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Informative and discriminative feature descriptors play a crucial role in a large variety of 
shape analysis and processing applications, including shape matching, retrieval, segmen-
tation, recognition, and synthesis. In this paper, in order to obtain more discriminative 
shape descriptors in an automated fashion, we develop a novel approach to jointly learning 
shape descriptors and their correspondence in deep triplet convolutional neural networks 
(CNNs). We first extract geometrically informative multi-scale features based on classical 
diffusion theories on manifold and kernel function on shapes. During the training process, 
the deep triplet CNNs is trained in an unsupervised manner by using a larger pool of ex-
tracted multi-scale features serving as the networks’ inputs. One key component of our 
triplet CNNs is a delicate and unique design of the loss function favoring good matches 
while penalizing mis-matches simultaneously. Our newly-learned shape descriptors have 
better discriminative power than any existing kernel-based descriptors and could give rise 
to more accurate shape matching subject to various shape deformation constraints (e.g., 
isometric deformations and non-isometric deformations). To our best knowledge, this is the 
first attempt to learn more discriminative shape descriptors and more accurate shape cor-
respondence jointly using the triplet CNNs. Extensive experiments have confirmed that our 
newly-learned shape descriptors have many attractive properties, including being concise, 
discriminative, and robust, and we demonstrate the superior performance of our approach 
over other state-of-the-art methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In computer graphics and geometric modeling, shape understanding plays an important role to analyze and process 3D 
shape geometry. In order to understand shapes effectively and in a higher level, one key step is to find the correct matching 
points between a pair of shapes, serving as an enabling technique at a lower level for shape representation and model-
ing. This step, also called shape correspondence, could be applied to various shape analysis and processing applications, 
including shape retrieval (Bronstein et al., 2011), segmentation (Skraba et al., 2010), recognition (Bronstein and Kokkinos, 
2010), and synthesis (Kalogerakis et al., 2012). As a result, shape matching is now becoming one of the most active yet 
challenging research areas. In shape matching, seeking the best possible feature descriptor is of fundamentally significance. 
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Fig. 1. The entire process of our approach.

In technical essence, a local shape feature descriptor assigns to each point on the shape a vector in some single- or multi-
dimensional feature space representing the local geometric properties of the shape in the vicinity of that point. A global 
feature descriptor describes the global geometric structure of the entire shape.

In the past few decades, many shape descriptors (Bronstein and Kokkinos, 2010; Aubry et al., 2011; Boscaini et al., 2015)
have been proposed and well utilized in shape matching. However, the performance of these descriptors is still far from 
being satisfactory, especially in complicated matching tasks. The main issue results from the following aspects: First, these 
shape descriptors do not have enough discriminative power to describe various transformations of 3D shape; Second, by 
considering the complex topological structure and visibly variational geometry of 3D shapes, one type of feature descriptor 
can only extract limited information; Third, although some feature descriptors can collect enough information about the 
point’s local region, they are not concise, which leads to the inefficient usage. Therefore, a key problem in shape matching 
is to construct discriminative feature descriptors that can provide accurate matching results for various deformations of 3D 
shapes with enhanced generalization capability.

According to the recent trends of image processing and analysis, it is suggested that a deep neural network structure 
could be employed to extract concise, discriminative, and robust feature representations from the input data (Masci and 
Meier, 2011; Yan et al., 2014). Inspired by this observation, we resort to the deep learning algorithm to extract powerful 
shape descriptors automatically. In particular, we develop a novel approach to jointly learning shape descriptors and their 
correspondence by using the deep triplet convolutional neural networks (CNNs). In our approach, a large pool of geomet-
rically informative multi-scale features are first extracted to characterize each point on the shape. Given these features, we 
can thus train the deep triplet CNNs in an unsupervised manner. The key component of the deep triplet CNNs is a delicate 
and unique design of the loss function favoring good matches while penalizing mis-matches simultaneously. In such way, 
the deep triplet CNNs afford an automatic mechanism that expedite the joint learning of both shape descriptors and their 
correspondence. The entire process of our approach is shown in Fig. 1. Experimental results confirm that our approach is 
outperforming existing state-of-the-art approaches.

The main contributions of our article include:

• We articulate a novel approach to jointly learning shape descriptors and their correspondence via deep triplet CNNs.
• Our approach could learn more discriminative shape descriptors, which will give rise to more accurate shape matching 

subject to various shape deformation constraints (e.g., isometric deformations and non-isometric deformations).
• Our newly-learned shape descriptors have many attractive properties, including being concise, discriminative, and ro-

bust.

The rest of this paper is organized as follows: Section 2 reviews related works. An overview of the proposed approach 
appears in Section 3. Section 4 discusses how to jointly learn shape descriptors and their matching via deep triplet CNNs, 
and the learning process’ major components are documented in details. Then we demonstrate impressive performance 
through extensive experiments in Section 5. Finally, we conclude the paper in Section 6 and point out possible future 
research directions.

2. Related works

As discussed previously, one of the key issues in shape correspondence is to find discriminative and robust shape feature 
descriptors. There have been several prior works relevant to shape feature descriptors, which mainly follow two methods: 
1) constructing better shape feature descriptors in a handcrafted way, and 2) developing approaches to automatically learn 
feature descriptors (based on deep learning techniques). In this section, we shall briefly review the related works from these 
two aspects.

Shape feature descriptors. Early research works on feature descriptors mainly focus on invariance under global Euclidean 
transformations (e.g., rigid deformation), including shape context (Belongie et al., 2000), spin image (Johnson and Hebert, 
2002), and integral volume descriptors (Manay et al., 2006). In the past decade, significant efforts have been invested in 
extending the invariance properties of shapes to non-rigid deformation. Some of the classical rigid shape feature descriptors 
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are extended to the non-rigid case by replacing the Euclidean metric with its geodesic counterpart (Hamza and Krim, 2003;
Elad and Kimmel, 2003).

Recently, the emerging field of diffusion geometry provides an effective method for the geometric analysis of non-rigid 
shapes. The research of diffusion geometry is based on the theoretical works by Bérard et al. (1994). Later on, Coifman and 
Lafon (2006) propose to use the eigenvalues and eigenvectors of the Laplace–Beltrami operator associated with the shape to 
construct diffusion distances. These distances as well as other diffusion geometry construct new shape descriptors that are 
significantly more robust than geodesic counterparts (Bronstein et al., 2009; Mémoli, 2009). Diffusion geometry provides an 
intuitive interpretation of many shape properties for spatial frequencies and allows us to use standard harmonic analysis 
tools.

Furthermore, with recent advancements in the discretization of the Laplace–Beltrami operator, there have been sev-
eral efficient and robust numerical and computational tools. Lévy (2006) first explores these methods in the context of 
shape processing. There have also been several attempts to construct shape feature descriptors based on diffusion geometry 
properties of the shape. Rustamov (2007) proposes to construct the global point signature (GPS), which uses eigenval-
ues and eigenfunctions of the Laplace–Beltrami operator defined on 3D shape to characterize points. Later on, based on 
the fundamental solutions of the heat equation, Sun et al. (2009) introduce the heat kernel signature (HKS). And another 
physically-inspired descriptor, the wave kernel signature (WKS) (Aubry et al., 2011), is proposed as a solution to combat the 
excessive sensitivity of the HKS to low-frequency information. Both HKS and WKS have gained attention because of their 
multi-scale property and invariance to isometric deformations. As of now, these descriptors lie in the foundation of shape 
matching applications (Bronstein and Kokkinos, 2010; Bronstein et al., 2010).

Feature learning. Over the past decades, due to the fact that conventional hand-crafted feature descriptors might not 
be discriminative enough to various transformations of 3D shapes, feature-learning-based approaches start to attract atten-
tion of many researchers. These learning-based methods provide an efficient way to construct more discriminative feature 
descriptors in an automated fashion.

In the research of Shape Google (Ovsjanikov et al., 2009; Bronstein et al., 2011), the bag-of-features (BoF) method is used 
to extract a frequency histogram of geometric words for shape analysis (Eitz et al., 2012, 2011; Hu and Collomosse, 2013). 
Despite the inception of BoF, the authors also introduce a similarity-sensitive hashing method to achieve more discrimina-
tive and compact representations. Castellani et al. (2008, 2011) propose a middle-level feature extraction scheme through 
learning hidden states from local basic descriptors for shape matching. In this approach, local patches are modeled as a 
stochastic process through a set of circular geodesic pathways and learned by using hidden Markov model.

With the development of diffusion geometry, the Laplacian-based descriptors achieve state-of-the-art performance. 
Nonetheless, they frequently focus on different properties of shape. In order to provide a generic feature descriptor for 
shapes, Litman and Bronstein (2014) develop a learning scheme to construct optimized spectral descriptors for deformable 
shape correspondence. Also, in order to collect rich information from the input data and select the most significant feature, 
Barra and Biasotti (2013) introduce a method using multiple kernel learning to find optimal linear combination of kernels 
in classification and retrieval tasks.

Recently, the studies of the deep learning algorithm show that deep neural networks have impressive capabilities in 
extracting effective and robust representations from the low-level features (Bengio, 2009; Hinton, 2010). As a special case, 
CNNs (Ranzato et al., 2007; Krizhevsky et al., 2012; Farabet et al., 2013) have been proved to be an effective way for 
extracting concise, discriminative, and robust features and could be applied to various applications. In this paper, we propose 
to jointly learn shape descriptors and their correspondence from a large pool of multi-scale features with deep triplet CNNs 
in order to continue to advance the research frontier of feature extraction and shape matching.

3. Method overview

Our goal is to obtain a discriminative and robust shape descriptor automatically, which could give rise to more accurate 
shape matching subject to various shape deformation constraints. The research is propelled by deep learning approaches. 
In this article, we make first attempt to jointly learn shape descriptors and their correspondence via deep triplet CNNs. 
The network supervised by triplet loss to map the input feature space into a newly-learned descriptor space, where the 
Euclidean distance of descriptors is directly related to the correspondence of points.

As shown in Fig. 2, the deep triplet CNNs comprises three identical copies of the same feed-forward CNNs which share 
the same parameters. The input of the network is a triplet of multi-scale features, including the feature of anchor point, 
corresponding point, and non-corresponding point. When fed with these three features, the deep triplet CNNs outputs 
two intermediate values, which are Euclidean distance between newly-learned descriptors of corresponding points and the 
one between descriptors of non-corresponding points. Then, we use these two Euclidean distances in the newly-learned 
descriptor space to define the triplet loss function.

During the training process, by effectively reducing the distance of good-matching descriptors while increasing the dis-
tance of mis-matching descriptors, the deep triplet CNNs guarantees that good-matches are closer than mis-matches in 
the newly-learned descriptor space. With the trained network, a concise, discriminative, and robust shape descriptor could 
be automatically extracted, which in turn results in more accurate shape matching subject to various shape deformation 
constraints.
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Fig. 2. Overview of the joint learning method based on the deep triplet CNNs (see Section 4 for details). (a) Input construction. Given a large pool of 3D 
shapes, we first extract multi-scale features for each point. A triplet of multi-scale features, including the feature of anchor point, corresponding point, and 
non-corresponding point, is fed into deep triplet CNNs for training. (b) Architecture of the deep triplet CNNs. The network is composed of three identical 
copies of the same feed-forward CNNs which shares the same parameterization. Supervised by the triplet loss, the deep triplet CNNs can transform the input 
feature space into a newly-learned descriptor space, where the Euclidean distance of newly-learned descriptors is directly related to the correspondence of 
points.

4. The new joint learning method based on triplet CNNs

In this section, we will present how to jointly learn shape descriptors and their correspondence by using deep triplet 
CNNs. First, we extract a large pool of geometrically informative multi-scale features to characterize each point on the 
shape. Second, we present the architecture of the deep triplet CNNs that is used to jointly learn shape descriptors and their 
correspondence from massive multi-scale features. Third, we show the details of joint learning method. Finally, we make a 
brief description of the training set construction.

4.1. Multi-scale feature extraction

For a 3D shape, the description value of the point does not provide sufficient discriminative information especially for the 
low-level descriptor. Usually, geometric properties of local region around the point provide much more information. Thus, 
we develop a geometrically informative multi-scale feature to characterize each point on a shape. The proposed multi-scale 
features capture geometric properties and hierarchical information of local region around the point.

Local region feature. Let vi , i = 1, · · · , n be the point on shape X . The local region R(i) is the bi-harmonic metric (Lipman 
et al., 2010) area of radius r centered at vi . We first construct a local region feature to encode the geometric characteristics 
of local region R(i). Let 

{
H(v j)

}
j=1,···,t be the heat kernel signatures computed at every point inside the local region R(i). 

We use matrix Mhis(i) to give an estimation of probability distribution of HKS values at all vertices in the local region R(i)
and at all time samples. At each time sample, Mhis(i) is defined based on the probability distribution of HKS at that time 
sample. In our article, we use histogram to give an estimation of probability distribution of HKS values. That is, given HKS 
has N Q time samples in diffusion time and NB is the number of bins used in the histogram, Mhis(i) will be formed as a 
N Q × NB matrix, where N Q = NB (we empirically use 32 samples in diffusion time and 32 bins in histogram). Meanwhile, 
we compute the covariance matrix Mcov (i) for 

{
H(v j)

}
, j = 1, · · · , t:

Mcov(i) = 1

t − 1

t∑

j=1

(H(v j) − μ)(H(v j) − μ)T (1)

where μ is the mean of heat kernel signatures computed in the local region R(i). It has a fixed dimension N Q × N Q , which 
independently of the size of the local region R(i) (as described above, we empirically set N Q = 32). It has been verified in 
Fang et al. (2015), Tabia and Laga (2015) that Mhis(i) and Mcov (i) can efficiently capture geometric properties of local region 
R(i). Till now, we have got the local region feature Mloc(i) if we define it as

Mloc(i) = λMhis(i) + (1 − λ)Mcov(i), (2)

where λ is empirically set as 0.5.
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Fig. 3. Architecture of deep CNNs with five stages. Each of the first four stages contains a filter bank module, a nonlinear module with a relu activation 
function, and a spatial pooling module for sub-sampling. The last stage involves a flattening operation which is used to obtain the newly-learned descriptor 
of each point on the shape.

Multi-scale feature. In order to take into account the hierarchical information, we propose a multi-scale feature based on 
the local region feature. For each point vi , we define several local regions R j(i), j = 1, · · · , l and r1 < · · · < rl (we empirically 
set l = 4). Thus, we get four local region features Mloc(i, j), j = 1, · · · , 4 for point vi . Given these features, we reorganize the 
four 32 × 32 features to form a 64 × 64 multi-scale feature Mi . According to the convolutional characteristics of deep CNNs, 
the ordering of features would not influence the performance of the deep triplet CNNs.

4.2. Triplet CNNs structure

The multi-scale feature of each point can be used as the input of the deep triplet CNNs. The goal of the deep triplet 
CNNs is to map the input feature space into a newly-learned descriptor space, where the Euclidean distance of descriptors 
is directly related to the correspondence of points.

CNNs architecture. In our approach, CNNs can be seen as an end-to-end feature extractor. The multi-scale feature of 
each point can be used as the input of CNNs. With limited training shapes, the deep CNNs architecture should not be very 
complex, otherwise with the growth of layer number, the parameters would rapidly increase so as to produce overfit. Thus, 
the structure of CNNs consists of five major stages, as shown in Fig. 3.

In the first stage, the input multi-scale feature M passing through twenty 3 × 3 convolutional kernels {Wi}20
i=1 and bias 

values {bi}20
i=1:

Yi = Wi ∗ M + bi, i = 1, · · ·,20, (3)

where ∗ indicates the convolution operation and the bias bi is same for all the convolutional kernels {Wi}20
i=1. After the con-

volution, twenty 62 ∗ 62 maps are generated by passing {Yi}20
i=1 through nonlinearity module with a relu activation function. 

The nonlinearity is operated on each component of Yi . After the nonlinear module, we down-sample each dimensional of 
the feature maps by a factor of 2 to generate twenty 31 × 31 feature maps, denoted as 

{
Ẏi

}20
i=1.

In the second stage, we first generate 20 new feature maps 
{

R j
}20

j=1 from all first-stage feature maps. In this process, 

each 29 × 29 map R j is obtained by applying 20 different 3 ∗ 3 kernels 
{

Ẇi j
}20

j=1 and biases ḃ j to the input feature maps 
{

Ẏi
}20

i=1:

R j = Ẇi j ∗ Ẏi + ḃ j, j = 1, · · · ,20. (4)

Then, the same nonlinear module and max-pooling operation is conducted, which generate twenty 14 × 14 maps 
{

Ṙ j
}20

j=1. 
Max-pooling is performed over a 3 × 3 pixel window, with stride 2.

In the third stage, 20 input feature matrices 
{

Ṙ j
}20

j=1 passing through 40 different 3 × 3 convolutional filters 
{

Ẅi jk
}40

k=1

and bias values 
{

b̈k
}40

k=1:

Gk = Ẅi jk ∗ Ṙ j + b̈k,k = 1, · · · ,40. (5)

Then, through the same nonlinear module and 2 × 2 max-pooling operation, we get 40 down-sampled 6 × 6 feature maps {
Ġk

}40
k=1. In the fourth stage, we generate 40 new feature maps {Pt}40

t=1 from the 40 input feature maps 
{

Ġk
}40

k=1:

Pt = ...
Wi jkt ∗ Ġk + ...

bt, t = 1, · · · ,40, (6)

where 
{ ...

Wi jkt
}40

t=1 are 40 different 3 ∗ 3 kernels and the same bias 
...
bt is added to all the components of 

...
Wi jkt ∗ Ġk . After that, 

the same nonlinear module and 2 × 2 max-pooling operation is conducted, which eventually generate 40 down-sampled 
2 × 2 feature maps.
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In the last stage, we flatten these feature maps into a concise descriptor Z. In the process of extracting Z, we can see that 
each component of Z is actually generated by nonlinearly combining (i.e., relu function) and hierarchically compressing (i.e., 
max-pooling) a subset of the input features. Thus each newly-learned descriptor Z actually characterizes specific attributes 
of a point on the shape. In this process, any two elements from the input multi-scale feature can be nonlinearly combined, 
no matter how the local region features are organized in the multi-scale feature matrix. For the sake of simplification, we 
rewrite the descriptor Z as a function of M:

Z = Fθ (M), (7)

where Fθ denotes CNNs parameterized by θ (i.e., convolutional kernels Wi, Ẇi j, Ẅi jk and 
...
Wi jkt , and bias values bi, ̇b j, ̈bk

and 
...
bt ).

Triplet CNNs structure. The triplet CNNs consists of three identical copies of the same feed-forward CNNs which share 
the same parameters, as shown in Fig. 2. In this model, CNNs is used as an end-to-end feature extractor. The input of deep 
triplet CNNs is a triplet (M, M+, M−), which M, M+, M− are the multi-scale feature of anchor point v , corresponding point 
v+ and non-corresponding point v− , respectively. When fed with these three multi-scale features, the triplet CNNs outputs 
three newly-learned descriptors Z, Z+ and Z− . Then, we compute Euclidean distances between each of Z+ and Z− against Z. 
According to (7), these two Euclidean distances can be denoted as:

d+
θ = ‖(Fθ (M) − Fθ (M+)‖2, (8)

and

d−
θ = ‖(Fθ (M) − Fθ (M−)‖2. (9)

That is, d+
θ and d−

θ encode the Euclidean distances between each of M+ and M− against M in the newly-learned descriptor 
space. Finally, we use the pair of distances d+

θ and d−
θ to define the triplet loss. During the training process, by effectively 

reducing distances of good-matching features while increasing distances of mis-matching features, the deep triplet CNNs 
guarantees that good-matches are closer than mis-matches in the newly-learned descriptor space.

4.3. Joint learning method

Given the structure of the deep triplet CNNs, we have to optimize its parameters (i.e., θ ) to jointly learn shape descrip-
tor and their correspondence. The deep triplet CNNs should guarantee that descriptors of corresponding points are closer 
than ones of non-corresponding points in the newly-learned descriptor space. Formally, given T triplets (Mt , M+

t , M−
t ), 

t = 1, · · · , T , we want to enforce d−
θ (t) > d+

θ (t). Therefore, the triplet loss of our deep triplet CNNs is defined as follows:

Lθ =
T∑

t=1

max(0,d+
θ (t) − d−

θ (t) + α), (10)

where α represents the gap parameters between two distances. We set α = 0.5 in the experiment. The objective of training 
process is Lθ → 0, that is d+

θ (t) → 0 and d−
θ (t) → α. In our implementation, the minimization of (10) mainly consists of 

iterative feed-forward and back-propagation processes. We initialize all convolution kernels with small random values.
Feed-forward. In the feed-forward process, we first pass the input triplet (Mt , M+

t , M−
t ) through the deep triplet CNNs 

to get the pair of Euclidean distances d+
θ (t) and d−

θ (t). Then, we use these two distances to update the triplet loss (10).
Back-propagation. In the back-propagation process, the objective is to propagate backward the triplet loss and reduce 

it by tuning the parameters layer by layer. According to the sharing parameters mechanism in deep triplet CNNs, we allow 
the back-propagation operation to update the three same CNNs simultaneously. Here we use the stochastic gradient descent 
with momentum algorithm to update parameters layer by layer. In this process, we set a learning rate of 0.01 and a weight 
decay of 0.0005. The feed-forward and back-propagation operations are iteratively conducted until the triplet loss converge 
or a predefined number of iterations is reached. Fig. 4 shows two examples to illuminate the convergency of our method. 
In general, our approach can achieve convergency through 150 iterations.

4.4. Training set construction

So far, we have introduced the details of joint learning method. One important part of our approach is the training 
set construction. These triplets in the training set are contribute to loss reduction, affecting the convergency speed of the 
training process. So the construction of the training triplets is crucial for the jointly learning process. According to Litman 
and Bronstein (2014), the construction of the training set follows two aspects:

1) Given the point-to-point correspondence between shapes, we first randomly sample two shapes. Then, for each point 
(anchor point) on the first shape, we denote the corresponding point on the second sampled shape as good matching point, 
and a random point on the second shape as mis-matching point.
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Fig. 4. Triplet loss convergence curves.

2) Let v be a point (anchor point) on a shape, and r < R are the geodesic radii centered at v . We deem all points v+ lie 
in the geodesic ball of radius r as good matching points, while deeming mis-matching points all v− outside the geodesic 
ball of radius R .

The training triplets are generated by sampling many anchor points, good matching points and mis-matching points on 
a collection of training shapes. The two sampling strategies above guarantee the discriminative power and the robustness of 
the newly-learned descriptor.

5. Experimental results and evaluation

5.1. Experimental setup and data

Datasets. To evaluate the performance of our approach, three correspondence benchmarks are used in our experiments, 
including SCAPE (Anguelov et al., 2005), FAUST (Bogo et al., 2014) and TOSCA (Bronstein et al., 2008) datasets. The SCAPE 
dataset contains a scanned human figure in 71 different poses, the FAUST dataset consists of 100 scanned human shapes 
(10 subjects, 10 shapes per subject), and 71 synthetic models of humans and animals are in the TOSCA dataset. To better 
compare with the other benchmarks, we limit the evaluation only to human shapes (Michael) for the latter dataset. In order 
to reduce the computational and storage complexity, the shapes in SCAPE and TOSCA are downsampled to 10K points. FAUST 
shapes contain 6.8K points. All shapes are scaled to unit geodesic diameter. We use the cotangent weight scheme (Meyer 
et al., 2002) to compute the first 200 eigenvalues and eigenvectors of the Laplace–Beltrami operator on each shape. For the 
HKS, the time scale is set to be [1, 10] with an interval of 0.1, and the log time base is set to 2. And we use the first 32
samples. For each point, we set the four local region radii to 0.125, 0.25, 0.375 and 0.5 of the max bi-harmonic distance, 
respectively.

For comparison, we also evaluate the HKS, WKS and OSD descriptors. The HKS time scales are set as described above. 
The energy levels and variance σ 2 of WKS are set as introduced in Aubry et al. (2011). And the OSD related parameters are 
set according to Litman and Bronstein (2014). To guarantee the fairness of comparison, Euclidean distance is used for all 
descriptors.

Training set. For each dataset, the training, validation and testing sets are disjoint. On the SCAPE dataset, we use shapes 
20–39 and 50–70 for training, five random shapes from the remaining ones for validation, and the rest for testing. On FAUST, 
we use subjects 1–7 for training, subject 8 for validation and subjects 9–10 for testing. On the TOSCA set, we use the human 
shapes (Michael) for testing. For each shape, we use the farthest point sampling (FPS) strategy (Eldar et al., 1997) to sample 
2K feature points.

The construction of training set from two aspects (Litman and Bronstein, 2014): 1) We first sample two shapes. Then, 
for each feature point on the first shape, we deem the corresponding point on the second sampled shape as good matching 
point, and a random point on the second shape as mis-matching point; 2) For each feature point on a shape, we pair 50
good matching points and 50 mis-matching points on the same shape. These good matches are sampled from the ball of 
radius r centered at that point. Half of the mis-matches are picked from the ring lying between the radii R and 4R around 
that point; another half are filled with points farther than 4R . We empirically set the radii r and R to 2% and 4% of the 
max geodesic distance, respectively. Thus, we generate 143K training triplets on SCAPE dataset and 181K training triplets on 
FAUST dataset.

5.2. Experiments and analysis

In this subsection, we conduct extensive experiments to show the performance of our newly-learned shape descriptors 
in shape matching. Qualitative and quantitative descriptor evaluation are done using three criteria, including similarity map, 
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Fig. 5. Normalized Euclidean distance between the descriptor at the reference point on the right shoulder (white sphere pointed by red arrow) and the 
descriptors computed at rest of the points for different transformations (shown left-to-right: original, 6 near isometric deformations, 4 non-isometric defor-
mations, 1 noise). Dark blue and red colors represent small and large distances, respectively; colors are saturated at the median distance. Ideal descriptors 
would produce a distance map with a sharp minimum at the corresponding point and no false local minima at other locations. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

cumulative match characteristic (CMC) and receiver operating characteristic (ROC). Similarity map depicts the Euclidean 
distance in the descriptor space between the descriptor at a reference point and the rest of the points on the same shape. 
The CMC evaluates the probability of finding the correct matching among the k nearest neighbors in the descriptor space. 
The ROC measures the percentage of good matches and mis-matches falling below various thresholds of their distance in 
the descriptor space (true positive and negative rates, respectively).

Similarity map. We first show the qualitative evaluation of our newly-learned descriptors using similarity map, as shown 
in Fig. 5. It depicts the Euclidean distance in the descriptor space between the descriptor at a reference point (on the right 
shoulder) and the rest of the points on the same shape as well as its transformations. We observe that the newly-learned 
shape descriptor manifest better localization and better discriminative power than other kernel-based descriptors. Moreover, 
our newly-learned shape descriptors are robust to various transformations, including isometric deformations, non-isometric 
deformations, and noise. In contrast, our method can well represent these shapes.

Descriptor evaluation. To illustrate the discriminative power and robustness of our newly-learned shape descriptors, we 
measure the performance of newly-learned shape descriptors using the CMC and ROC. As shown in Fig. 6(a), we compare 
the newly-learned descriptor to HKS, WKS and OSD on the SCAPE dataset, we can see that the newly-learned descriptor 
exhibits excellent performance (over 80% hit rate at k = 50), while other kernel-based descriptors perform significantly 
worse (e.g., lower than 58% hit rate via using HKS). Additionally, to show the robustness to non-isometric deformations of 
the newly-learned shape descriptor, we make a comparison with kernel-based descriptors on the FAUST dataset. As shown 
in Fig. 6(b), we observe that the hit rate can reach 88% at k = 50 with the newly-learned descriptor, while only 26% via using 
HKS. The main reason is that the descriptors learned in CNNs can better represent a shape. Through multilayer convolutions 
and nonlinear mapping, the descriptor space becomes much easier to be divided.

Generalization capability. In order to demonstrate the generalization capability of our newly-learned descriptors, we 
conduct an additional experiment to test the performance of the newly-learned descriptor. We applied the net trained on 
FAUST to the TOSCA test set. As shown in Fig. 6(c), we see that the trained net transfers well to a new dataset and that the 
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Fig. 6. Performance of different descriptors (HKS, WKS, OSD and Ours) measured using the CMC (first row) and ROC (second row); higher curves represent 
better performance. (a) First column shows results for the network trained and tested on disjoint sets of the SCAPE dataset. (b) Second column shows 
results for the network trained and tested on disjoint sets of the FAUST dataset. (c) Third column shows results for a transfer learning experiment where 
the network has been trained on FAUST and tested to TOSCA.

Fig. 7. Performance of different descriptors (HKS, WKS, OSD and Ours) in the shape correspondence task on the SCAPE (left), FAUST (middle) and TOSCA 
(right) datasets. Higher curves represent better performance.

newly-learned shape descriptor outperforms other kernel-based descriptors. We note that at k = 50 the hit rate can reach 
86% with the learned descriptor, while only 58% via using HKS. These results prove that the newly-learned descriptor has 
better generalization capability.

Shape correspondence. We also measure the performance of newly-learned shape descriptors in the shape correspon-
dence task. In this experiment, we define the geodesic distance between groundtruth corresponding point and matched 
point on the target shape as geodesic radius and use spectral matching algorithm (Leordeanu and Hebert, 2005) to com-
pute the point-to-point correspondence between the shapes. For each shape, 100 feature points are sampled via FPS (Eldar 
et al., 1997). Fig. 7 shows the performance of different descriptors on the SCAPE, FAUST and TOSCA datasets. We can see 
that the newly-learned descriptor performs significantly better than other kernel-based descriptors. We also show good 
correspondences (geodesic radius below 0.15) obtained based on different descriptors, as shown in Fig. 9. We observe that 
the newly-learned descriptor generates the largest number of good correspondences. To illustrate the effectiveness of our 
method, we also compare the proposed approach to RF (Rodolà et al., 2014) and CN (Wei et al., 2016). As shown in Fig. 8, 
our method can get better results than that of these two methods (10% improvement than RF (Rodolà et al., 2014) with 
geodesic radius below 0.3 on both datasets), while the shapes can be matched at a finer level in our approach.
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Fig. 8. Performance of different methods in the shape correspondence task on the (a) SCAPE and (b) FAUST datasets. Higher curve represents better 
performance.

Fig. 9. Shape matching based on HKS, WKS, OSD and the newly-learned descriptor. Shown in green lines are good correspondence with geodesic radius 
below 0.15 (the number of good correspondence appears in parenthesis).

Fig. 10. More shape matching results of our approach on the SCAPE dataset.

More results. We also give more results of shape matching and similarity map. More shape matching results produced 
by our method are shown in Fig. 10, Fig. 11 and Fig. 12. Especially in Fig. 12, we see that our approach is applicable to 
large deformations. These results demonstrate that our approach is effective and robust for various shape transformation 
constraints. More similarity map results produced by our approach are shown in Fig. 13. As shown in Fig. 14 and Table 1, 
we also conduct an experiment on other categories, including cat and centaur. From the above experiments, we can see that 
the proposed approach is superior to state-of-the-art methods.
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Fig. 11. More shape matching results of our approach on the FAUST dataset.

Fig. 12. More shape matching results of our approach on the TOSCA dataset.

Fig. 13. More similarity map results of our method.
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Fig. 14. More results of other categories on the TOSCA dataset.

Table 1
The performance statistics of our method on different datasets. The second column is the num-
ber of training triplets. The third and fourth columns are the timings of training and testing 
process (in minutes), respectively. TOSCA (human) just used for testing. And the last column is 
the averaged correspondence accuracy with geodesic radius below 0.3.

Dataset Training triplets Training Testing (per mesh) Accuracy

SCAPE (human) 143K 648 min 0.74 min 89.60%
FAUST (human) 181K 887 min 0.52 min 87.20%
TOSCA (human) – – 0.78 min 88.25%
TOSCA (cat) 111K 523 min 0.76 min 86.64%
TOSCA (centaur) 108K 514 min 0.78 min 88.17%

Performance. Our implementation runs on a desktop machine with an Intel Core I7-4790K CPU (3.6 GHz, 16GB memory) 
and a GeForce 970 GPU (4GB memory, CUDA 8.0). The GPU implementation of triplet CNNs uses the PyTorch framework.1

It takes about 11 hours to train the model with 143K training triplets on SCAPE dataset, and 15 hours with 181K training 
triplets on FAUST dataset. Once the training process is finished, we can efficiently compute shape descriptors using the 
trained model. It takes about 40 seconds for a shape with 6.8K points. More timing details are shown in Table 1.

Limitations. In our approach, the learned descriptors may have difficulties in dealing with shape defects, such as the 
existence of big holes or missing large organic parts. Another limitation is that we use the fixed size and number of local 
regions to generate the multi-scale feature, however, for different points of 3D shapes the selection of the size and number 
of local regions should be considered with its structure. These will be the topics for our future research.

6. Conclusion, discussion, and future works

In this paper, we have presented a novel approach to jointly learning shape descriptors and their correspondence based 
on the deep triplet CNNs. Extensive experimental results have confirmed the discriminative capability of the newly-learned 
shape descriptor in shape matching. Geometrically informative multi-scale features are extracted first. We feed our designed 
deep triplet convolutional neural networks with these features to learn the parameters of the networks, yielding newly-
learned descriptors which are more concise, discriminative, and robust than existing kernel-based descriptors. For a pair of 
new 3D shapes, we then extract the newly-learned descriptors with our learnt CNNs. Finally, a well known spectral match-
ing algorithm is applied to obtain a point-to-point correspondences between the shapes. It may be noted that, our approach 
is an unsupervised learning algorithm which is applied to a deep triplet CNNs. Key to the success of such network is the loss 
function that tends to reduce the distance of good-matches while increasing of the distance of mis-matches. Consequently, 
this network is devised to accommodate descriptor space specially tailored for the shape matching task. With the trained 
deep convolutional neural networks, a concise, discriminative, and robust shape descriptor could be automatically extracted, 
which in turn results in more accurate shape matching subject to various shape transformation constraints.

There are many other deep learning structures, such as deep belief networks (Lee et al., 2009), which have exhibited a 
good capability for shape analysis. It would be an interesting research to apply other models to 3D shape matching in the 
near future. We design the deep triplet CNNs for several reasons. The shared weights mechanism of the deep triplet CNNs 
enables us to accelerate the training time considerably and reduce the complexity of the network. And our training samples 

1 https://github .com /gmp2018code /DeepTripletCNNs.

https://github.com/gmp2018code/DeepTripletCNNs
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are points, which afford more than tens of thousands samples in the training sets, thus the over-fitting problem could be 
excluded. The deep CNNs structure we design is not very complex, this is due to the fact that, with the increase of the 
layer number, the parameters would rapidly growth so as to produce overfit, especially with the limited training shapes. 
Thus, it would be an interesting attempt for more complex networks in the future research. Moreover, with the deep triplet 
CNNs, we naturally couple the learning of shape descriptors with the learning of their correspondence together. Although 
our approach achieves a good performance, there still remain some challenging problems that call for future exploration. 
Our approach can achieve better performance based on a larger training set. However, the accuracy of our method in shape 
matching is in fact remaining less satisfactory if the size of the training dataset is small, which shall be improved in our 
future work.
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