‘Ratio’ means the width divided
by the height. ‘Scales’ means the area of the nodules.

The newly-added layers are concatenated before the final loss
layer. We compute c class scores and 4 offsets relevant to the
original default box shape. This results in a total of (c+ 4)k
filters that are applied around at each location in the feature
map, yielding (c+ 4)kmn outputs for a m× n feature map.

Multi-task Loss. Each training image is annotated with a
ground-truth class label y and a ground-truth bounding-box
regression target l, which denotes a 4-dimension vector, (x
position, y position, width, height). We use multi-task loss
LD and LC on each labeled bounding box to jointly train the
bounding-box regression and recognition: 1) Bounding box
regression: for each candidate proposal, we predict its offset
to the nearest ground truth. The learning objective function is
formulated as a regression problem, and we employ the smooth
L1 norm proposed in [26] to make the predicted boxes of each
sample x be close to its ground truth bounding box l, the LD

i

is the loss for coarse classification error:

LD(l, l∗) =

R∑
r=1

smoothL1(lr − l∗r), (1)

where,

smoothL1(lr−l∗r) =

{
0.5(lr − l∗r)2 if |lr − l∗r | < 1

|lr − l∗r | − 0.5 otherwise
. (2)

Here, lr is the regression box offset and position, lr represents
the ground-truth label, while l∗r denotes the predicted label.
The smooth loss refines the regression in a continuous way,
which is suitable for various shapes of nodules; 2) Coarse
recognition of the thyroid nodules: the objective function
learning is formulated as a binary classification problem. For
each bounding box, we use the cross-entropy loss:

LC(p(x|w), y) =

R∑
r=1

−(yrlog(pr)) + (1− yr)(1− log(pr)).

(3)
Here, pr is the probability produced by the network, w is
the trained weight of Ec, and it indicates that sample xi is a
thyroid nodule. The notation yr ∈ {0, 1} denotes the ground-
truth label.

Specially, to accelerate the speed of convergence, we em-
ploy the VGG16 network E0 as a feature extractor for its
high performance in Imagenet classification tasks. Then, we
add the multi-scale full convolution layers, similar to SSD.
Following each feature map, we add the nodules prior-guided
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Fig. 5: SSD-based multi-scale network. The colored layers
in the middle rows represent the added multi-scale layers.
They are designed by considering the prior distributions of the
thyroid nodules. Based on the multiple levels of feature maps,
the top 4 anchor boxes with different ratios are represented
with blue boxes. The distributions at different positions are
illustrated in two examples.

layer to generate anchors for each class. At first, we construct
the detection model to find the proposals corresponding to
the probable thyroid nodules, which outputs the location
(xpos, ypos, w, h) and the class-assignment score s of the
nodules. Then, we construct the fine recognition network to
refine the recognition accuracy.

III. RECOGNITION REFINEMENT BASED SPATIAL
PYRAMID ARCHITECTURE

In construction of Ef in Algorithm 1, we further introduce
our spatial pyramid architecture, which in fact represents an
effective global contextual prior. In a deep neural network, the
size of receptive field can roughly indicate to what extent we
use contextual information. Although the theoretical receptive
field of CNNs is already larger than the input image [23], and
the existing work [27] proves that the empirical receptive field
of CNN is much smaller than the theoretical one especially on
high-level layers. This requirement makes single convolution
neural networks insufficient to incorporate the momentous
global context prior. We address this issue by embedding
an effective global context aggregation network structure into
original CNNs. Specially, the most direct intuition is to enlarge
the perception. However, for thyroid ultrasound images with
complex background and structure, this strategy is still not
enough to cover necessary information. The annotated nodules
in these thyroid images relate to many substrate and tissue
locations. Directly fusing them to form a single vector may
lose the spatial relation and cause ambiguity. However, the
global context information along with the neighboring region’s
context is helpful in this regard to distinguish among various
categories. Thus, a more powerful representation should fuse
information from different neighboring regions with these
receptive fields. Similar conclusions are drawn in the clas-
sical works [28], [29] of natural RGB image classification.
In [29], different-level feature maps generated by pyramid
pooling are finally flattened and concatenated to be fed into
a fully connected layer for classification. This global prior
is designed to remove the fixed-size constraints of CNN for
image classification. To further reduce context information
loss among different regions, we propose multiple levels of
global priors, containing information with different scales and
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varying among different regions. We call it spatial pyramid
module, as illustrated in Fig. 6. The spatial pyramid module
fuses features under three different pyramid scales, and is
highlighted in blue for convolution operators and purple for
pooling operators. The following pyramid levels separate the
feature map into different neighboring regions and form the
pooling representation for different locations. The different
spatial pyramid level can produce the feature map with varied
size. To maintain the weight of global feature, we use 1 × 1
convolution layer for each pyramid level to reduce the dimen-
sion of context representation to 1/N of the original one, if
the level size of pyramid is N . Finally, different levels of
features are concatenated as the final global feature. Specially,
the feature maps of fc7 are fed to the spatial pyramid levels
with multiple scales of convolution and pooling kernels.

fp =
∑
i

(fc7(x ∗wi + b))(i = 1, 3, 5). (4)

Here, wi represents the kernel of the ith operator, including
the convolution and pooling kernels, and b is a bias parameter.
Based on the learned weights over spatial pyramid, we can
approximately obtain the semantic feature map of thyroid
nodules as follows:

M(x) = ReLU(fp(w, x)). (5)

We use the ReLU active function to make the trained model
none-linear. Here, w is the learned parameter for detection and
recognition models Ec and Ef . Based on this activated feature
map, we can further obtain the probability of the nodules’
classes as follows:

p((y = j|x);w) =
exp(Mj)(x)∑C
j=1 exp(Mj(x))

. (6)

Here, j represents the jth class. We further use the detected
bounding box to refine the regions to be precisely classified.
The probability vector for each class is pj , and the loss of the
crop region is defined as:

LF (y, l) =

C∑
j

yj(1− log(pj ∗ pc)). (7)

Here, pc is the coarsely predicted softmax probability of the
binary classification under the loss of Eq. 3 and pj is the
softmax probability of the binary classification.

It may be noted that, the number of the pyramid levels
and the size of each level are variables. They are related
to the size of feature map that is fed into the pyramid
pooling layer. The structure abstracts different nodule regions
by adopting varying-size pooling kernels in a few strides.
Thus, the multi-stage kernels should maintain a reasonable
gap in representation. Our pyramid pooling module is a three-
level one with kernel sizes of 1× 1, 3× 3, 5× 5 respectively.
For the type of spatial pyramid operation in different layers,
we will conduct extensive experiments to show the differences
in Section VI.

(a) Input Image (b)Feature Maps From AlexNet (c) Spatial Pyramid Module
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Fig. 6: Spatial pyramid network Ef . The spatial pyramid
module consists of two convolution and pooling layers. The
three layers are all with multiple scales of filters. Detailed
network is described in our supplemental document.

IV. COARSE-TO-FINE CASCADE NETWORK

Specifically, the detector and classifier (including coarse and
fine classification) involve bounding box regression, coarse
recognition of the thyroid nodules, and local fine recognition
of the detected nodules. The details of our cascade multiple
tasks network are shown in Fig. 3. Such joint-task model
shares the features for both detection and recognition, so that
the detected nodule candidates can be refined in a coarse-to-
fine manner from both low and high level of feature maps.
The loss corresponding to the two tasks is formulated as:

L(x) =

N∑
i=1

[LD
i (yi, y

∗
i ) + LC(li, l

∗
i )] + LF (y, y∗). (8)

Here, the LD
i is the loss for coarse classification error, yi (y)

is the ground truth label of the thyroid nodules, and y∗i is
the predicted label (labels) of the thyroid nodules. LC is the
loss for detected box location, where N is the number of the
matched boxes. If N = 0, we set the loss to 0. The localization
loss is a smooth L1 loss between the predicted box and the
ground truth box. Meanwhile, LF is the fine classification
error. The train process of MC-CNN is detailed in Algorithm 2.

Algorithm 2 MC-CNN Training Algorithm

1: while LD(x, l, l∗) < δ and LC(pr, yr) < δ do
2: Extracting the basic features from VGGNet;
3: Feeding the features into the multi-scales layers;
4: Generating anchors (xpos, ypos, w, h) via nodules prior

guided layers;
5: Optimizing loss LD(x, l, l∗) and LC

r (pr, yr) ;
6: end while;
7: Cropping detected images based on the predicted boxes

(xpos, ypos, w, h) with model Ec;
8: while LF (y, y∗) < δ do
9: Extracting feature maps from original CNNs;

10: Refining feature maps fc7 in spatial pyramid fp;
11: end while;

V. DATASETS AND IMPLEMENTATION

A. Dataset Labeling for Network Training

One of the most important factors in any deep learning
model is the training dataset labeling. Our training dataset is
labeled by the senior doctors of Peking Union Medical College
Hospital according to the pathology verification, which lasts
two years in total. The thyroid nodules are marked with bound-
ing boxes and the assigned benign/malignant class labels.
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Besides, the training dataset covers most of the ultrasound
images corresponding to different-aged patients and different-
sized nodules. For all patients with malignant nodules and
some patients with benign nodules who underwent surgery,
the most accurate diagnosis is based on the histopathological
examination results over the excised thyroid nodules. The
ground truth is taken inside the same patient. The pixel depth
ranges from 0 to 255. The images are collected in the clinical
settings. Thus, the examination size is determined by the
doctors’ ROI of the thyroids.

To this end, all the thyroid instances involved in our training
ultrasound image set have been examined via pathological
examination. The involved ultrasound images are captured
with Phillips HDI 5000, IU 22, GE Logiq 9 or Logiq 7
devices equipped with either a 5-12 MHz or an 8-15 MHz
linear-array transducer. Among this initial cohort, only the
patients who meet the following criteria are included: (1)
older than 18 years of age, (2) with total or nearly total
thyroidectomy or lobectomy, (3) with complete preoperative
thyroid ultrasound images, and (4) with surgical pathology
examination. =Moreover, the lesions and nodules that fail
to meet the criteria for any pattern of ATA guidelines are
excluded. Finally, a total of 1580 patients with 4309 images
are obtained after surgery or FNA. Among these examples,
3128 thyroid nodules are benign and 3100 ones are malignant,
and the mean nodule size is 2.4cm. Each thyroid nodules has
several longitudinal cutting maps or cross cutting maps. In
total, 6228 thyroid nodules images are obtained. Meanwhile,
the boundary of the thyroid nodules in each image is manually
delineated by the doctors. Thus, we can get 6228 labeling
boxes, and these thyroid nodules images for training our MC-
CNN.

B. Implementation

The framework contains two stages: (1) Detection and
coarse recognition: to detect the nodule locations, we first
employ a VGG-16 network (E0) as the backbone to extract the
high-level semantic feature maps from the ultrasound image.
Then, we add convolutional layers at the top of the truncated
base network. All the convolutional layers are followed by a
nodule prior guided layer. Each of the multiple convolutional
layers produces the detection and coarse recognition results
at different scales. All the bounding boxes are processed by
NMS. This step is to build up the detection and coarse recog-
nition model (Ec); (2) Fine ecognition: to further improve
the accuracy of classification, we add a spatial pyramid based
recognition network to predict the category of the nodules at
different scales. The fine recognition model is represented as
Ef .

The stage (1) and (2) are the multi-task cascade CNN.
For our multi-scale detection network in the MC-CNN, we

adapt a data-augmented strategy to improve the performance
in the training procedure. The strategy leverages the entire
original input image, sampled patches and randomly cropped
patches, of which, the minimum Jaccard overlapping with the
objects could be 0.1, 0.3, 0.5, 0.7, or 0.9, and the photo-metric
distortions are similar to those described in [25]. We first train

the models with 10−3 learning rate for 60k iterations, and then
with 10−4 for another 60k iterations.

As for our spatial pyramid based recognition refinement net-
work in the MC-CNN, the inputs of the base CNN are random-
ly sampled patches with size of 512∗512 from the entire thy-
roid nodules image, and the corresponding outputs are based
on the average results of all the inputs. Our spatial pyramid
CNN uses the multi-scale feature maps to train the softmax
for thyroid nodules recognition. To demonstrate the efficiency
of our MC-CNN, we also implement several commonly-used
classification methods, including Nearest Neighbors, decision
tree, random forest, adaboost, KNN, Bernouli Naive Bayesian,
and GBDT. The classifiers are optimized with grid search in
our experiments.

To evaluate the reliability and stability of the classifiers, we
further train 7 classifiers with the feature vector extracted from
fc7 layer in AlexNet [21] as input. In the AlexNet training
process, both the weight decay and bias decay are 0.0005. The
learning rate is set 0.02. The momentum is 0.9, linearly over
10 epochs. Besides, in our experiments, the thyroid dataset is
split by 8 : 2 for training and testing respectively. We use the
Caffe lib to train the datasets on Tesla K80 GPUs.

VI. RESULT ANALYSIS

In this section, we first conduct three experiments to sepa-
rately demonstrate the significance of the multiple scale, the
spatial pyramid, and the coarse-to-fine structure. Then, we
compare the MC-CNN with the state-of-the-art methods. In
addition, we conduct user studies in practice to demonstrate
the applicability of the MC-CNN. Finally, to test the general-
ization ability of our model, we conduct unsupervised transfer
learning experiments on publically-available datasets.

A. Experimental Design

Evaluations of our Multi-Scale SSD Network. Our multi-
scale detection network is designed to detect and coarsely
recognize the nodules. The detection results have a significant
improvement. In the results, all the small-scale and large-scale
nodules, which were lost in the original SSD network, are
correctly detected. The results are shown in Fig. 7. The quan-
titative performances are shown in Table I and Table II. All the
experiments are conducted with a 5-fold cross validation. The
quantitative results show that, our adaptive thyroid detection is
effective for all the scales of ultrasound images captured from
different-aged patients. From the view point of thyroid nodule
size, the nodules larger than 3cm can benefit most, which are
highlighted in bold.

Furthermore, as shown in Table I, the mAPs of the three age
groups are improved ranging from 0.7% to 4.9%, compared
with the original SSD network. In particular, in different-aged
groups, the young group has the most discriminate features
for detection. The mAPs of the three-scale (small, middle,
large) thyroid nodules are improved ranging from 0.1% to
4%. Especially, the large and small scales of thyroid nodules,
which are mis-detected in the original SSD, could be detected
accurately by our M-SSD. The mAPs of malignant ones are
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TABLE I: Performance of the M-SSD network in 5-fold cross
validation (mean ± standard variance). IOU=0.5 (Intersection
over Union), “M-SSD” represents the multi-scale SSD.

Model mAP Benign(0) Malignant(1) Dataset
SSD 0.945 ± 0.04 0.965 ± 0.02 0.934 ± 0.03 Size:Large
M-SSD 0.985 ± 0.01 0.982 ± 0.01 0.987 ± 0.01 Size:Large
SSD 0.938 ± 0.05 0.916 ± 0.05 0.954 ± 0.02 Size:Middle
M-SSD 0.944 ± 0.05 0.972 ± 0.01 0.982 ± 0.01 Size:Middle
SSD 0.942 ± 0.04 0.967 ± 0.01 0.924 ± 0.05 Size:Small
M-SSD 0.988 ± 0.01 0.989 ± 0.01 0.987 ± 0.01 Size:Small
SSD 0.952 ± 0.01 0.955 ± 0.04 0.952 ± 0.04 Age:Old
M-SSD 0.980 ± 0.01 0.979 ± 0.02 0.983 ± 0.01 Age:Old
SSD 0.969 ± 0.02 0.975 ± 0.02 0.939 ± 0.06 Age:Middle
M-SSD 0.972 ± 0.02 0.987 ± 0.01 0.955 ± 0.02 Age:Middle
SSD 0.949 ± 0.05 0.962 ± 0.03 0.929 ± 0.06 Age:Small
M-SSD 0.971 ± 0.02 0.972 ± 0.02 0.968 ± 0.03 Age:Small

TABLE II: Dataset analysis.

Large Middle Small Old Middle Young
(>3cm) (1cm-3cm) (0cm-1cm) (49-78) (38-49) (18-38)

improved ranging from 0.3% to 4.9%, which are larger than
that of the benign ones (ranging from 0%-1.2%).

Evaluations of our Spatial Pyramid Architecture. To
evaluate our spatial pyramid based recognition refinement
network, we further conduct three experiments. The first one is
to compare with the CNNs without the spatial pyramid layers.
We have compared it with AlexNet (conv5-small), GoogLenet.
Here we compare the spatial layers in different CNN layers:
after the 5th pooling (pool5) layer, after the 5th convolution
layer (conv5). The result is shown in Fig. 8, and it indicates
that, the network with the spatial pyramid layer added after the
5th convolution layer, performs the best among the 4 networks.
The network ‘pool5’ ranks the second among all 4 networks,
which adds the spatial pyramid layer after the 5th pooling
layer. The original AlexNet ranks the third. Meanwhile, the
GoogLenet ranks the forth. This phenomenon states that, the
spatial pyramid layer can help improve the performance of the
thyroid nodules recognition, but the GoogLenet has the most
parameters, which leads to an over-fitting result. To further
study what happened in the spatial pyramid networks, we
visualize the AlexNet and the AlexNet with spatial pyramid
network after the 5th convolution layer. The result is shown
in Fig. 10. The results demonstrate that, the spatial pyramid
structure can activate larger perceptions than the original
AlexNet for nodules in the feature map layers.

The second experiment is to compare it with 7 existing

Fig. 7: Illustration of the improvement benefiting from our
multi-scale SSD, which can detect the missing small-scale and
large-scale nodules. The large and small sizes of thyroids are
beyond the detection ability of the original SSD network. The
blue boxes represent the large thyroids, while the red boxes
represent the small ones. Some more cases are in Fig. 13.

Fig. 8: ROC of CNNs without classifiers.

Fig. 9: MC-CNN features with classifiers.
classifiers, including nearest neighbors, decision tree, random
forest, adaboost, KNN, Bernouli Naive Bayesian, and GBDT.
All the classifiers are trained with grid search to find the proper
hyper-parameters. The results are shown in Fig. 11. For the
AUC, 6 of 7 classifiers are lower than spatial pyramid net-
works. The random forest is close to spatial pyramid networks,
however, the ROC curve of spatial pyramid is more smooth
than that of random forest. Thus, the spatial pyramid furnished
CNN achieves the best performance in most classifiers.

In our third experiment, we combine our MC-CNN frame-
work with the 7 classifiers, which gives rise to significant
performance improvement. We fed the classifiers with the fc7
layer’s output of the spatial pyramid network. The result is
shown in Fig. 9. Three of the 7 classifiers improve dramatically
to 100% over the testing dataset, including Adaboost, Bernouli
Naive Bayesian, and GBDT. Moreover, other classifiers are
improved more or less from 0.6% to 2.68%.

Comparisons with State-of-the-art Methods. Our coarse-
to-fine framework can improve the performance of thyroid
nodules recognition, which is demonstrated through three
experiments: coarse classification network from detection net-
work, the single task classification network from the doctor-
cropped results, and the MC-CNN framework. The quantity
performance is documented in Table III. The first row is
the coarse recognition result. The 2-4 rows are the single-
task networks derived from AlexNets and GoogLenet, with
different layers embed into the spatial pyramid module. The
result shows that, our MC-CNN achieves great performance
improvement compared with the single coarse and single fine
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ID A: CONV1 M:  CONV1 A: CONV2 M: CONV2 A: CONV4 M: CONV4 A: CONV5 M: CONV5Ground Truth

Malignant

Malignant

Malignant

Malignant

Prediction

0.95

0.98

0.92

0.99

Fig. 10: Comparisons between the original AlexNet and the
MC-CNN equipped AlexNet. The first column shows the
input images. The boxes with the same color are the feature
maps extracted from the original and spatial pyramid equipped
AlexNets. ‘A’ means AlexNet feature, while ‘M’ means MC-
CNN feature. We visualize the feature maps, including shallow
features such as ‘CONV1’, ‘CONV2’ and high level features
such as ‘CONV4’ and ‘CONV5’. The MC-CNN network can
activate a larger perception scope for high-level recognition
tasks, so that the high level features could focus more on the
thyroid nodules related regions.

Fig. 11: ROC of the 7 classifiers with the AlexNet features
extracted from fc7.

classification networks. The average accuracy is improved
ranging from 6% to 10.1%, the sensitivity and the Specificity
is improved from 7.5% to 12.5%. It demonstrates our coarse-
to-fine framework can extract consistent features from the
detection results for the classification task. For the single
classification based on the input patches cropped by doctors,
its performance is slightly lower than that based on the
detection boxes, which is 6% lower in accuracy, and 7.5%
lower in sensitivity. Moreover, the results show that the multi-
task framework performs better than the original SSD. Besides,
for the cases failed in the original SSD, we further analyze
their improvement benefiting from our method by visualizing
their concrete nodules in Fig. 12 and Fig. 13. We can conclude
from the two sets with the scales larger than 5cm and smaller
than 0.5cm improve most.

B. User Studies of Our MC-CNN Framework

To evaluate our MC-CNN, we compare our results with
those from the senior doctors. We make a dataset that contains
360 images covering three-age stages and three scales, which
are separately collected and labeled, which is described in
Section V-A.

The doctors referred to the features of malignant based
on ATA, and drew conclusions based on experience. The

FP FN: size > 5cm size < 0.5cm

Fig. 12: Illustration of the failed recognition cases produced
by the original SSD [25]. It mis-classifies the small thyroid
nodules (< 0.5cm) (blue boxes) and large (> 5cm) thyroid
nodules (red boxes).

FP FN: size > 5cm size < 0.5cm

Fig. 13: Illustration of the improvement benefiting from our
method. It shows some of the successful cases which are failed
in the coarse recognition network Ec. The nodule proposals
are fed into our spatial pyramid network. Meanwhile, the
classification accuracy improves greatly. The green boxes are
the improved cases in the coarse network, while the yellow are
the hard cases which are also mis-classified by our coarse-to-
fine framework.

results are documented in Table IV, and it states that our
MC-CNN performs better than human doctors in terms of
both time efficiency and accuracy. Without our CADx system,
the doctors become tired and impatient when facing a dataset
with more than 360 (187 benign nodules and 180 malignant
nodules) nodules. Furthermore, in case of complex ultrasound
images, the result becomes even more distinct since our MC-
CNN achieves higher accuracy than the doctors, of which,
the improvement in accuracy is 12%, the improvement in
sensitivity is 13% and the improvement in sensitivity in 8%,
with only 2.1% time consumption on average compared to

TABLE III: Comparisons among coarse and fine classification
networks. ‘Pool5’ and ‘Conv5’ indicate to add spatial pyramid
module after this layer. ‘Coarse’ means the classification
results are directly obtained from the detection stage. ‘Fine’
means the doctors’ hand-cropped candidates are fed into our
spatial pyramid module furnished network (mean ± standard
variance).

Method Accuracy Sensitivity Specificity
Coarse: Detection 0.903± 0.05 0.892± 0.04 0.920± 0.04
Fine: AlexNet 0.926± 0.04 0.908± 0.05 0.981± 0.01
Fine: Pool5 0.919± 0.05 0.894± 0.05 0.983± 0.01
Fine: GoogLenet 0.889± 0.08 0.845± 0.06 0.976± 0.02
Fine: Conv5 0.930± 0.04 0.925± 0.02 0.981± 0.01
MC-CNN 0.982± 0.01 0.983± 0.01 0.980± 0.01
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TABLE IV: User study based performance evaluations. (mean)

Method Accuracy Sensitivity Specificity Time(s) AUC
Human 0.87 0.86 0.91 12.00 0.88
MC-CNN 0.98 0.98 0.98 0.25 0.98

TABLE V: User study based performance evaluations over
different datasets. (mean over 5-fold cross validation)

Method Accuracy Sensitivity Specificity Dataset
Doctor 0.897 0.955 0.87 Age: Old
MC-CNN 0.985 0.971 0.982 Age: Old
Doctor 0.96 0.941 0.977 Age: Middle
MC-CNN 0.963 0.992 0.930 Age: Middle
Doctor 0.816 0.799 0.852 Age: Young
MC-CNN 0.962 0.942 0.973 Age: Young
Doctor 0.841 0.85 0.831 Size: Large
MC-CNN 0.946 0.942 0.955 Size: Large
Doctor 0.913 0.918 0.908 Size: Middle
MC-CNN 0.986 0.992 0.979 Size: Middle
Doctor 0.891 0.806 0.982 Size: Small
MC-CNN 0.962 0.972 0.938 Size: Small

the doctors. Table V documents the performances in different
stages and can handle thyroid nodules with different sizes.
The nodules from old patients and the large-sized nodules are
improved most, ranging from 9.1% to 12.5%.

C. Evaluations using Public Dataset

In order to demonstrate the generalization ability of our
MC-CNN, we verify it by conducting transferred learning
experiments on the open dataset [30], without the need of
additional training on this dataset. This dataset has a total
number of 299 patients, including 270 women and 29 men,
whose ages vary as 57.35 ± 16.2 years. We treat the labels
in triads (following [30]) over “(4c) Three or four suspicious
ultrasound features” and “(5) Five suspicious features” as
the malignant nodules while treating “Normal” thyroid and
“Benign” level as benign ones. Finally, we obtain 111 ma-
lignant ultrasound images and 41 benign ultrasound images.
Our MC-CNN outperforms most of the previous works with
the significant advantage, as shown in Table VI. The number
of the benign dataset is half of that of the malignant dataset.
The classifiers, such as Naive Bayesian, GBDT, and MLP, are
sensitive to such data distribution, thus the sensitivity is lower
than the Specificity. At the same time, our MC-CNN is stable
in both classes even if the distribution is heavily unbalanced.

D. Discussion

In this section, we mainly describe the advantage, the
comparison with the state of the art, in what it could be
improved, which could be further applications.

Advantages. MC-CNN has three main advantages as fol-
lows. (1) Our methods includes two tasks, and the nodules can
be detected and recognized at the same time. In our frame-
work, the thyroid US images based detection and recognition
tasks are jointly learned for sharing the common features while

TABLE VI: Performance evaluation on public dataset.

Method Accuracy Sensitivity Specificity
MC-CNN 0.921 0.941 0.962
Naive Bayesian 0.737 0.631 0.746
GBDT [16] 0.717 0.478 0.863
MLP 0.737 0.529 0.818
AlexNet [21] 0.784 0.625 0.854
GoogLenet [22] 0.750 0.586 0.847

distinguishing the malignant, the benign, and the background.
However, this multi-task network cannot perform classification
with high performance, and it only provides precise bounding
boxes of the nodules. To address this issue, we propose to
learn the task in a coarse-to-fine manner, that uses the spatial
pyramid module to improve the recognition accuracy. With
the coarse-to-fine framework, the thyroid with different scales,
especially the extremely large and small ones, are detected
and correctly classified. Meanwhile, it suggests that the size
of kernels of CNN filters indeed affects the performance of the
recognition task. We only extend the simple CNN structure to
improve the efficiency; (2) MC-CNN can detect and recognize
a wider range of the nodules in multiple scales. The scale prior
of the nodules is the important information both for detection
and recognition. Although MC-CNN could be divided into
serval scales to learn different scale features, the concatenated
features ignore the correlation among different scales. To
overcome these problems, we propose the spatial pyramid
module to learn the multiple scales of features in a single
module. The spatial pyramid can effectively fuse different
sizes to generate a complementary effect, while the AlexNet
is easy to be fine-tuned and has a simple structure to be
extended conveniently. Moreover, the Alexnet is not easily
overfitted on the limited scales of datasets. Therefore, MC-
CNN can effectively represent the thyroid nodule features for
classification, which has been proved in the clinically setting
involving doctors’ studies; (3) MC-CNN could be generalized
to handle more datasets without training. Thyroid nodule
detection and recognition for US images are solved by a novel
MC-CNN, which has the advantages over a simple network
architecture with good performance. In this study, we first
evaluate the feasibility of MC-CNN for US images, and the
results on all the ages and sizes of nodules show that MC-
CNN achieves competitive results compared with AlexNet,
GoogleNet, and conventional classifiers such as, GDBT, SVM,
etc.

Limitations. Our MC-CNN still has some limitations. For
example, in Fig. 12 and Fig. 13, for the extremely small
(< 0.01cm) and extremely large (> 10cm) nodules, our MC-
CNN tends to produce failure cases, which are marked with
yellow boxes, because the scales of the nodules are critical
for accurate detection and recognition. Despite our prior and
on-going efforts, currently high-quality training datasets are
still insufficient compared with natural images that have been
widely employed in various deep learning applications. The
essential reason is that, the rapid acquisition of high-quality,
high-volume medical datasets remains a bottleneck, it needs
a time-consuming and rigorous verification process to label
ground truth, which must consume huge labor of experienced
radiologists. Therefore, we would further introduce transfer
learning into the pre-trained models to make our model
easily be transferred to other different scales of unmanifested
nodules.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have advocated a novel MC-CNN frame-
work that can learn thyroid nodule detection and classification
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on ultrasound images. The new learning architecture affords
the detection and classification tasks to share commonly-
needed features, with an objective of better distinguishing be-
nign nodules from malignant nodules, as well as the complex
background. In order for such goal to be easily accomplished,
in our new learning architecture we must add a multi-scale
layer to improve the detection performance for thyroid nodules
that could be varying significantly in scales. Consequently, the
detected nodule candidates are fed back into the spatial pyra-
mid augmented AlexNet to further improve the classification
performance. As a result, our MC-CNN has shown superior
advantages over the original single shot detection and other
single task classification methods based on our comprehensive
experiments.

In the near future, we will continue to conduct extensive
user studies and evaluations towards possible clinical trials.
It is our expectation that, our MC-CNN architecture could
achieve more promising performance for smart thyroid nodule
diagnosis on ultrasound images, which leads to a better and
greater potential in ultrasound-based clinical applications in
the future. Meanwhile, with the scale increase of the collected
datasets, we plan to study more compacted CNN structures to
extract more discriminative features efficiently. Specifically,
more comprehensive evaluations on how to adapt our MC-
CNN to other popular networks also deserve our immediate
efforts.
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