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Abstract—X-ray scattering is a key technique in modern 
synchrotron facilities towards material analysis and discovery via 
structural characterization at the molecular scale and nano-scale.  
Image classification and tagging play a crucial role in recognizing 
patterns, inferring meaningful physical properties from sample, 
and guiding subsequent experiment steps. We designed deep-
learning based image classification pipelines and gained 
significant improvements in terms of accuracy and speed. 
Constrained by available computing resources and optimization 
library, we need to make trade-off among computation efficiency, 
input image size and volume, and the flexibility and stability of 
processing images with different levels of qualities and artifacts.  
Consequently, our deep learning framework requires careful 
data preprocessing techniques to down-sample images and 
extract true image signals.  However, X-ray scattering images 
contain different levels of noise, numerous gaps, rotations, and 
defects arising from detector limitations, sample (mis)alignment, 
and experimental configuration. Traditional methods of healing 
x-ray scattering images make strong assumptions about these 
artifacts and require hand-crafted procedures and experiment 
meta-data to de-noise, interpolate measured data to eliminate 
gaps, and rotate and translate images to align the center of 
samples with the center of images.  These manual procedures are 
error-prone, experience-driven, and isolated from the intended 
image prediction, and consequently not scalable to the data rate 
of X-ray images from modern detectors. We aim to explore deep-
learning based image classification techniques that are robust 
and capable of leverage high-definition experimental images with 
rich variations even in a production environment that is not 
defect-free, and ultimately automate labor-intensive data 
preprocessing tasks and integrate them seamlessly into our 
TensorFlow based experimental data analysis framework.    
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Fig. 1. Comparison of real experimental images (top 2 rows) and synthetic 
images (bottom 2 rows) [1]. 

I. INTRODUCTION 
Modern synchrotron facilities are used worldwide to 

analyze the structures of materials at the molecular and nano-
scale. Synchrotrons produce x-ray scattering images that are 
essential in characterizing the features and attributes of 
molecules. X-ray scattering images help scientists expose 
molecular structures at the atomic level and will ultimately 
enhance their understanding of the functions of material. With 
this knowledge, they can study how molecules interact with 
other molecules, how molecules undergo conformational 
changes [2], how enzymes perform catalysis [3], and so much 
more. This structural knowledge provides vital information in 
helping scientists design novel drugs that bind to protein to 
treat diseases [4]. 

To produce x-ray scattering images, the synchrotron first 
produces extremely bright synchrotron light (x-ray and 
infrared light) by accelerating electrons in a magnetically 
confined ring and then deflecting electrons with a strong 
magnetic field. Optical systems (silicon mirrors, apertures, and 
crystals) focus the synchrotron X-ray into a dense beam for 
probing samples. The x-ray or synchrotron light is directed at 
the sample chamber, holding the molecule to be analyzed. The 
x-ray is scattered off the molecules in the sample and 
constructively and destructively interfered with each other to 
form images with distinct visual features such as rings, spots, 
or halo.  These visual patterns provide scientists insight into 
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the molecular structure, including the size, orientation, and 
packing of atoms (See Fig. 1).  

National Synchrotron Light Source II (NSLS-II) at 
Brookhaven National Laboratory (BNL) is the world’s 
brightest synchrotron light source with 60 available beamlines, 
enabling this advanced instrument to collect 50,000 to 
1,000,000 images per day (1-4 terabytes per day) [5]. Due to 
this massive amount of data, scientists now face a daunting 
big data problem where the image streams significantly 
outpace any manual image analysis efforts on all the x-ray 
scattering images. On top of that, manual image analysis is 
extremely complex and consumes beam scientists’ valuable 
time. This laborious process distracts scientists from thinking 
of the science in the experiment because they spend too much 
time attempting to analyzing a small fraction of the images out 
of the millions being produced.  

This current data challenge limits the scientific 
productivity of the NSLS-II instrument because it is unable to 
perform at its full capacity. To keep up with the demanding 
data acquisition and to eventually move toward an automated 
experimentation process, scientists at BNL are taking 
advantage of deep learning methods, such as Convolutional 
Neural Networks (CNN) to process x-ray scattering images, to 
classify these images accurately and detect relevant features 
from them. As the amount of data increases, deep learning 
techniques outperform existing learning algorithms.  

In 1989, LeCun published a paper introducing a 
biologically inspired neural network that uses convolutions, a 
linear operation, in place of general matrix multiplication [6]. 
Convolutional Neural Networks (CNNs) are specifically 
useful for processing data that has a “grid-like topology”, such 
as image that consists of a 2-D grid of pixels. Recently, Wang 
et al. applied deep learning to x-ray scattering image 
recognition by implementing Convolutional Neural Networks 
(CNNs) and Convolutional Autoencoders [1]. They used 
simulation software to generate pre-tagged synthetic x-ray 
scattering images and then trained a CNN with 100,000 x-ray 
scattering images. Their experiments show that this deep 
learning method outperformed previously published methods 
by 10% on synthetic and real datasets.  

Another issue in synchrotron instruments is noise in the 
images, deriving from detector limitations, sample 
(mis)alignment, experimental configuration, the x-ray beam 
hitting miscellaneous aerosol particles, or blurry optical 
lenses. Traditionally, data scientists utilize image healing 
methods.  However, those methods of healing x-ray scattering 
images make strong assumptions about these artifacts and 
require hand-crafted procedures and experiment meta-data to 
de-noise, interpolate measured data to eliminate gaps, and 
rotate and translate images to align the center of samples with 
the center of images. These manual procedures are error-
prone, experience-driven, and isolated from machine-based 
intended image prediction, and consequently not scalable to 
the data rates of X-ray images from modern detectors. Fig. 2 
shows that the current Image CNN developed by Wang et al. 
is not robust to noise and the CNN network stack suffers the 
problem of deteriorating precision when the amount of the 
noise increases. 

Fig. 2. Impact of noise on CNN accuracy. 

Many machine learning specialists study regularization 
techniques of generalizing an algorithm to classify new inputs 
that have different patterns and distribution from the known 
training dataset. One form of regularization is data 
augmentation or noise injection. In previous works, 
researchers have found that injecting noise into the sample 
data can lead to neural networks with improved performance, 
meaning that the designed neural networks can have smaller 
misclassification errors than those without noise injection [7]. 
In this paper, we look into training the CNN with three 
different types of noise and analyzing the performance of the 
neural network in analyzing images with noise. 

In addition, our system is based on Google TensorFlow, an 
open source software library for machine learning. Its flexible 
graph-representation architecture makes it easy to deploy 
computation to one or more CPUs or GPUs on desktops or 
servers, while the details of using CUDA and cuDNN are 
transparent to users. We are proposing a distributed 
computation paradigm that takes advantage of this feature. 

II. MATERIALS AND METHODS

A. CNNs 
Convolutional Neural Networks are specifically useful for 

processing data that has a “grid-like topology” such as “image 
data, which can be thought of as a 2-D grid of pixels”. In this 
experiment, we use the Google TensorFlow’s deep CNN. This 
model consisted of layers with alternating operations of 
convolutions and nonlinear activations, followed by fully 
connected layers, and ending with a softmax classifier.  To 
train the CNN, the images were passed through the initial 
convolutional layers and a sigmoid output layer. The prediction 
loss, or the distance between the predictions and true class, is 
computed by cross entropy. The loss function is defined as the 
sum of the cross entropy loss and the weight decay terms. The 
model uses stochastic gradient decent algorithm to minimize 
the loss of the function and  improve its ability to classify 
images. During the process of training the model, the training 
terminated when the loss was below 0.10. To evaluate the 
CNN’s ability to classify images, the network would calculate 
the precision, more specifically, how often the top prediction 
from the output layer matches the true label of the image.  

B. Synthetic Dataset 
A current challenge in deep learning for x-ray scattering 

images is the fact there is very limited number of human-

 



tagged experimental datasets. Although the images themselves 
are produced at an unprecedented rate, the amount of labelled 
data is still very small because specialists must manually go 
through images and tag them. Deep learning techniques benefit 
immensely from large data because there are more images to 
learn from. This shortage of labelled data prompts us to use 
synthetic data that can effectively mimic the patterns in the real 
images generated by x-ray interference beam. Fig. 1 shows that 
the synthetic images look very similar to the real data from 
NSLS-II. 

C. Data Augmentation 
Three forms of noise were applied to image: Gaussian 

Noise, Salt and Pepper Noise, and Poisson Counting Statistics. 
The forms of noise were selected because of their real world 
connection to the noise that a real image from NSLS-II may 
contain. Fig. 3 shows an example of the noisy images that are 
produced.  

 

Fig. 3. Noise and image degradation techniques used for data augmentation. 

1) Gaussian Noise 
Gaussian noise is a standard form of noise that has been 

widely used to verify model robustness in signal, image and 
geometry processing. Zur et al. found that injecting neural 
networks with gaussian noise reduced the overfitting problem 
to a greater degree than the weight decay [8] and Goodfellow 
et. al described Gaussian noise as a common example of data 
augmentation to reduce overfitting [9]. We used the Gaussian 
noise in this process and render the CNN to be robust to this 
type of noise because of the following reasons:  1) the success 
in previous papers that use the Gaussian noise for data 
augmentation,  and 2) the fact that the NSLS-II produces 
slightly blurry images and the Gaussian filter can closely 
represent this type of image distortion. To simulate this 
blurriness, the image pixels from the x-ray scattering image 
took on values that were Gaussian-distributed with varying σ’s 
to change the amount of blurriness. The neural network was 
trained on images with many different values of sigma ranging 
from 0.5 to 6. For the evaluation process, the neural network 
was tested on 5,000 images that had three levels of gaussian 
noise, i.e., σ = 2, 4, 6. 

2) Salt and Pepper Noise 
The second form of noise applied to the image is Salt and 

Pepper noise in which the image contains sparsely occurring 
black and white pixels. This type of noise may occur when the 
x-ray beam hits an aerosol particle or mistakenly deflects off 
equipment. To model this form of noise, we randomly choose 
values in image array to corrupt by setting them to either 0 or 
216, subject to a Poisson distribution with a probability mass 
function defined as follows: 

 f (k; λ) = λke -λ/k! (1) 

When training the network, the images had a random 
amount of salt and pepper noise (λ = 0.005-0.05). When 
evaluating the CNN performance, three levels of this noise 
were applied with the lambda of the distribution set to 0.005, 
0.025, or 0.05 to see how well the network could classify 
images with different amounts of salt and pepper noise.  

3) Poisson Counting Statistics 
The third form of noise applied to the images is Poisson 

Counting Statistics. This form of noise originates from the 
particle nature of light where the probability of capturing the 
photon is a chance observation. When a synchrotron light 
source emit a stream of photos that scatter after directed 
towards a molecule, the probability of observing a photon 
hitting the detector is a chance observation. Typically, when 
there are millions of photons hitting a surface, the variation in 
number of photos is insignificant. However, synchrotron 
instruments have less photons and thus the variation in the 
number of photons is significant [10]. With x-ray beam that is 
scattered through the particle, there is a chance of that photon 
hitting the detector. With an image that has a high intensity 
pixel, there is a higher chance that the value of that pixel will 
be varied. This variation in the pixels can be modeled by 
resampling the pixel intensities with a Poisson distribution. At 
each individual pixel p, the scale factor λ is set to p/k where k is 
100, 1,000, or 10,000. The division factor k controls the 
intensity of Poisson counting effect because a low mean λ 
reduces the observation probability and causes more severe 
loss of pixel value.  

D. Training and Testing 
To test the effects of data augmentation on the neural 

network’s ability to classify x-ray scattering images, the 
network had to be first trained with a synthetic image dataset 
that contained with 50,000 noise-free x-ray scattering images.  

Then, 5,000 x-ray scattering images were generated and 
corrupted with three levels of Gaussian noise, salt and pepper 
noise, and Poisson Counting Statistics. The CNN had never 
seen this testing set and the purpose was to use this set to 
evaluate the performance of the neural network. There were ten 
versions of 5,000 testing dataset: a noise-free version, three 
levels of Gaussian noise, three levels of salt and pepper noise, 
and three levels of Poisson counting statistics. These datasets 
were tested in the neural network trained with 50,000 noise-
free x-ray scattering images to see how well the network 
classified the images before the network was trained with noisy 
images.  

 



To train the CNN with augmented data, the CNN was 
trained on a total of 100,000 images. In addition to the previous 
50,000 noise-free images, 50,000 new x-ray scattering images 
were generated and gaussian noise was applied to 1/3 of the 
images, salt and pepper noise was applied to 1/3 images, and 
Poisson counting statistics was applied to the remaining 1/3 
images. After training the CNN on this new dataset, we 
evaluated its ability to classify the noise free images, three 
levels on each of three types of noise: Gaussian noise, salt and 
pepper noise, and Poisson Counting Statistics.  

In addition, we also looked into training the CNN on 
images that had all three forms of noise applied to each image. 
In this case, we trained the CNN on the original noise-free 
50,000 images and the 50,000 images that had all three forms 
of noise on each image. We then evaluated its performance 
when classifying the noise free images, three levels of 
Gaussian noise, salt and pepper noise, and Poisson Counting 
Statistics. 

III. MULTI-GPU TRAINING 

 

Fig. 4. Multi-GPU computation paradigm. 

TensorFlow is an open source software library for machine 
learning. Its flexible graph-representation architecture makes it 
easy to deploy computation to one or more CPUs or GPUs on 
desktops or servers while all the implementation details in 
CUDA and cuDNN are transparent to users. Therefore,  it is 
straightforward to migrate a Tensorflow application from CPU 
to GPU and from a standalone single processor pipeline to 
parallelel workflow with multiple GPU processors.  We are 
proposing a distributed computation paradigm leveraging the 
parallelization and distributed computing capability of Google 
TensorFlow. 

Fig. 4 shows our computation paradigm: it employs an in-
graph data-parallelization approach in which the entire module 
is represented as a big graph and one copy of module, called a 
replica, along with a subset of training data, called a batch, is 
pinned to each allocated GPU. 

We assume that all GPUs within a single server node have 
similar speed and contain the same size memory so that it takes 
every GPU similar time to finish a batch.  The uniformity 

makes it possible to stream the batches of training data of the 
same size to all GPU devices using prefetch queue mechanism. 

We use the standard TensorFlow prefetch queue to dispatch 
training data to GPU devices asynchronously. We define a 
special node to host the prefetch queue and enqueue the tasks 
of prefetching training data first. Each TensorFlow worker 
process then dequeues the batches to its corresponding GPU 
device asynchronously. The prefetch queue is compatible with 
the graph computation.  Our program first defines the queue in 
the graph and then run the queue operation with a Google 
TensorFlow session. 

On each GPU, a replica is trained by the Momentum 
Optimization. First a forward inference is performed by the 
module using the training data. Then the loss for the current 
replica is calculated. And gradient of variables are calculated. 

There are multiple replicas being trained simultaneously so 
we need to summarize the gradients of all replicas by 
calculating the mean of gradients in order to update the 
variables. The summarization and variable update are operated 
on CPU and they naturally implemented synchronization 
mechanism of all replicas by waiting all GPUs to finish the 
processing of a batch of data. 

IV. EXPERIMENTS AND RESULTS 

A. Data Augmentation 
To begin, we wanted to determine the ability of our current 

neural networks to classify x-ray scattering images with 
varying levels of noise. We adopted AlexNet [11] as our CNN 
for image labelling. After training the neural networks with 
augmented data, we can then analyze how the newly-trained 
neural networks react to the same x-ray scattering images with 
varying levels of noise to determine how truly robust our 
network has become. Fig. 5 compares the performance of our 
convolutional neural network on four different types of noise: 
noise-free images, Gaussian noise, Salt and Pepper Noise, and 
Poisson Counting Statistics. From the graph, we can tell that 
the precision decreases as more noise is added. 

 

Fig. 5. Performance of CNN without data augmentation on corrupted data. 

After training the Neural Networks with augmented data as 
described in Section III.D, we evaluated their performance by 
testing the network on the same x-ray scattering images from 
earlier. As demonstrated in Fig. 6. the CNN’s performance 

 

 



before and after training with data augmentation increased 
significantly. Data augmentation was most successful in 
improving the network’s ability to classify images with 
Gaussian noise -- the precision increased by about 15% to 
18%. The CNN can also now classify images with Salt and 
Pepper noise with 10% more accuracy and images corrupted 
with Poisson counting statistic with 8% more accuracy.  

 

Fig. 6. Comparison of CNN performance with and without data 
augmentation. 

The CNN will tag an x-ray scattering image with 10 
distinct known labels. We examined the effects of data 
augmentation on the network’s ability to classify each 
individual label. Fig. 7 compares the CNN’s ability to classify 
10 individual labels on images with four different types of 
noise (a -- noise free; b -- Gaussian; c -- Poisson; d -- salt and 
pepper). The neural network was able to classify certain labels 
extremely well (Higher Order, Rings) at a precision of over 
80%, and therefore the precision did not increase much after 
data augmentation.  While there were some attributes that were 
initially hard to classify, data augmentation improved the 

classification of other labels (Diffuse Lo-q, Diffuse Hi-q, Halo) 
by 10%. There were also other tags that data augmentation 
helped very minimally with such as Symmetric Rings and 2-
fold symmetry, 4-fold symmetry, 6-fold symmetry. Data 
augmentation seemed to increase the classification of images 
with Gaussian noise the most because Gaussian noise had the 
highest increases in mean average precision (mAP). 

In addition, the neural network was trained on images that 
had all three forms of noise on one image. Fig. 8 describes the 
impact that a combination of noise had on the mean average 
precision. Training on combination of noise produced little to 
no improvement in the performance of the CNN. Since the 
corrupted in the images had all three forms of noise on the 
images, the noise may have been too strong for the neural 
network to learn from the noisy data. 

 

Fig. 8. Performance comparison of CNN trained on noise-free data, data 
augmentation with single noise types and combined noise augmentation. 

 

 

 
Fig. 7.  Performance improvement per label with difference noise types with data augmentation. 



B. Multi-GPU Training 
We deployed the Multi-GPU System Paradigm on a 

computer cluster at Stony Brook University that contains eight 
NVIDIA K80 GPUs. We execute the end-to-end training 
process and train an image CNN module in four different 
architectures where 0, 1, 4 and 8 GPUs are utilized and 
compare the total run time and the inference accuracy.  

To clarify the comparison, we run the image CNN module 
training with 3,200 scientific images for 5,000 steps on all four 
architectures. We display the total runtime and validation result 
accordingly in Table 1. 

TABLE I.  TRAINING SPEED COMPARISON ON DIFFERENT MULTI-GPU 
SETUPS. 

Number of GPUs Total Runtime (s) mAP 
0 (CPU) 27,832 0.944 

1 19,500 0.954 
4 6,560 0.957 
8 4,250 0.951 

V. CONCLUSIONS 
In this paper, we have evaluated the effects of data 

augmentation in training CNNs to understand how robust the 
CNNs are in processing images with noise.  We discovered that 
after training the CNNs with data that contained different 
amounts and different types of noise, the CNN always 
performs better than the previous CNN that was trained with 
only noise-free images.  We also found that after training the 
CNN with augmented data, the performance improved the 
most for the case of Gaussian noise, suggesting that the data 
augmentation technique is the most useful when trying to make 
the neural network robust to Gaussian noise. The network also 
became more robust for the cases of Salt and Pepper Noise and 
Poisson Counting Statistics than the network trained with 
noise-free data. We have shown that data augmentation, 
specifically noise injection, is a successful regularization 
technique for training CNNs. We have demonstrated that 

multiple GPUs are effective to accelerate the training of CNN. 
In the future, we will investigate how well the neural network 
performs in classifying real images, rather than synthetic data. 
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