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ABSTRACT

Mesh-based animation, usually represented as dynamic meshes

with fixed connectivity, is becoming more and more prevalent in

movies, games and other graphics applications nowadays, and there

is a growing need to compactly store and rapidly transmit these

meshes for practical use, especially for those with high-quality geo-

metric details. In this paper, we explore a novel key-frame based dy-

namic mesh compressionmethod, wherein we apply pose-similarity

with spectral techniques to define piece-wise manifold harmonic

bases to reduce spatial-temporal redundancy. We first partition

the sequence into several clusters with similar poses, and then

decompose the meshes in each cluster into primary poses and geo-

metric details using the manifold harmonic bases derived from the

extracted key-frame in that cluster. The primary poses can be char-

acterized as linear combinations of manifold harmonic bases, and

the geometric details can be recovered by deformation transfer tech-

nique. Thus, we only need a small number of key-frames and a few

coefficients for compressing dynamic meshes, which saves a signif-

icant amount of storage comparing to traditional methods in which

bases are stored explicitly. Furthermore, we apply a second-order

linear prediction coding to the harmonic coefficients to further

reduce the temporal redundancy. Our extensive experiments and

evaluations on various datasets have manifested that our novel

method could obtain a high compression ratio while preserving
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high-fidelity geometry details and guaranteeing limited human

perceived distortion rate simultaneously.
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1 INTRODUCTION

With the rapid technical advancement in movie and game industry,

computer animation is becoming prevalently popular. A digital

animation is usually generated by driving a character mesh created

by artists in certain manner, and stored as a sequence of dynamic

meshes with fixed connectivity and time-varying geometry. Such

dynamic meshes, especially those with complex geometric details,

require large storage space and transmission bandwidth in practical

computer graphics applications. Therefore, high-fidelity compres-

sion of dynamic meshes with fine details has gained increasing

attention during the past decades.

In essence, the goal of dynamic meshes compression is to find

a compact representation of the sequence with a controllable dis-

tortion, and one intuitive way is to pursue a set of bases that can

well character geometry of the meshes. Principle Component Anal-

ysis (PCA) has been reused frequently in combination with other

compression techniques [1, 12, 26], wherein the meshes are pro-

jected onto a few principal orthogonal bases and the compression
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is achieved by removing the bases whose influence are negligible

compared with others. Nonetheless, these bases take up to 50% of

the encoded data size [27] and inevitably limit the compression

ratio of these methods when being applied to meshes with a lot of

geometric details or a large number of vertices, so it is necessary

to find a compression method which does not need to store bases

explicitly; on the other hand, even though these methods achieve

high compression rate under traditional limited vertex-based error

measurement, such as Karni-Gotsman (KG) error [10], the removal

of bases inevitably cause information loss and consequently affect

the quality of reconstructed meshes from the perceptual aspect, as

shown in Fig. 1. We shall explore a high-fidelity way for dynamic

meshes compression, whose reconstructed meshes should be vi-

sually plausible which can be evaluated under perceptual metric,

such as Spatial-Temporal Edge Difference (STED) [28].

(b)(a) (c)

Figure 1: Comparison with CoDDyaC under the same com-

pression ratio. From left to right: the original frame (a), re-

constructed frame using CoDDyaC (b), reconstructed frame

using our newly-proposed method (c).

Manifold harmonic transform [23] projects a 3D mesh onto sev-

eral Fourier-like function bases derived as eigenfunctions of the

Laplace-Beltrami operator, and converts the mesh from geome-

try domain into frequency domain. Some static mesh compression

methods [9, 30] showed that they can reconstruct a static mesh with

a small number of low-frequency bases according to the assumption

that low-frequency coefficients contribute more to the mesh than

the high-frequency ones. In addition, these bases can be obtained

by solving an eigenvalue problem of the Laplace-Beltrami operator

defined on the mesh itself without the need for explicit storage.

However, simply ignoring the high-frequency bases certainly loses

geometric details and causes errors similar to those in PCA-based

methods. Nonetheless, how to apply the manifold harmonic bases

(MHBs) to high-fidelity dynamic meshes compression still remains

challenging.

In this paper, we propose a key-frame based framework for dy-

namic meshes compression with manifold harmonic bases, in which

we decompose the sequence into primary poses (low-frequency

part) and geometric details (high-frequency part) and compress

them separately by exploiting spatial-temporal correlations among

data. We first partition the sequence by the notion of pose similarity

into several small fragments and observe that in each fragment,

low-frequency parts of all meshes can be well described by man-

ifold harmonic bases derived from one single mesh within this

fragment. As shown in Fig. 2, we can compress the low-frequency

part in this fragment by storing one representative key-frame and

a few coefficients instead of many large bases to reduce the spatial

redundancy.

(a) (b)

(c) (d)

Figure 2: Top row, Horse-gallap sequence’s Frame 28 (a), and

Frame 30 (b). Bottom row, reconstructed low frequency part

of Frame 28 using 400MHBs of Frame 28 itself (c), and using

400 MHBs of Frame 30 (d).

For high-frequency part, we find that geometric details of the

meshes within one fragment are almost unchanged, because a mesh

sequence is usually created by deforming one static mesh along

time axis and geometric details of meshes should be similar to

those with similar poses. So we can just store the details of one

representative key-frame to remove redundant information and

then transfer the details to the reconstructed primary poses in

order to reconstruct high quality sequence with a limited distortion.

Furthermore, we apply a second-order linear prediction to reduce

the temporal redundancy of harmonic coefficients. In particular, the

primary contributions of this paper can be summarized as follows:

• We devise a hierarchical framework in which we decompose

the sequence into high frequency part and low frequency

part and compress them separately to reduce the geometric

redundancy in space.

• We apply the notion of pose similarity to extract the key-

frames and define the piece-wise manifold harmonic bases

to compress the primary poses.

• We apply deformation transfer techniques to preserve the

geometry details in order to reconstruct high quality mesh

sequence.

• We propose a multi-resolution scheme for complicated mesh

sequence which has many details and too many vertices.

2 RELATEDWORK

All compression schemes aim at exploiting correlations among

mesh sequence. In terms of de-correlation techniques, the exist-

ing compression methods can be roughly classified into two cate-

gories [13]: spatial de-correlationmethods and temporal de-correlation
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Figure 3: Flowchart of the proposed compression algorithm (encoder).

methods. Actually most methods explore both temporal and spatial

redundancy, the two categories are roughly classified according to

whether the core idea is benefited more from spatial de-correlation

or temporal de-correlation.

Spatial de-correlation. The most commonly used method to

exploit spatial correlations is principal component analysis (PCA)

which was firstly introduced to mesh sequence compression by

Alexa and Muller [1] in which they projected the sequence data

onto a few principal orthogonal bases to represent each frame as

a linear combination of these bases. The approach is improved by

Lee et al. [11] who described how to determine the optimal number

of PCA bases. Then Karni et al. [10] applied linear prediction coding

to further compress PCA coefficients.

Some authors proposed methods that segment frames into mean-

ingful clusters to exploit spatial correlation. Sattler et al. [17] first

clustered the vertex trajectories and applied PCA to the trajectories

of all vertices of a cluster. Mamou et al. [14] proposed a skinning

approach based on segmentation. The mesh vertices are partitioned

into patches whose motion can be accurately described by a 3D

affine transform. Then an affine motion model is defined to esti-

mate the frame-wise motion of each patch. Hou et al. [6] proposed

learned spatial decorrelation transform to transform each frame

into a sparse vector to reduce the spatial redundancy and then

they [7] used low-rank matrix approximation for data compression.

Some methods encode only a set of key-information and used

them to predict the missing information with some spatial predic-

tors. Stefanoski et al. [19] proposed a linear predictive compression

approach in which patch-based mesh simplification algorithms are

applied to derive spatially decomposed layers of each frame so

that their method supports spatial scalability. Then scalable pre-

dictive coding (SPC) [21] is proposed to support spatial-temporal

scalability by decomposing animated meshes in spatial and tem-

poral layers and predicting these layers using the already encoded

spatio-temporal neighborhood. It is improved by Bici et al. [2], who

proposed three novel prediction structures based on weighted spa-

tial prediction with its weighted refinement and angular relations

of triangles between current and previous frames. Hajizadeh et

al. [4] proposed a key-frame based technique in which extracted

key-frames are then linearly combined using blending weights to

predict the vertex locations of the other frames.

Temporal de-correlation. PCA can be also used to exploit tem-

poral coherence by applying it to the space of vertex trajectories

rather than shapes. Vasa and Skala [26] proposed CoDDyaC al-

gorithm in which they applied PCA to the vertex trajectories to

find a minimal number of significant trajectories characterizing

the motion of the shape over the sequence. Compared with PCA

on shape space, it involves the eigenvalues decomposition of a co-

variance matrix of 3F × 3F instead of 3V × 3V , where F , V is the

number of frames and vertices of the mesh, respectively. Improved

results are obtain by predicting PCA bases with an efficient mech-

anism [27]. Then in [25] they combined CoDDyaC with a novel

spatio-temporal predictor and used a discrete geometric Laplacian

of average surface to encode the coefficients to achieve a good

compression rate. Luo et al. [12] applied PCA to temporal clusters

based on pose similarity to extend the notion of temporal coherence

to postural coherence.

Payan and Antonini [16] exploited the temporal coherence by

using a temporal wavelet filtering and using a bit allocation process

to optimize the resulting wavelet coefficients. A signal-to-noise

ratio (SNR) and temporal scalable coding algorithm for 3-D mesh

sequences using singular value decomposition (SVD) was proposed

by Heu et al. [5]. They developed a temporal prediction mode to im-

prove the rate-distortion performancewhich also supports temporal

scalability. In 2003, Ibarria et al. [8] introduced two extrapolating

space-time predictors: the ELP extension of the Lorenzo predictor

and the Replica predictor. With these two predictors they predicted
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the position of each vertex v of frame f from three of its neighbors

in frame f and from the positions of v and of these neighbors in

the previous frame.

3 METHOD OVERVIEW

Key frame

MHB

MHB

MHB

.

.

.

Deformation transfer

Coefficients

Deformation transfer

Deformation transfer

High-frequency 
Details

High-frequency
Details

High-frequency
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……

Low-frequency part

Figure 4: Flowchart of the proposed decompression algo-

rithm (decoder).

Given a sequence of F triangle meshes fi , i = 1, .., F with fixed

connectivity of N vertices in each frame, a frame fi is composed

of the vertex coordinates of the mesh which we represent as a

column vector: fi = [xi,1...xi,N yi,1...yi,N zi,1...zi,N ]T . The mesh

sequence is then represented with a matrix A whose columns are

the frames of the animation, A = [fi ...fF ], we assume that the con-

nectivity is encoded once using any state-of-the-art algorithm. The

purpose of our method is to compress the time-varying geometry

data only. Our method can also be briefly summarized as an encoder

shown in Fig. 3 and a decoder shown in Fig. 4. Several main steps

involved here are described in details in the following sections.

Key-frame extraction based on pose-similarity. As shown

in Fig. 3, the first step of the encoder is to group the frames into

clusters in which poses are similar to each other and then extract

one key-frame in each cluster. Geometry of the frames with similar

posture within one cluster lie near in a 3N dimensional space. A

Manhattan distance | |fj − fi | |1 is used to measure the pose simi-

larity between two frame vectors fi and fj . Note that, the frames

belonging to the same cluster may not be contiguous.

Intra-cluster compression with piece-wise MHBs. The sec-

ond step of the encoder is to decompose the meshes into high-

frequency parts and low-frequency parts.We compress low-frequency

part in each cluster by projecting them onto a manifold harmonics

basis derived from each key-frame and apply second-order linear

predictive coding to encode the MHB coefficients. Note that, the

manifold harmonic bases of key-frames are grouped into piece-wise

MHBs.

Decompression with deformation transfer. In the decoder,

we first use the stored key-frames and MHB coefficients to recon-

struct the primary poses of the sequence, and then transfer the

geometric details to the decompressed primary poses to recovery

the high-quality mesh sequence. Instead of storing all high fre-

quency details, we just store the geometry details of key-frames to

exploit the spatial correlation.

4 KEY-FRAME EXTRACTION BASED ON
POSE-SIMILARITY

The first step of key-frame extraction is to divide a long and com-

plicated mesh sequence into some clusters in which geometry of

the frames with similar posture lie in a space with much lower

dimensionality than the whole sequence. Compressing each clus-

ter separately enables us to reduce the temporal redundancy in

order to achieve a higher compression rate and retain a reasonable

reconstruction quality at the same time.

Numerous methods have been proposed for pose clustering. In

this paper we employ K-medoids clustering to cluster the sequence.

Given a mesh sequence A with dimension 3N × F , K-medoids clus-

ters the F frames into J (J < F ) clusters (S1, S2, ..., SJ ):

argmin
S

J∑
i=1

∑
f ∈S

‖fj − μi ‖1, (1)

where μi is one frame which has the smallest distance to all other

frames in the current cluster. The choice of the number of clusters

is an important factor of the compression ratio which will be ex-

plained in the next section. Then we select the medoid frame in

each cluster as key-frame directly. It is noteworthy that key-frame,

which is not only applied to compute the piece-wise MHBs but also

applied to recover the high-frequency part of non-key-frames in

the decoded process, should be the one that obtains significant pos-

ture and representative high-frequency geometry information. The

key-frame extraction results forWalk are shown in Fig. 5. We store

the key-frames using any state-of-the-art static mesh compression

methods [18, 24].

Note that we choose K-medoids clustering rather than K-means

clustering because in contrast to the latter, K-medoids chooses one

of frames as center frame (medoid) rather than the mean of frame

vectors in Si which maybe produces artifacts, and works with a

generalization of the Manhattan Norm to define distance between

frames instead of L2 which is gainful for the key-frame extraction.

Figure 5: Extracted key-frames of the Walk dataset from

[29].

5 INTRA-CLUSTER COMPRESSIONWITH
PIECE-WISE MHBS

Now we have segmented the mesh sequence into clusters such

that frames within a cluster share similar postures and extracted
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one key-frame for each cluster. We now apply piece-wise manifold

harmonic bases to compress the subsequence.

As mentioned above, geometric details of the frames within

one cluster are almost unchanged and the geometric primaries lie

in a very low dimensional space as the result of pose-similarity

clustering. So we devise a hierarchical framework in which we

convert the mesh from geometry domain into frequency domain

and then the shape space is decomposed into high-frequency and

low-frequency domains. We compress these two part separately to

reduce spatial redundancy.

In the low-frequency domain, we project the meshes onto a

few manifold harmonic bases derived from each key-frame. These

bases of the key-frame are derived as eigenvectors of the Laplace-

Beltrami operator, which can be computed by solving the following

eigenvalue problem [23]:

− LΦk = λMΦk , (2)

whereM is a N ×N mass matrix of the key-frame and L is a N ×N
matrix which is so-called cotangent weight:

Li j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cotαi j + cotβi j , j ∈ N (i)
0, j � N (i)

−
∑
k�i

Lik , i = j
, (3)

where N (i) are the vertices adjacent to (neighboring) vertex i , and
αi j , βi j are the angles opposite to edge ij. We assemble the first K

eigenvectors into a basis matrix U ∈ RN×K , where each column

Φk is one eigenvector. After performing MHBs for all J clusters,
we get J new basis matrices {U1, ...,UJ } which we call piece-wise

manifold harmonic bases. Low frequency part of original frame

fj , reshaped as f ′j ∈ RN×3, from Si is then represented by MHB

coefficients:

cj = U
T
i ∗ f ′j ∈ RK×3. (4)

Combining the coefficients of frames in the same cluster into

Ci , we can get coefficient matrices {C1, ...,CJ } for all clusters. One

clear advantage of MHBs is that we can just store or transmit the

key-frames and re-compute MHBs in the decompressing process

which saves a lot of storage space compared with other PCA-based

methods in which they store the PCA bases directly. In addition,

manifold harmonic basis captures all the intrinsic properties of the

mesh and is invariant to extrinsic shape transformations such as

isometric deformations so that the reconstructed meshes have a

better shape-fidelity. Note that increasing the number of eigenvec-

tors reduces the distortion, while the total code size might increase

due to the additional coefficients as shown in Fig. 6.

In the high-frequency domain, as geometric details of the frames

within one cluster are almost unchanged, we can just store the

details once to reduce the spatial redundant information. Actually

we store full geometry of key-frames which has included the repre-

sentative geometric details for each cluster in the previous section.

A further compression improvement can be achieved by effi-

ciently encoding the coefficient matrix C. In this paper we follow

[10] by applying linear predictive coding to compress the MHB

coefficient matrix. After LPC, we apply quantization and arithmetic

coder to the LPC coefficients and residuals as other compression

methods do in order to further reduce the data size.

(a) (b) (c)

(d) (e) (f)

Figure 6: Compression with different number of bases. Top

row from left to right: Low-frequency part of Frame 20 of

horsegallap with 200, 400, 600 bases. Bottom row: Recon-

struction errorsmapped to blue-red colormapwith 200, 400,

600 bases.

In summary, the compressed information in our method includes

the following two parts:

• the compressed geometry and connectivity of key frames;

• the quantized integers of LPC coefficients and residuals.

6 DECOMPRESSIONWITH DEFORMATION
TRANSFER

In the decompressing process, we firstly use the LPC coefficients

and residuals to retrieve the MHB coefficient matrix C (lossless

up to quantization). Then with the decompressed key-frames, we

re-compute the manifold harmonic bases Ui for each cluster. Low-

frequency parts of frames in each cluster are reconstructed using

corresponding bases and coefficients:

f
′
i = Ui ∗ ci . (5)

As mentioned above, we only store the geometry of key-frames

and low frequency parts of non-key-frames represented by MHB

coefficients, so the last step of decompression is to transfer the high-

frequency part of key-frames to the low-frequency parts of non-

key-frames to recover high-quality mesh sequence via deformation

transfer techniques [22]. We first take the low frequency part of

key-frame as source mesh and the full key-frame as target mesh.

Then the source and target deformations are represented as affine

transformations and a correspondence is built here between them.

Finally we use this correspondence to map geometry details of

key-frames to low frequency parts of non-key frames by solving a

constrained optimization as shown in Fig. 7.

Even though we have proposed a key-frame based compression

scheme with piece-wise manifold harmonic bases, however com-

puting the spectral bases involves computing the eigenvectors of a

N × N matrix which will cost much time. Thus, we need a multi-

resolution scheme to reduce the space complexities of the sequence

to reduce the decompression time.

We firstly use an edge-collapse [3] scheme to coarsen the given

mesh sequence with exactly same rule to keep topology consistent

across coarse meshes (Ghost) which have around 10000 vertices

(actual number depends on mesh complexity), explicitly reducing

the information present in the data set. Note that there is a trade-off

between space complexities and time, reconstruction error. Then
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Figure 7: Illustration of transferring the high-frequency part of key-frame to the low-frequency parts of non-key frames. The

left and middle top row are the decompressed low-frequency parts. The left and middle bottom row are the reconstructed full

frames. The right are reconstruction errors mapped to blue-red color map.

we apply the proposed scheme on the ghost sequence. In the de-

compressing process, as the topology is modified, we need to build

a corresponding relationship between the source and target mesh.

Fortunately edge-collapse schemes simplify a mesh by collapsing a

few vertices into one. For a vertex on the ghost mesh, we choose

the nearest one of these vertices as its corresponding vertex on the

original mesh. Then we apply the farthest point sampling method

to build sparse correspondences between the target and source

meshes and lastly use deformation transfer techniques to recovery

the high-frequency part. The multi-resolution scheme is shown in

Fig. 8.

7 EXPERIMENTS AND EVALUATIONS

In this section, we show the experiments of our compression scheme

with different mesh sequences which are shown in Table 1. We use

bit per vertex per frame (bvpf) to represent the size of data after

compression. The overall sequence distortion is measured by the

traditional vertex-based error: Karni-Gotsman (KG) error [10] and

visual perceptual error: Spatial-Temporal Edge Difference (STED)

error [28].

7.1 Choice of Compression Parameters

The encoding performance of our scheme is mainly affected by

2 parameters: (1) the number of clusters, (2) the number of mani-

fold harmonic basis. Table 2 shows the compression and distortion

results with different numbers of clusters. The optimal number

of clusters cannot be defined as a priori, but we can roughly esti-

mate a general range according to the pose changing. When the

(a) (b)

(c)(d)

Edge
collapse

Compression&
Decompression

Deformation 
transfer

Figure 8: Flowchart of the proposed multi-resolution

scheme. (a) Original mesh(165954 vertices). (b) Ghost

mesh(10002 vertices). (c) Low frequency part of decom-

pressed mesh. (d) Reconstructed mesh.

similarity of each frame in one cluster is higher, the representa-

tion ability of embedded space of MHBs of key-frames is stronger

28
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Table 1: Mesh sequence

Sequence Vertices Triangles Frames

Cloth 5525 10752 200

Humanoid 7646 15288 154

Horse-gallap 8431 16843 48

Samba 9971 19938 250

Walk 10002 20000 250

Jump 15826 31648 222

Armadillo 165954 331904 81

and the compression performance is better. Taking into the key-

postures in the test sequences, experiments show that there is a

significant reduction in reconstruction errors with just 2 or 4 clus-

ters for sequences with a few key-postures such as Horse-gallap and

Humanoid, while the complicated sequences such as Samba and

Walk need more clusters. It is obvious that the number of extracted

key-frames increases, the KG-error and STED-error reduce while

the bvpf increases. Therefore, there is a trade-off between compres-

sion ratio and reconstruction error. Table 3 shows the compression

and distortion results with different numbers of manifold harmonic

bases which determines the threshold of high-frequency domain

and low-frequency domain. As the number of MHBs increases, bvpf

increases very little, because we just store key-frames and the grow-

ing number of MHBs only affects coefficient matrix. It is obvious

that the number of bases increases, the KG-error and STED-error

reduces which is because more information of low frequency part

has transmitted to the decompressing process by embedding the

space with more MHBs as shown in Fig. 6. However it needs more

time to re-compute MHBs in decompressing process, so there is a

trade-off between compression ratio and decompressing time.

Table 2: Compression performance with different number

of clusters

Sequence number of number of bvpf KG STED

clusters bases error(%) error

Horse gallap 1 800 0.96 0.84 0.034

2 800 1.32 0.68 0.024

4 800 2.20 0.46 0.016

Samba 4 600 0.90 0.61 0.019

6 600 1.00 0.68 0.016

10 600 1.35 0.65 0.013

Humanoid 4 600 0.91 0.65 0.014

6 600 1.11 0.58 0.009

8 600 1.29 0.57 0.008

Walk 4 600 0.70 0.93 0.025

8 600 1.13 0.70 0.020

10 600 1.20 0.63 0.016
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Figure 9: R-D curves for all test sequences measured in KG-

error.
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Figure 10: R-D curves for all test sequences measured in

STED-error.

7.2 Performance with Different Datasets

Fig. 9 and Fig. 10 show typical rate-distortion (R-D) curves under the

KG-error and STED-error on all test sequence. It is obvious that the

reconstructed error decreases as the data rate increases. As we just

store key-frames, our method reduces the required data rate to 0.5

bpfv at 1% distortion rate compared to other traditional PCA-based

methods and predictive methods. Our results are seen to be excel-

lent for relatively smooth sequence like Cloth and Jump. This is due

to the low frequencies present the geometry primary more than

the sharp parts like fingers or horseshoe. Note that combination

of different numbers of bases and clusters may result in different

reconstruction errors with the same bpvf. Fig. 11 shows the results

of multi-resolution scheme. With the edge collapse scheme the

reconstruction error increases while the encoding time decreases
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Table 3: Compression performance with different number of MHB

Sequence number of MHBs number of clusters bvpf KG error (%) STED error Decompressing time

(per frame in seconds)

Horse gallap 600 2 1.25 1.04 0.028 1.04

800 2 1.32 0.68 0.024 1.72

1000 2 1.54 0.63 0.023 2.95

Samba 400 6 0.90 0.97 0.019 1.37

600 6 1.00 0.68 0.016 2.65

800 6 1.14 0.70 0.015 5.10

Humanoid 300 4 0.90 0.85 0.017 0.66

600 4 0.91 0.65 0.014 1.51

800 4 0.95 0.58 0.013 3.41

Walk 400 6 0.93 1.12 0.024 0.88

600 6 0.98 0.77 0.020 1.97

800 6 1.08 0.73 0.018 3.27

Table 4: Encoding computation times (in seconds) of the pro-

posed method for different test sequences

Sequence Clustering MHBs LPC Total

Cloth 0.349 20.36 49.90 70.60

Horse-gallap 0.438 33.78 21.87 56.09

Samba 0.398 37.83 95.60 133.83

Humanoid 0.366 57.02 61.37 119.2

Walk 0.720 36.86 135.38 172.96

Jump 0.931 58.34 197.90 257.18

Armadillo 0.228 68.26 43.66 112.48

(10002)

Armadillo 3.056 645.35 846.88 1496.28

(165954)

All measured using 400 bases.

obviously shown in Table 4, so there is a trade-off between distor-

tion rate and decompression time for complex sequence. Table 4

shows the timing cost for the encoding process implemented with

Matlab on a PC with Intel Core i7-3770 CPU @ 2.40 GHz. Note that

the most time-consuming steps are computing MHBs of key-frames

and encoding coefficients which is dependent on the number of

vertices.

7.3 Comparison with Other Methods

We compare with other advanced methods in two aspects, (1) using

KG-error to evaluate the accuracy of geometry information; (2)

using STED-error to evaluate the perceived distortion which is

known as visual loss. Note that we believe that shape fidelity is more

important than the accuracy of geometric coordinates. Traditional

metrics tend to behave erratically when evaluating the results of

Laplacian-based encoding. Instead we use the STED error, since it

has been shown to correlated well with perceived distortion.

(a) (b) (c)

(d) (e) (f)

Figure 11: Multi-resolusion scheme for Armadillo. (a) Orig-

inal frame with 165954 vertices. (b) Edge collapse to 10002

vertices. (c) Edge collapse to 5002 vertices. (d-f) are the cor-

responding reconstruction errors.

We first compare the reconstruction accuracy measured by KG-

error with previous techniques, namely SPC [19] , improved SPC

(im-SPC) [2] and MPEG-4 FAMC [20]. Fig. 12 shows the comparison

results of Horse-gallap and Jump. As observed from this figure our

algorithm performs better than others in low data rate. That means

that inter-frame redundancy can be captured with fewer cluster

centers and manifold harmonic bases. With the data rate increases,

the KG-error decreases more slowly and becomes almost constant,

since we recover the geometry details of the non-key frames via

deformation transfer which inevitably lose certain information

during transfer process. However we concentrate on obtaining a

high compression rate with a limited distortion rate for complicated

dynamic mesh sequences, and the results seems satisfactory for

this.
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Figure 12: R-D curves comparison of the proposed method with previous techniques measured by KG-error. Left:Horse-gallap

sequence. Right: Jump sequence.

Figure 13: R-D curves comparison of the proposed method with previous techniques measured by STED-error. Left: Samba

sequence. Right: Cloth sequence.

Then we compare the perceived distortion measured by STED-

error with CoDDyaC [26] and CdmGL [25] in Fig. 13 with sequence

Cloth and Samba. It shows that our method performs better than

CoDDyaC which is a traditional PCA-based method which is also

shown in Fig. 1. That is because we can reconstruct the perfect ge-

ometry primary withMHBswhich occupy an important component

in terms of human vision. CdmGL which uses laplacian weights of

average shape to encode the delta trajectories, is better than ours

in the low data rate. However our scheme is better than CdmGL in

the high data rate. That is because we use more Laplacian matrix

of key-frames to capture the intrinsic properties of sequence while

CdmGL just store one average shape.

8 CONCLUSION AND DISCUSSION

In this paper, we have presented a key-frame based method with

piece-wise manifold harmonic bases to compress complex mesh

sequence. We explored intrinsic geometry properties of sequence

with MHBs to reduce spatial redundancy by decomposing the shape

space into high frequency part and low frequency part and com-

pressing them separately. Then we applied the notion of pose-

similarity to reduce the geometric redundancy along the time axis.

We extended the traditional spectral methods to piece-wise mani-

fold harmonic bases to compress the low frequency part of non-key-

frames and applied the deformation transfer techniques to recover

geometry details of non-key frames. Compared with PCA-based
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methods and other predictive methods, we not only eliminated the

need for an explicit storage bases to improve the compression radio,

but also achieved better shape fidelity which we strongly believe

is more important than the accuracy of geometric coordinates by

way of a piece-wise MHBs.

Limitations and future work. A possible limitation arises

when dealing with frames which have many sharp protrusions,

which means we need more bases to reconstruct even the low fre-

quency part subject to a limited reconstruction error and of course

the computation cost and compression rate will increase in such

cases. One possible solution is to partition the meshes into a few

patches with simpler structure and compress these patches sepa-

rately, or replace the globally defined manifold harominic bases

with the compressed manifold modes (CMM) [15] which has local

support in contrast. However, the feasibility and the broader im-

pacts of these solutions will need further investigation in the future.

In addition, the parameters in our framework, such as the number

of clusters and the number of harmonic bases, are all empirically set

according to adequate experiments. Adaptively determining these

parameters based on the sequence itself will make our method more

practical and adaptable in a wider range of graphics applications.
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