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a b s t r a c t

Mesh denoising is of great practical importance in geometric analysis and processing. In this paper
we develop a novel L0 sparse regularization method to robustly and reliably eliminate noises while
preserving features with theoretic guarantee, and our assumption is that, local regions of a noise-free
shape should be smooth unless they contain geometric features. Both vertex positions and facet normals
are integrated into the L0 norm to measure the sparsity of geometric features, and are then optimized in
a sparsity-controllable fashion. We design an improved alternating optimization strategy to solve the L0
minimization problem, which is proved to be both convergent and stable. As a result, our sparse regular-
ization exhibits its advantage to distinguish features from noises. To further improve the computational
performance, we propose a multi-layer approach based on joint bilateral upsampling to handle large and
complicated meshes. Moreover, the aforementioned framework is naturally accommodating the need
of denoising time-varying mesh sequences. Both theoretical analysis and various experimental results
on synthetic and natural noises have demonstrated that, our method can robustly recover multifarious
features and smooth regions of 3D shapes even with severe noise corruption, and outperform the state-
of-the-art methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, 3D shape scanning devices arewidely employed
to capture digital surface data. However, even with high-precision
scanners, the acquired mesh data inevitably contains noises for
various reasons. Therefore, the raw data must be denoised to
improve their quality for downstream shape analysis and editing.

Mesh denoising has been a very difficult problem in the fields
of computer graphics and computer vision. Features and noises are
ambiguous because both of them are of high-frequency from the
perspective of signal processing. In some cases, even human beings
may fail to distinguish features fromnoises. Removing noiseswhile
retaining features is a great challenge. A wealth of mesh denoising
algorithms have been proposed in the past two decades [1–10].
Most of them smooth the mesh by averaging the geometry infor-
mation within local neighborhood. Since the denoising principle is
heuristic, these algorithms typically suffer from feature blurring,
shape shrinkage, or vertex drifts.
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Unlike traditional algorithms relying on local operations, the L0
minimization can globally maintain salient features. Xu et al. [11]
applied the L0 gradient minimization to deal with edge-preserving
image smoothing problem. The L0 norm can effectively determine
the sparsity of image gradient (i.e., the number of non-zero gra-
dients), which reflects the location of prominent edges. Build-
ing a new differential operator with respect to vertex positions,
He et al. [12] then extended this approach to achieve feature-
preserving mesh denoising.

Our algorithm is also based on the L0 minimization. The key
observation is that, local region of a noise-free mesh should be
smooth except that it contains geometric features. Actually, vertex
positions and facet normals are complementary to each other,
and adopting them together can effectively describe 3D meshes.
It might overlook some intrinsic surface properties if they were to
be adopted separately. This observation is also validated by [13],
which integrates positions and normals to obtain precise 3D geom-
etry. In this paper, vertex positions and facet normals are combined
together to measure the sparsity of geometric features, thus being
capable of decoupling features and noises. The proposed sparse
regularization is simple yet powerful to recover the global struc-
tures and local details of 3D shapes even in the presence of highly-
corrupted noises. Fig. 1 compares our algorithm with that of [12].
It is difficult to handle mixed noises. Sharp edges are blurred in the
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(a) Original mesh. (b) Noisy mesh.

(c) Result of [12]. (d) Our result.

Fig. 1. Comparison with L0 denoising algorithm [12] on a mesh corrupted by 0.3le
Gaussian noise along normal directions and 0.1le impulsive noise along random
directions. le is the average edge length of the original mesh. Please note that, our
algorithm recovers sharp edges better.

result of [12], thus causing apparent visual artifacts. Our algorithm
preserves these edges well, and generates a satisfactory result.

It is computationally intractable to perform the L0 minimization
due to its high non-convexity. A popular way is to replace the
L0 norm with the L1 norm. As proved in [14], the L1 norm is the
closest relaxation of the L0 norm under some conditions. However,
this equivalence does not always hold, and the L0 norm can pro-
duce a more sparse solution than the L1 norm. We improve the
alternating optimization strategy [11,12] to address the L0 norm
directly. Through introducing a sequence of auxiliary variables, the
non-convexminimization problem is rewritten and separated into
two sub-problems, both of which can be easily solved. And then,
the optimal solution is sought by optimizing the sub-problems
in a two-level iterative framework. Compared with the original
solver [11,12], our improved numerical solver achieves guaranteed
convergence and stability (see the Appendix for the details of our
proof).

Because it is time-consuming to solve the L0 minimization
problem, the denoising can be carried out in a multi-layer way to
further improve the performance. A multi-layer representation is
first built by conducting clustering-based simplification. And then
the denoising can be efficiently performed at the coarsest layer.
Finally, we generalize joint bilateral upsampling [15] from images
to meshes to obtain the denoising result of the input mesh.

Furthermore, our algorithm can be naturally extended to deal
with the denoising of time-varyingmesh sequences. Different from
static mesh, time-varying mesh sequence has an additional tem-
poral dimension. Usually, it is represented by a group of triangular
meshes. It is possible to constrain the temporal coherence during
denoising.

In comparison with previous methods, the main contributions
of this paper can be summarized as follows:

• A novel sparse regularization is proposed to measure the
sparsity of geometric features and distinguish features from
noises. Both vertex positions and facet normals are opti-
mized in a L0 framework to faithfully remove noises and
preserve features.

• An improved alternating optimization strategy is developed
to address the resulting L0 minimizationproblem. Benefiting
from the proved convergence and stability, our improved
strategy is robust even for meshes of deteriorating quality
and with high noise rate.
• A newmulti-layer approach is presented to greatly improve

the performance, thus facilitating the denoising of large-
scalemeshes. Joint bilateral upsampling is very efficient and
easy to implement.

2. Related work

Towards the goal of obtaining high-fidelity geometry data,
mesh denoising has received much attention in computer graph-
ics and computer vision. There exists a large number of de-
noising algorithms (please refer to the survey [16] for more
details).

Feature-preservingDenoising. Earlymethods intended to per-
form surface fairing in an isotropic way. Taubin et al. [17] and
Vollmer et al. [18] employed the uniformly weighted Laplacian
operator. Since themesh irregularity is neglected, apparent feature
distortion and volumetric shrinkage would appear. Liu et al. [19]
further offered volume-preserving results. Desbrun et al. [1] ex-
tended the method of [17] to irregular meshes, and proposed an
implicit integration scheme. Several researchers also introduced
global smoothing methods [20–22]. They filtered the Laplacian co-
ordinates and reconstructed the mesh through solving a system of
equations. Othermethods [23,24,2,25] employed anisotropic diffu-
sion equations to better maintain shape features. Even if visually-
pleasing results could be produced, their apparent weakness is the
numerical instability during diffusion.

Bilateral filter is a seminar work in the literature. Inspired by
the bilateral filter method of [26] in image processing, Fleishman
et al. [3] and Jones et al. [4] extended its concept to denoise 3D
meshes, respectively. The technical core of bilateral filter is to
take both spatial difference and signal difference into account.
Fleishman et al. [3] adjustedmesh vertices along normal directions
to prevent vertex-drift. Jones et al. [4] relied on robust estimation
of vertex positions. Schall et al. [27] devised a non-local scheme for
static and time-varying range data. Solomon et al. [28] generalized
bilateral filter to smooth signals on any domain that admits a
Laplacian operator.

Considering that facet normals convey higher order surface
properties than vertex positions, a two-stage denoising scheme is
explored: facet normals are first filtered, and then vertex positions
are reconstructed by fitting the filtered facet normals. Since the
second stage is straightforward, the first stage plays a significant
role in denoising results. Ohtake et al. [29] applied Gaussian filter
to facet normals. Shen et al. [30] introduced a fuzzy vector median
filter. When calculating local weights, Sun et al. [5] assigned null
weight to neighboring facet normals with larger variation to retain
sharp edges, and later they used randomwalks [31]. Zheng et al. [7]
employed bilateral filter to better smooth facet normals. Using the
average normal in the local patch as the guidance, Zhang et al. [9]
adopted joint bilateral filter to improve the above approach. Wang
et al. [32] smoothed out small-scale features and kept large-scale
features via rolling guidance filter. Yadav et al. [33] utilized normal
voting tensor and binary optimization. Wang et al. [34] trained
cascaded non-linear regression functions to learn facet normals.

Moreover, a few other methods [35,6,36,37,8,10,38] tried to
classify mesh vertices into different categories, and then carried
out the denoising in each category independently of others to
achieve feature-preservation. Vertex classification is mainly based
on volume integral invariant, surface approximation quality, facet
normals variation or facet normal tensor voting. Nevertheless, as
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Fig. 2. Demonstration of 1-ring facet neighborhood and corresponding edge sets of fi . From left to right: two kinds of 1-ring facet neighborhoods represented by I and II , E I
fi

highlighted in red, and E II
fi
highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

stated in [10], the presence of high noises might give rise to poor
classification results.

Sparsity-driven Denoising. Recently, compressed sensing has
become an active subject in signal processing and computer sci-
ence [39,14,40]. Its profound insight is that,most signals are sparse,
i.e., they could be characterized by a small number of features.
Sparsity has been adopted in geometry processing to achieve better
results [41,42]. Avron [43] reconstructed piecewise smooth point-
sampled surfaces under the L1 norm. Wang et al. [44] extracted a
basemesh by a global Laplacian regularization, and then recovered
sharp features by the L1 optimization. Wu et al. [45] utilized the L1
norm to enhance ROF model.

The sparsity of the L0 norm is better than that of the L1 norm. For
image smoothing, Xu et al. [11] designed a L0 gradient minimiza-
tion framework and an alternating optimization strategy. Later on,
He et al. [12] generalized this idea to denoise 3D meshes by devel-
oping a differential operator with respect to vertex positions. Sun
et al. [46] performed the denoising of point clouds in three stages.
However, the optimization strategy of [11] is not guaranteed to be
convergent. Cheng et al. [47] further introduced a fused coordinate
descent method to solve the L0 minimization problem. In [46,47],
surface normals and positions were reconstructed successively.
Different from existing L0 constraints, our constraint optimizes
vertex positions and facet normals together to fully respect the
intrinsic surface properties.

3. New robust and effective mesh denoising algorithm

In the followings, the noisy triangular mesh is denoted as M =
{P, F}, where P = {p∗i ∈ R3

|1 ⩽ i ⩽ n} is the set of nmesh vertices,
and F = {fi|1 ⩽ i ⩽ m} is the set of m facets. This paper adopts the
L0 norm to decouple features fromnoises. For a vector x, its L0 norm
is defined as the number of non-zero elements: ∥x∥0 = #{i|xi ̸= 0},
where xi is an element of x, and #{} is the counting operator.

3.1. L0 Sparse regularization

It can be observed that a noise-free mesh consists of geometric
features and smooth regions. In otherwords, local region should be
smooth unless it contains geometric features. Therefore, for a noisy
mesh, our goal is to minimize the surface variation except at geo-
metric features. Vertex positions are the basics of 3Dmeshes. Facet
normals are well-defined, and convey more information. Vertex
positions and facet normals are complementary to each other, and
collectively reflect the intrinsic properties of the surface. Intrinsic
propertymeans underlying shape characteristic that can be used to
faithfully recover the surface. It might be likely to overlook some
surface properties if vertex positions and facet normals were to be
adopted separately. That is, adopting them together can better de-
scribe 3Dmeshes. This observation is also validated by [13], which
combines positions and normals to reconstruct precise geometry
information. As demonstrated in [13], positions and normals can

improve each other and produce better results than using one of
them individually.

We integrate vertex positions and facet normals via the L0 norm
to measure the local smoothness of the mesh and the sparsity of
geometric features. Suppose fi is a facet, and nfi is its unit normal.
Following [5], there are two kinds of 1-ring facet neighborhood for
fi. The first kind is the set of the facets that share common vertices
with fi, and the second kind is the set of the facets that share
common edges with fi. If local region around fi is flat, nfi should be
perpendicular to the neighboring facets of fi, that is, nfi should be
perpendicular to the edges of each neighboring facet. If local region
around fi contains geometric features, the perpendicularity does
not hold. This constraint can be formulated as∑
Efi

∥nfi ·
(pk − pl)
∥pk − pl∥2

∥0, (1)

where Efi is the edge set of the neighboring facets of fi, pk and pl
are the two vertices of an edge in Efi , and · is the inner-product
operator. Because of the definition of 1-ring facet neighborhood,
Efi can also be decomposed into two types. Let E I

fi
, E II

fi
be the edge

set under the two types of 1-ring facet neighborhood, respectively.
As shown in Fig. 2, E I

fi
⊃ E II

fi
. Especially, we use ∥pk − pl∥2 to

normalize the edge vector to deal with non-uniform sampling of
3D meshes, because all the edges in Efi contribute to the above
constraint equally. Fig. 3 demonstrates the effect of edge normal-
ization on a non-uniformmesh.We obtain a better resultwith edge
normalization.

We set all vertex positions {pi}
n
i=1 and facet normals {nfi}

m
i=1 as

vector p and vector n, respectively. Considering all facets inM , the
sparse regularization term is written as

Esr (p,n) =
m∑
i=1

wfi

∑
Efi

∥nfi ·
(pk − pl)
∥pk − pl∥2

∥0, (2)

where wfi is the weight for fi. Because a triangular mesh approxi-
mates an underlying surface, each facet represents a patch on this
surface. Larger facets should bemore important than smaller ones.
Therefore, we define wfi as the area of facet fi. Esr (p,n) constrains
the smoothness of local regions and the sparsity of geometric
features, thus giving rise to reliable noise removal and feature
preservation.

In addition, the denoising result should be structurally similar
to the original data. Hence, we adopt the following constraint as
the data fidelity term

Eft (p,n) =
n∑

i=1

∥pi − p∗i ∥
2
2 + η

m∑
i=1

∥nfi − n∗fi∥
2
2
, (3)

where n∗fi is the original unit normal of fi, and η is a weight. Eft (p,n)
describes the similarity between the noisy mesh and the denoised
mesh.
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(a) Original mesh. (b) Original mesh ren-
dered in wireframe.

(c) Noisy mesh. (d) Result without edge
normalization.

(e) Result with edge
normalization.

Fig. 3. Effect of edge normalization when handling non-uniform sampling. Please note that, shape features are better retained using edge normalization.

(a) Noisy mesh. (b) Noisy mesh rendered in
wireframe.

(c) Result using the L0 regularization
of [12].

(d) Result using our L0 regulariza-
tion.

Fig. 4. Comparison between our L0 regularization and that of [12] on a non-uniform mesh corrupted by 0.5le Gaussian noise along random directions and 0.3le impulsive
noise along random directions. For a fair comparison, we solve both L0 minimization problems using the improved optimization strategy in Section 3.2. Please note that, our
L0 regularization is capable of distinguishing features from mixed noises, thus obtaining a better result.

Finally, our energy minimization problem is formulated as

min
{p,n}
{Eft (p,n)+ λEsr (p,n)}, (4)

where λ is a weight balancing the two energy terms. In fact, λ is
a smoothing parameter, and a larger λ would yield a smoother
result.

In Fig. 4, we compare our L0 regularizationwith that of [12] on a
non-uniform mesh corrupted by mixed noises. Especially, both L0
minimization problems are solved by our improved alternating op-
timization strategy in the next subsection. From the close-up view
of local regions, our L0 regularization is able to decouple features
and noises and generate a visually-pleasing result. In contrast, the
L0 regularization of [12] does not describe the mesh effectively,
thus failing to distinguish features from mixed noises. Even with
the help of our improved optimization strategy, visual artifacts still
appear in some highly-corrupted regions.

3.2. Improved alternating optimization strategy

It is NP-hard to optimize the L0 norm due to the problems
caused by its non-convexity. In this paper, the alternating opti-
mization strategy [11,12] is improved to directly deal with the L0
minimization problem.

First of all, a sequence of auxiliary variables are introduced to
rewrite the energy minimization problem (4) as

min
{p,n,δ}
{

n∑
i=1

∥pi − p∗i ∥
2
2 + η

m∑
i=1

∥nfi − n∗fi∥
2
2

+ β

m∑
i=1

wfi

∑
Efi

∥nfi ·
(pk − pl)
∥pk − pl∥2

− δklfi ∥
2
2 + λ∥δ∥0},

(5)

where δklfi is the auxiliary variable for an edge in Efi , δ is a vector
consisting of all auxiliary variables, and β is a weight that controls

the similarity between δklfi and nfi ·
(pk−pl)
∥pk−pl∥2

. Obviously, when β

is large enough, the solution of the minimization problem (5)
infinitely approximates that of the minimization problem (4).

The energy minimization problem (5) can be decomposed into
two computationally tractable sub-problems. Omitting the terms
not involving δ, the first sub-problem is to minimize δ with p and
n fixed

min
{δ}
{β

m∑
i=1

wfi

∑
Efi

∥nfi ·
(pk − pl)
∥pk − pl∥2

− δklfi ∥
2
2 + λ∥δ∥0}. (6)

Fortunately, this apparently sophisticated sub-problem can be spa-
tially decomposed to compute each element of δ independently.
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Algorithm 1 Alternating Optimization Strategy of [11,12].
Input: noisy mesh with vertex positions p∗ = (p∗1, p

∗

2, ..., p
∗
n) and

facet normals n∗ = (n∗f1 ,n
∗

f2
, ...,n∗fm ), weights λ, η, parameters β0,

βmax, and constant κ

Initialization: p← p∗, n← n∗, β ← β0
repeat

fix p(t) and n(t), solve for δ(t+1) with (7)
fix δ(t+1), solve for p(t+1) and n(t+1) with (8)
β ← κβ

until β ≥ βmax
Output: denoising result

According to [11], each element δklfi has a closed-form solution

δklfi =

⎧⎪⎨⎪⎩
0 wfi∥nfi ·

(pk − pl)
∥pk − pl∥2

∥
2
2 ≤

λ

β

nfi ·
(pk − pl)
∥pk − pl∥2

otherwise
. (7)

Omitting the term not involving p and n, the second sub-problem
is to minimize p and n with δ fixed

min
{p,n}
{

n∑
i=1

∥pi − p∗i ∥
2
2 + η

m∑
i=1

∥nfi − n∗fi∥
2
2

+ β

m∑
i=1

wfi

∑
Efi

∥nfi ·
(pk − pl)
∥pk − pl∥2

− δklfi ∥
2
2}.

(8)

As p and n are coupled, we iteratively optimize this sub-problem
in two steps: minimizing p with n fixed, and minimizing n
with p fixed. This is algorithmically similar to the Expectation–
Maximization (EM) approach. Thanks to many good theoretical
properties, the EM-like algorithms have been successfully em-
ployed in computer graphics [48,49].Whenp is fixed, Eq. (8) simply
becomes a linear quadratic minimization problem with respect to
n, and canbe solved easily.Whenn is fixed, Eq. (8) is still non-linear
with respect to p due to ∥pk − pl∥2. We also iteratively optimize
it in two steps: solving p with ∥pk − pl∥2 fixed, and updating
∥pk − pl∥2. This process will not stop until the relative error
between two successive iterations is below a small user-satisfied
threshold. Hence, this non-linear problem can be approximated by
a set of linear problems, which is a well-known way to optimize
non-linearminimization problems [50,51]. In our experiments, the
iteration converges very fast. This is because, the above problem
has a complex form, fixing ∥pk − pl∥2 is a practical way to make
it computationally tractable. Therefore, no matter p or n is fixed
in Eq. (8), another variable can be solved effectively. This evidence
can guarantee the convergence of Eq. (8). As for the iteration issue
for Eq. (8), we also observe fast convergence in the experiments.

In [11,12], the two sub-problems (i.e., Eqs. (6) and (8)) are al-
ternatively optimized in a one-level iterative framework shown in
Algorithm 1. The weight λ is unchanged during iteration. Starting
from a small value β0, the weight β is gradually increased by
multiplying a constant κ > 1 at each iteration until its value
exceeds βmax. And the solution at the current iteration is set as the
initial value for the next iteration with updated β . β is to finally
force nfi ·

(pk−pl)
∥pk−pl∥2

to match with δklfi , thus controlling the sparsity of
the regularization term (2) when it becomes large enough.

However, this framework is not guaranteed to be convergent,
and leads to visual artifacts. With the weights λ and β (r) (i.e., the
current value of β) at the rth iteration, the energy minimization
problem (5) is non-convex. It is impossible to find the optimal
or stable solution if the two sub-problems are solved only once.
Hence, the solution at the current iteration is not a good initial

Algorithm 2 Improved Alternating Optimization Strategy.
Input: noisy mesh with vertex positions p∗ = (p∗1, p

∗

2, ..., p
∗
n) and

facet normals n∗ = (n∗f1 ,n
∗

f2
, ...,n∗fm ), weights λ, α, η, parameters

β0, βmax, tmax, and constant κ

Initialization: p← p∗, n← n∗, β ← β0
repeat

t ← 0
repeat
fix p(t) and n(t), solve for δ(t+1) with (10)
fix δ(t+1), solve for p(t+1) and n(t+1) with (8)
t ++

until t ≥ tmax
β ← κβ

until β ≥ βmax
Output: denoising result

value for the next iteration with updated β . Numerical error will
accumulate during iteration, and may give rise to a wrong result
with this framework eventually.

From the analysis above, the improvement strategy is intuitive:
at each iteration (e.g., with the weights λ and β (r)), the optimiza-
tions of the sub-problems should alternate until convergence. As
shown in Algorithm 2, we present a two-level iterative framework
for convergence improvement. The outer-level iteration corre-
sponds to the update of β . The inner-level iteration corresponds
to the alternating optimization of the two sub-problems, which is
controlled by the parameter t .

To achieve guaranteed convergence and stability, a relaxation
term should be introduced for the first sub-problem (6) in the
inner-level iteration [52,53]. That is, when fixing p(t) and n(t) at the
tth iteration, δ(t+1) is obtained by solving the new sub-problem

min
{δ}
{β

m∑
i=1

wfi

∑
Efi

∥n(t)
fi
·

(p(t)
k − p(t)

l )

∥p(t)
k − p(t)

l ∥2
− δklfi ∥

2
2 + λ∥δ∥0

+ α∥δ− δ(t)∥22},

(9)

where the relaxation term ∥δ−δ(t)∥22 is to address the discontinuity
of the L0 norm, and α > 0 is its weight. According to [53], the
closed-form solution of each element (i.e., Eq. (7)) becomes

δklfi
(t+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ∥
βwfi

βwfi + α
n(t)
fi
·

(p(t)
k − p(t)

l )

∥p(t)
k − p(t)

l ∥2
+

α

βwfi + α
δklfi

(t)
∥
2
2

≤
λ

βwfi + α

βwfi

βwfi + α
n(t)
fi
·

(p(t)
k − p(t)

l )

∥p(t)
k − p(t)

l ∥2
+

α

βwfi + α
δklfi

(t)
otherwise

. (10)

Fig. 5 compares our improved alternating optimization strategy
with that of [11,12]. We adjust the parameters to optimal values
for both methods. For the strategy in [11,12] given in Algorithm 1,
λ = 10−3, η = 10−3, β0 = 10−3, βmax = 104, and κ = 1.083.
For our strategy given in Algorithm 2, λ = 10−3, α = 10−3,
η = 10−3, β0 = 10−3, βmax = 103, tmax = 5, and κ = 1.414. From
the close-up view of local regions, we observe that our strategy
reconstructs sharp features much better, and exhibits a visually-
pleasing result (i.e., Fig. 5(c)). Quantitative evidence is shown in
Fig. 5(d) by plotting the energy curves of both strategies. Obviously,
the energy under our strategy decreases faster, and reaches a
smaller minimum.

Remark. Although it generates good results in many cases, the
alternating optimization strategy of [11,12] is not guaranteed to be
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(a) Noisy mesh. (b) Result using the optimization strategy
of [11,12].

(c) Result using our improved optimization
strategy.

(d) Energy curves of the minimization prob-
lem (5) under both strategies.

Fig. 5. Comparison between our improved alternating optimization strategy and that of [11,12]. For a fair comparison, we do not adopt themulti-layer approach in Section 4.
Please note that, our strategy reaches a smaller minimum, and achieves a better result.

convergent. For the non-convex minimization problem (5) under
the current value of β , it solves the two sub-problems only once to
get a solution. It is obvious that this solution is not the optimal or
stable solution, hence is not a good initial value for the next itera-
tion with updated β . As shown in Fig. 5(b), accumulated numerical
errors result in visual artifacts.

With the help of the inner-level iteration and the relaxation
term, our improved alternating optimization strategy, whose con-
vergence and stability can be proved, is able to address this prob-
lem. In fact, the alternating optimization strategy of [11,12] is a
special case of ours. When tmax is set to 1 and α is set to 0, the
improved alternating optimization strategy degenerates to that
of [11,12]. We analyze its convergence and stability in the next
subsection.

3.3. Theoretical analysis on convergence and stability

The improved alternating optimization strategy is guaran-
teed to be convergent and stable. Fixing the outer-level iteration
(i.e., fixing β), we first analyze the convergence and stability of the
inner-level iteration.

Let Eβ (p,n, δ) be the objective function of the energyminimiza-
tion problem (5) with certain fixed β . For δ, the index set of its
nonzero elements is denoted as N(δ) = {(fi, k, l)|δklfi ̸= 0}, and the
complementary set of N(δ) is denoted as N(δ) = {(fi, k, l)|δklfi = 0}.
We have the following theorem (please refer to Appendix for its
proof).

Theorem1. Let {(p(t),n(t), δ(t))}t=1,2,... be the sequence generated by
the inner-level iteration of Algorithm 2, then the following statements
hold

(1) {Eβ (p(t),n(t), δ(t))}t=1,2,... is strictly monotonic decreasing, and
hence converging;

(2) limt→+∞∥δ
(t+1)
− δ(t)∥

2
2 = 0, and there exists a positive inte-

ger t̃ such that N(δ(t)) remains unchanged for t ≥ t̃ .

Based on Item (1) of the Theorem, we can obtain a solution
with minimal energy value after convergence. Since it minimizes
the objective function Eβ (p,n, δ), this solution can lead to a sat-
isfactory denoising, namely, effective noise elimination and fea-
ture preservation. Because δ determines the sparsity of geometric
features, Item (2) of the Theorem indicates that we can stably
recover geometric features. By the definition of N(δ), unchanged
N(δ(t)) means that the position and the number of the recovered
features are stable after the t̃th iteration. Furthermore, δ(t+1) is very
close to δ(t) when t is large enough. In fact, from the perspective
of numerical computation, δ(t+1) is equal to δ(t) when t is large

enough. It implies that the magnitude of the recovered features is
also stable.

Compared with the optimization strategy of [11,12], our opti-
mization strategy has two significant improvements. First, we in-
troduce the inner-level iteration to iteratively approximate a stable
solution of the energyminimization problem (5) with certain fixed
β (i.e., min{p,n,δ}{Eβ (p,n, δ)}). Second, we introduce a relaxation

term α∥δ − δ(t)∥22 for the sub-problem (6), i.e., replacing the sub-
problem (6) with the sub-problem (9). Without this relaxation
term (i.e., α is set to 0), we could not obtain Theorem 1. It is be-
cause the generated objective function sequence {Eβ (p(t),n(t), δ(t))}
is non-increasing, but may not be strictly monotonic decreasing,
hence the variable sequence {(p(t),n(t), δ(t))} cannot be guaranteed
to converge. Adding a relaxation term to the objective function
during iteration is awidely-used technique to overcome this draw-
back in the optimization research community. The solution to
the sub-problem (9) is a modification of the solution to the sub-
problem (6). According to [53], a smaller α can speed up conver-
gence.

Now we discuss the convergence of the outer-level iteration
which contains the update of β and the inner-level iteration. If β is
large enough, the solution of the energy minimization problem (5)
can infinitely approximate that of the energy minimization prob-
lem (4). Nevertheless, directly setting a large value to β leads to
poor results. Hence, we also start with a small value β0, and then
iteratively increase β until it is large enough. It is a well-known
strategy in non-convex optimization to avoid getting trapped to
local minima [54,53]. In addition, benefiting from the convergence
and stability of the inner-level iteration,we can always find a stable
solution for the energy minimization problem (5) with current β
(i.e., at the current outer-level iteration). Therefore, the solution
at the current outer-level iteration can set a good initial value
for the next outer-level iteration with updated β . Combining the
above two aspects, we can draw a conclusion that the outer-level
iteration is convergent.

4. Multi-layer approach

Because it is computationally expensive to optimize the L0
minimization problem, we introduce a new multi-layer approach
to further improve the performance. The overview of our multi-
layer approach is shown in Fig. 6. First, amulti-layer representation
of the input mesh is built by the clustering-based simplification
method [55]. Then, the denoising can be easily carried out on
the coarsest layer (i.e., the mesh with the fewest vertices in the
above representation). Finally, this solution should be transferred
back layer by layer until the denoising result of the input mesh is
obtained. We extend joint bilateral upsampling [15] from images
to meshes to fulfill this task.
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Fig. 6. Overview of the multi-layer approach (e.g., three layers are adopted). The input mesh is first downsampled to construct a multi-layer representation. After the
denoising is completed on the coarsest layer, this solution is upsampled to get the denoising result of the input mesh. The number of vertices on the three layers is 100,759,
28,646, and 7,687, respectively.

4.1. Multi-layer representation

Most existing multi-layer methods build the multi-layer rep-
resentation by the iterative edge contraction simplification [56].
However, as pointed out by [57], clustering-based simplification
is faster and more memory-saving than iterative edge contraction
simplification, and is well suited for large-scale meshes. In [55],
the mesh is recursively split into a set of clusters via binary space
partition.

Partition criteria include geometry variation and normal vari-
ation. For a region Ω , geometry variation is defined as σg =

λ0
λ0+λ1+λ2

, where {λi}
3
i=1 are the three eigenvalues of the covariance

matrix of Ω , and λ0 ⩽ λ1 ⩽ λ2. As illustrated in [58], σg closely
relates to mean curvature. Normal variation is more sensitive to
surface anisotropy, and is defined as σn = maxpi∈Ω{arccos(

npi ·n̄
∥n̄∥ )},

where npi is the unit normal of vertex pi, and n̄ is the average of
vertex normals on Ω . Partition plane is defined as (x− p̄) · v0 = 0,
where p̄ is the centroid of Ω , and v0 is the eigenvector of the
smallest eigenvalue λ0. In other words, Ω is partitioned along the
direction of greatest variation.

Binary space partition initially sets Ω = M , and recursively
splits M into a set of clusters if geometry variation or normal
variation exceeds a threshold [55]. Each cluster is then represented
by its centroid to obtain a downsampledmesh forM . Vertices of the
downsampled mesh are the centroids of these clusters. Edges of
the downsampled mesh are formed according to the adjacency of
these clusters. That is, if two clusters are adjacent, there is an edge
between their centroids (i.e., two vertices of the downsampled
mesh).

To retain shape features during simplification, we empirically
require that each cluster contains five vertices at most. Fig. 7
illustrates a clustering result and a downsampledmesh under 0.3le
Gaussian noise along normal directions. Therefore, a multi-layer
representation can be constructed by performing the aforemen-
tioned simplification procedure repeatedly. In our experiments,
three to five layers are sufficient for performance improvement.

4.2. Joint bilateral upsampling

The denoising can be efficiently completed on the coarsest
layer. And then, we should transfer the solution on the coarsest
layer back to the finest layer (i.e., the input mesh) to obtain the
final denoising result. Without loss of generality, we discuss joint
bilateral upsampling procedure between two adjacent layers. The
central idea is to apply a spatial filter to the coarser layer, mean-
while a range filter is jointly applied to the finer layer. That is,
joint bilateral upsampling employs the information of both layers
to interpolate the solution on the finer layer.

According to [15], we should establish vertex correspondences
between the two layers. Assume vi is a vertex on the finer layer

Fig. 7. Clustering-based simplification. From left to right: input mesh (172,962 ver-
tices), clustering result (46,406 clusters), and downsampledmesh (46,406 vertices).
Each cluster is rendered with a random color. Please note that, shape features are
faithfully retained even under high noise rate.

and belongs to the jth cluster, its corresponding vertex is the jth
vertex on the coarser layer ṽj (i.e., the centroid of the jth cluster).
Let {̃vk} be the 1-ring neighboring vertices of ṽj. For each ṽk, we
compute its nearest vertex vl in the kth cluster on the finer layer
as the corresponding vertex. The upsampled solution on the finer
layer can be expressed as

vi =

∑
ṽk ṽkf (∥̃vj − ṽk∥)g(∥ni − nl∥)∑
ṽk f (∥̃vj − ṽk∥)g(∥ni − nl∥)

, (11)

where ni and nl are the unit normal of vi and vl, respectively, f (·)
is a Gaussian function in terms of the position difference between
ṽj and ṽk, and g(·) is a Gaussian function in terms of the normal
difference between vi and vl. Obviously, Eq. (11) adopts position
information of the coarser layer and normal information of the
finer layer. As it is efficient and easy to implement, joint bilateral
upsampling is a practical scheme to deal with large-scale meshes.

With the multi-layer approach, denoising results depend on
three processes: downsampling, denoising on the coarsest layer,
and upsampling. In Fig. 8, we evaluate the impact of the multi-
layer approach on denoising result. There is little visual difference
between Figs. 8(b) and 8(c).

5. Denoising of time-varying mesh sequences

Moreover, this denoising algorithm can be naturally general-
ized to denoise time-varying mesh sequences. Time-varying mesh
sequence is represented by a group of triangular meshes with
identical connectivity and different geometries, where the motion
is specified by a complete set of new vertex positions for each
frame. Suppose {M1, . . . ,Ms} is a time-varying mesh sequence,
where Mj(1 ≤ j ≤ s) is a triangular mesh and s is the number
of triangular meshes.

Because time-varying mesh sequence has an additional tempo-
ral dimension, the temporal coherence between adjacent frames
should be maintained during denoising. Besides the regularization
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(a) Noisy mesh. (b) Result without
the multi-layer ap-
proach.

(c) Result with
the multi-layer
approach.

Fig. 8. Impact of the multi-layer approach on denoising result. Please note that,
there is little visual difference.

term and the fidelity term for each frame, a coherence term must
be introduced
s−1∑
j=1

∑
i

∥pj
i − pj+1

i ∥
2
2,

wherepj
i is the ith vertex onMj, andpj+1

i is its corresponding vertex
onMj+1.

6. Experimental results and discussion

We implement the proposed algorithm in C++, and test it using
a number of meshes with various kinds of features. All the results
shown in this paper are run on a laptop with Intel Core i5-3320M
CPU. Both synthetic and natural noises are utilized to validate our
algorithm. Synthetic noises include Gaussian noise and impulsive
noise. Both of them can be added along normal directions or
random directions. The intensity of noises is described by standard
deviation that is proportional to the average edge length of the
original mesh le. Real-world raw meshes contain natural noises.

Our objective function consists of a L0 regularization term and
a L2 fidelity term. The L0 norm is suitable for relatively flat regions.

The L2 norm is differentiable, and is suitable for smooth but non-
flat regions. Hence, our algorithm can perform well on both CAD
mechanical models and non-CAD organic shapes.

Parameters and Examples. Our algorithm involves eight pa-
rameters: β0, βmax, κ , tmax, λ, α, η, and Efi . β0, βmax and κ determine
the number of outer-level iterations together. Following [12], we
set β0 = 10−3, βmax = 103 and κ =

√
2 in default. tmax is the

number of inner-level iterations. In our experiments, we observe
that tmax ∈ [3, 10] is enough for the convergence of the inner-
level iteration. λ is the weight for the sparse regularization term,
thus controlling the smoothness of denoising results. The larger λ

is, the smoother the result is. We observe that λ ∈ [10−4, 10−2]
well balances feature preservation and noise elimination. α is the
weight for the relaxation term. According to [53], a smaller α can
speed up convergence. We use 10−3 as its default value. η is the
weight in the fidelity term, and is set to 10−3 in default. Efi is the
neighboring edge set of facet fi. We find that E I

fi
is more suitable for

CADmechanicalmeshes and E II
fi
ismore suited for non-CADorganic

shapes.
Fig. 9 illustrates the denoising results with different kinds of

synthetic noises. Both sharp features and subtle details are faith-
fully recovered while noises are cleanly removed. As shown in
Fig. 10, the mesh is non-uniformly sampled: the sampling of the
left part is denser than that of the right part. Our algorithm is in-
sensitive to non-uniform sampling because of the incorporation of
L0 constraint (1). We also demonstrate the effect of the smoothing
parameter λ.When λ is too large, themesh is overly-smoothed and
suffers from feature blurring.

Fig. 11 gives the denoising results on real-world raw meshes.
Especially, the last two meshes have open boundaries. These re-
sults are very natural, and demonstrate that our algorithm handles
real data well. Benefiting from the multi-layer approach, our algo-
rithm can accommodate largemeshes with hundreds of thousands
of vertices in Fig. 12. These meshes have complex shape and rich
details.

As can be seen from Fig. 13, our algorithm is applied to denoise
time-varying mesh sequence. Vivid face expression is successfully
recovered. Fig. 14 illustrates another example. Swing sequence un-
dergoes a large deformation. Both temporal coherence and subtle
details (e.g., wrinkles on the cloth) are reliably maintained.

(a) A mesh corrupted by 0.4le Gaussian noise along normal directions. (b) A mesh corrupted by 0.4le Gaussian noise along random directions.

(c) A mesh corrupted by 0.5le impulsive noise along normal directions. (d) A mesh corrupted by 0.3le impulsive noise along random directions.

Fig. 9. Denoising results with different kinds of synthetic noises. For each subfigure, from left to right: original mesh, noisy mesh, and our result.
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Fig. 10. Denoising results with different smoothing parameters on a non-uniformmesh corrupted by 0.5le Gaussian noise along normal directions. From left to right: original
mesh, original mesh rendered in wireframe, noisy mesh, our result with λ = 4.5× 10−3 , and our result with λ = 10−2 .

(a) Moai. (b) Shell. (c) Vase.

Fig. 11. Denoising results on real-world raw meshes. For each subfigure, from left to right: noisy mesh, and our result.

(a) A mesh with 437,645 vertices. (b) A mesh with 1,164,291 vertices.

Fig. 12. Denoising results on large-scale meshes. For each subfigure, from left to right: noisy mesh, and our result.

Fig. 13. Denoising result on a face expression sequence. From top to bottom: noisy sequence, and our result. This sequence has 30 frames, and each frame has 29,299 vertices.
Here only five key frames are shown (due to space limitation).

Visual Comparisons. Figs. 15–17 compare our algorithm with
other state-of-the-art methods [3–5,7,12,9] on meshes corrupted

by Gaussian noise and impulsive noise that are along normal direc-
tions and randomdirections. In particular, both denoising schemes
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Fig. 14. Denoising result on a swing sequence. From top to bottom: noisy sequence, and our result. This sequence has 150 frames, and each frame has 9971 vertices. Here
only six key frames are shown (due to space limitation).

(a) Original mesh. (b) Noisy mesh. (c) Result of [3]. (d) Result of [4]. (e) Result of [5].

(f) Result of [7] (local) (g) Result of [7] (global) (h) Result of [12]. (i) Result of [9]. (j) Our result.

Fig. 15. Comparison between different denoising algorithms on a mesh corrupted by 0.4le Gaussian noise along normal directions and 0.1le impulsive noise along normal
directions. Please note that, the parameters of each algorithm are tuned carefully to generate their best results.

(i.e., the local scheme and the global scheme) of [7] are employed
for comparison. All the methods control the denoising results with
several parameters. For different noisy meshes, we carefully tune
the parameters of each method to generate visually best results.
It is very challenging to deal with mixed noises. These state-of-
the-art methods mainly assume that the mesh is corrupted by a
single kind of noise (e.g., Gaussian noise or impulsive noise). Hence,

they usually fail under mixed noises. From the close-up view of
local regions, these methods suffer from the problems of shape
degeneration, feature distortion or facet fold-over. In contrast, our
algorithm works well in the presence of mixed noises. Our sparse
regularization and improved optimization strategy are powerful
enough to effectively preserve sharp features and achieve better
results.
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(a) Original mesh. (b) Noisy mesh. (c) Result of [3]. (d) Result of [4]. (e) Result of [5].

(f) Result of [7] (local) (g) Result of [7] (global) (h) Result of [12]. (i) Result of [9]. (j) Our result.

Fig. 16. Comparison between different denoising algorithms on a mesh corrupted by 0.4le Gaussian noise along random directions and 0.1le impulsive noise along normal
directions. Please note that, the parameters of each algorithm are tuned carefully to generate their best results.

Wu et al. [45] proposed an algorithm to address mixed noises.
We compare our algorithmwith that of [45] in Fig. 18.Wuet al. [45]
assumed that edge lengths were kept during denoising. However,
this assumption does not hold under high noise rate, thus causing
visual artifacts. In contrast, our algorithm handles mixed noises
better. In Fig. 19, our algorithm is further compared with algo-
rithms [12,9]. The mesh is non-uniformly sampled, and is cor-
rupted by extreme noises. Some flat regions and sharp edges are
distorted in the result of [12]. Because guided normal field is not
constructed properly, apparent shape degeneration occurs in the
result of [9]. Our algorithm is insensitive to non-uniform sampling,
and produces a visually-pleasing result even under extreme noise
corruption. Fig. 20 gives a comparison with classification-based
methods [6,10]. As severe noise leads to poor classification results,
these methods fail to recover sharp features and some moderate
details. Our algorithm is able to robustly reconstruct them to obtain
a desirable result.

Quantitative Evaluations. Besides the visual comparisons
above, we also analyze the denoising quality of different algo-
rithms through three popular error metrics [5,9].

The first metric is the mean square angular error (MSAE)

MSAE = E[̸ (n,ng )],

where E is the expectation operator, and ̸ (n,ng ) denotes the
angles between the denoised facet normals n and the ground truth
facet normals ng .

The second metric is the L2 vertex-based mesh-to-mesh dis-
tance

Ev =

√ 1
3A

n∑
i=1

Aidist(pi, T )2,

where dist(pi, T ) is the L2 distance from the denoised vertex pi to
the ground truth mesh T , Ai is the area of the 1-ring neighboring
facets of pi, and A is the area of T .

The third metric is the vertex-based Hausdorff distance from
the denoised mesh to the ground truth mesh

Eh = max
i
{dist(pi, T )}.

Using the original mesh as ground truth, we compute the de-
noising errors for the results shown in Figs. 15–17. As can be seen
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(a) Original mesh. (b) Noisy mesh. (c) Result of [3]. (d) Result of [4]. (e) Result of [5].

(f) Result of [7] (local) (g) Result of [7] (global) (h) Result of [12]. (i) Result of [9]. (j) Our result.

Fig. 17. Comparison between different denoising algorithms on a mesh corrupted by 0.4le Gaussian noise along random directions and 0.1le impulsive noise along random
directions. Please note that, the parameters of each algorithm are tuned carefully to generate their best results.

(a) Original mesh. (b) Noisy mesh. (c) Result of [45]. (d) Our result.

Fig. 18. Comparisonwith denoising algorithm [45] on amesh corrupted by 0.3le Gaussian noise along random directions and 0.15le impulsive noise along random directions.
Please note that, our algorithm preserves shape features better.

from Table 1, our results achieve the smallest denoising errors.
In other words, quantitative comparisons also indicate that our
algorithm is superior to those state-of-the-art methods.

In our algorithm, vertex positions and facet normals are coupled
by the L0 regularization term, so that they are not totally inde-
pendent. During optimization, they collectively respect the local

flatness of themesh, and constrain each other to approach those of
a noise-free surface (i.e., the denoised mesh). Our L0 regularization
term is effective in addressingmixed noises or extreme noises, and
our improved optimization strategy is guaranteed to be conver-
gent and stable. Finally, vertex positions and facet normals will
converge to those of a noise-free surface (i.e., the denoised mesh),
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(a) Noisy mesh. (b) Noisy mesh rendered in
wireframe.

(c) Result of [12]. (d) Result of [9]. (e) Our result.

Fig. 19. Comparison with denoising algorithms [12,9] on a non-uniform mesh corrupted by 0.8le Gaussian noise along random directions. Please note that, our algorithm
preserves shape features better.

(a) Original mesh. (b) Noisy mesh. (c) Result of [6]. (d) Result of [10]. (e) Our result.

Fig. 20. Comparison with classification-based denoising algorithms [6,10] on a mesh corrupted by 0.5le Gaussian noise along normal directions.

Table 1
Denoising error comparisons between different algorithms.

Mesh Error metrics [3] [4] [5] [7] (local) [7] (global) [12] [9] Ours

Fandisk (Fig. 15)
MSAE 0.1814 0.1853 0.0722 0.0663 0.1181 0.1012 0.0549 0.0496
Ev 0.0143 0.0151 0.0067 0.0068 0.0104 0.0074 0.0055 0.0051
Eh 0.067 0.064 0.061 0.054 0.041 0.058 0.042 0.038

Sharp Sphere (Fig. 16)
MSAE 0.3431 0.3270 0.2293 0.2062 0.2575 0.1846 0.1556 0.1372
Ev 0.048 0.045 0.034 0.031 0.039 0.026 0.024 0.022
Eh 0.119 0.105 0.092 0.084 0.097 0.087 0.099 0.079

Double Torus (Fig. 17)
MSAE 0.4862 0.4339 0.3272 0.3150 0.4105 0.2731 0.2848 0.2413
Ev 0.0194 0.0175 0.0152 0.0168 0.0150 0.0138 0.0142 0.0131
Eh 0.124 0.115 0.090 0.088 0.097 0.074 0.079 0.063

thusmatching each other. To validate this conclusion, we compute
themaximal angular error between the obtained facet normals and
the facet normals of the obtained vertex positions. For our results
in Figs. 15–17, their maximal angular errors are 6.751 × 10−3,
8.042×10−3, and 5.669×10−3, respectively. Besides, our denoising
results are rendered in flat shadingmode using the obtained vertex
positions and facet normals. Please note that, there are no visual
artifacts.

Performance. Table 2 documents smoothing parameter and
performance statistics for some denoising examples. The perfor-
mance relates to geometry information, feature type and noise
rate. It is most time-consuming to solve the system of equations.
Since the coefficient matrix changes during iteration, we could not
precompute a factorization, thus causing longer running times.

The multi-layer approach is introduced to deal with large-scale
meshes. For meshes with less than 20,000 vertices, we perform
the denoising on the input mesh directly. Overall, our algorithm
is a little slower than existing algorithms [12,9]. For the examples
in Figs. 15–17, the performance of [12] costs 34.714 s, 60.962 s,
and 66.347 s, respectively. The performance of [9] costs 28.093 s,
45.318 s, and 54.271 s, respectively. However, it is very challenging
for [12,9] to denoise large meshes shown in Fig. 12. Thanks to
the multi-layer approach, our algorithm can accomplish this task
naturally.

Limitations. Although it is robust and effective, our algorithm
still has some limitations. First, it is difficult to generate a satisfac-
tory result on meshes with extreme triangulation. Fig. 21 presents
such an example, where the features on the top part are not
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Fig. 21. A failure case on themeshwith extreme triangulation. From left to right: original mesh, original mesh rendered in wireframe, noisymesh, result of [12], result of [9],
and our result.

Table 2
Smoothing parameter and performance data measured in seconds.

Mesh Number of vertices Number of facets Smoothing parameter λ Time

Dodecahedron (Fig. 9) 4,610 9,216 6× 10−3 53.316
Owl (Fig. 9) 39,822 79,652 2.5× 10−3 34.575
Max Planck (Fig. 10) 30,942 61,880 4.5× 10−3 86.134
Shell (Fig. 11) 43,164 85,425 10−3 30.312
Dragon (Fig. 12) 437,645 869,928 10−4 102.653
Asian Dragon (Fig. 12) 1,164,291 2,322,905 10−4 124.480
Fandisk (Fig. 15) 6,475 12,946 3.5× 10−3 45.786
Sharp Sphere (Fig. 16) 10,443 20,882 6× 10−3 73.183
Double Torus (Fig. 17) 8,702 17,408 10−2 79.051
Skull (Fig. 20) 20,002 40,000 4× 10−3 61.279

retained as expected. As amatter of fact, it is also a challenging case
for the state-of-the-artmethods [12,9]. Second,we should tune the
parameters to obtain visually-pleasing results. The default value or
the range of these parameters are discussed for the meshes shown
in this paper. However, they may not be suitable for all meshes
with different features or noise types.

7. Conclusion and future work

Instead of local filtering, this paper has proposed a novel sparse
regularization for mesh denoising with feature-preservation. Both
vertex positions and facet normals are integrated into a L0 min-
imization framework to decouple features and noises with dis-
tinguishing power. Then, an improved alternating optimization
strategy is presented to effectively address the non-convex min-
imization problem, which guarantees the convergence and stabil-
ity. During the denoising process, our algorithm can faithfully re-
construct the global structures and local details of the mesh. Using
joint bilateral upsampling, a multi-layer approach is introduced
to achieve higher performance. Furthermore, the aforementioned
algorithm is generalized to handle time-varying mesh sequences,
which has demonstrated the robustness, versatility, and flexibility
of our algorithm.

As for the immediate future work, the advantage of the L0 norm
promises to expand its application scope to other applications in
geometry processing and 3D graphics, such as completion, reg-
istration, segmentation, and editing. Because of the non-convex
nature of the L0 norm, GPU will be a good necessity for real-
time performing enhancement. These topics deserve our serious
exploration in the near future.
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Appendix

We first present a technical lemma, and then prove Theorem 1.
A.1. Lemma

Assume w is the maximal value of the facet weights, i.e., w =
max{fi}{wfi}.

Lemma 1. Let {δ(t)}t=1,2,... be the sequence generated by Eq. (10),
then the following statements hold

(1) |δklfi
(t)
| >

√
λ

βw+α
for all (fi, k, l) ∈ N(δ(t));

(2) ∥δ(t+1) − δ(t)∥
2
2 > λ

βw+α
if N(δ(t+1)) ̸= N(δ(t)).

Proof. According to the closed-form solution (10), |δklfi
(t)
| >√

λ
βwfi+α

≥

√
λ

βw+α
for all (fi, k, l) ∈ N(δ(t)), thus immediately

obtaining Item (1) of the lemma. It remains to prove Item (2) of
the lemma.

Suppose that N(δ(t+1)) ̸= N(δ(t)), it follows that there exists

at least a pair (̃fi, k̃,̃ l) such that (̃fi, k̃,̃ l) ∈ N(δ(t))
⋂

N(δ(t+1)) or

(̃fi, k̃,̃ l) ∈ N(δ(t))
⋂

N(δ(t+1)). By Item (1) of the lemma, |δklfi
(t)
| >√

λ
βw+α

and δklfi
(t+1)

= 0 for the first case while δklfi
(t)
= 0 and

|δklfi
(t+1)
| >

√
λ

βw+α
for the second case. For both cases, we have

(δklfi
(t+1)
− δklfi

(t))2 > λ
βw+α

. This, together with ∥δ(t+1) − δ(t)∥22 ≥

(δklfi
(t+1)
− δklfi

(t))2, yields Item (2) of the lemma. □

A.2. Proof of Theorem 1

Proof. As Eβ (p,n, δ) is the objective function of the energy mini-
mization problem (5)with certain fixedβ , the objective function of
the first sub-problem (9) is equal to Eβ (p(t),n(t), δ)−

∑n
i=1∥p

(t)
i −

p∗i ∥
2
2 − η

∑m
i=1∥n

(t)
fi
− n∗fi∥

2
2 + α∥δ− δ(t)∥22.
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Since δ(t+1) is the solution to the first sub-problem (9), the
energy value at δ(t+1) should be not larger than that at δ(t). Sub-
stituting δ(t+1) and δ(t) into the objective function of the first
sub-problem (9) respectively, we have Eβ (p(t),n(t), δ(t+1)) −∑n

i=1∥p
(t)
i − p∗i ∥

2
2 − η

∑m
i=1∥n

(t)
fi
− n∗fi∥

2
2 + α∥δ(t+1) − δ(t)∥22 ≤

Eβ (p(t),n(t), δ(t)) −
∑n

i=1∥p
(t)
i − p∗i ∥

2
2 − η

∑m
i=1∥n

(t)
fi
− n∗fi∥

2
2 +

α∥δ(t) − δ(t)∥22. That is, Eβ (p(t),n(t), δ(t+1)) + α∥δ(t+1) − δ(t)∥22 ≤

Eβ (p(t),n(t), δ(t)).
Since (p(t+1),n(t+1)) is the solution to the second sub-

problem (8),wehave Eβ (p(t+1),n(t+1), δ(t+1)) ≤ Eβ (p(t),n(t), δ(t+1)).
Combining the above two inequalities, we obtain

Eβ (p(t+1),n(t+1), δ(t+1)) ≤ Eβ (p(t),n(t), δ(t))− α∥δ(t+1) − δ(t)∥
2
2.

(12)

That is, Eβ (p(t+1),n(t+1), δ(t+1)) < Eβ (p(t),n(t), δ(t)).
Because Eβ (p,n, δ) is bounded below by zero (i.e., may not be

smaller than zero), we can conclude {Eβ (p(t),n(t), δ(t))}t=1,2,... is
strictly monotonic decreasing and bounded below by zero. There-
fore, {Eβ (p(t),n(t), δ(t))}t=1,2,... converges. Item (1) of Theorem 1 is
then proved.

Assume T is a positive integer, summing inequality (12)

from t = 1 to T gives rise to
∑T

t=1∥δ
(t+1)

− δ(t)∥22 ≤

1
α

∑T
t=1(Eβ (p(t),n(t), δ(t)) − Eβ (p(t+1),n(t+1), δ(t+1))) = 1

α
(Eβ (p(1),

n(1), δ(1)) − Eβ (p(T+1),n(T+1), δ(T+1))). Taking the limit as T →
+∞ on both sides, 1

α
(Eβ (p(1),n(1), δ(1))− Eβ (p(T+1),n(T+1), δ(T+1)))

becomes a constant because of Item (1) of this theorem. Therefore,∑
+∞

t=1∥δ
(t+1)
− δ(t)∥22 converges and limt→+∞∥δ

(t+1)
− δ(t)∥22 = 0.

This limit implies that there exists a positive integer t̃ such that
∥δ(t+1) − δ(t)∥

2
2 ≤

λ
βw+α

for t ≥ t̃ . According to Item (2) of
Lemma 1, N(δ(t+1)) = N(δ(t)) for t ≥ t̃ . In other words, N(δ(t))
remains unchanged for t ≥ t̃ . Item (2) of Theorem 1 is then
proved. □
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