
A Greedy Algorithm to Construct L1 Graph
with Ranked Dictionary

Shuchu Han, Hong Qin

Stony Brook University (SUNY), USA
{shhan,qin}@cs.stonybrook.edu

Abstract. L1 graph is an effective way to represent data samples in
many graph-oriented machine learning applications. Its original construc-
tion algorithm is nonparametric, and the graphs it generates may have
high sparsity. Meanwhile, the construction algorithm also requires many
iterative convex optimization calculations and is very time-consuming.
Such characteristics would severely limit the application scope of L1

graph in many real-world tasks. In this paper, we design a greedy algo-
rithm to speed up the construction of L1 graph. Moreover, we introduce
the concept of ”Ranked Dictionary” for L1 minimization. This ranked
dictionary not only preserves the locality but also removes the random-
ness of neighborhood selection during the process of graph construction.
To demonstrate the effectiveness of our proposed algorithm, we present
our experimental results on several commonly-used datasets using two
different ranking strategies: one is based on Euclidean metric, and an-
other is based on diffusion metric.

Keywords: Sparse graph, clustering

1 Introduction

For graph-oriented learning tasks, a quality graph representation [4] of input data
samples is the key to success. In the past few decades, researchers in machine
learning area propose many different methods to solve such tasks, for exam-
ple, k-nearest neighbor (kNN) graph and ε-ball graphs. These methods are very
straightforward and proved to be efficient for general data. The reason of these
methods’ success is that their construction algorithm acts as a local smooth
”filter” which sets the weight between faraway data points and source point to
zero. The built graph is constructed by many such local star-shape patches (or
subgraphs). However, both of them need a user-specified parameter such as k or
ε which is chosen empirically. Considering the versatility and uncertainty of the
real world data, a bad selection of parameter k and ε will lead to an inaccurate
conclusion for subsequent machine learning tasks. Recently, a nonparametric
graph called L1 graph is proposed by Cheng et al. [2]. Based on existing sparse
representation frameworks [10] [12], the construction algorithm of L1 graph can
be described as follows: Given an input data samples X = [x1,x2, · · · ,xn], where
each xi, i ∈ [1, · · · , n] is a vector that represents one single data sample. The L1

Fig. 1. Connection of Greedy L1 graph to other graphs. Several of them are: kNN-fused
Lasso graph [16], Group Sparse (GS) L1 graph, Kernelized Group Sparse (KGS) L1

graph [6], Laplacian Regularized (LR) L1 graph [14] and Locality Preserving (LOP)
L1 graph [7].

graph of X is built by finding a sparse coding [11] of each xi with a dictionary
constructed from all data samples except xi itself. The coefficient of sparse cod-
ing is used as the edge weight of resulted L1-graph. The mathematical definition
of sparse coding is:

(P1) min
αi

‖αi‖1 subject to xi = Φiαi, (1)

where dictionary Φi = [x1, · · · , xi−1, xi+1, · · · , xn], and αi ∈ Rn−1 is the
sparse code of xi. The coefficients of αi could be negative, depending on the
choices of L1 minimization solvers. To make them have the physical meaning of
”Similarity”, the absolute value or nonnegative constraints are employed.

As we could see from the above description, the L1 graph construction al-
gorithm is nonparametric and the user is not required to input any parameters
except for the solver. The construction algorithm is a pure numerical process
based on convex optimization. Cheng et al. [2] show that L1 graph has three
advantages comparing to traditional graph construction methods. They are: (1)
robustness to data noise; (2) sparsity; (3) datum-adaptive neighborhood. Their
experimental results also prove that L1 graph has significant performance im-
provement in many machine learning applications such as spectral clustering,
subspace learning, semi-supervised learning, etc [2]. Nevertheless, just like each
sword has double edges, L1 graph also bears some disadvantages such as: (1) sen-
sitive to duplications. For example, if every data sample has a duplication, the
resulted L1 graph will only have edge connections between the data sample and
its duplication; (2) randomness, the edge and edge weight are highly dependent
on the solver; (3) high computational cost [2]; (4) lost of the locality [6] [15] [7].
To overcome these disadvantages, many improved algorithms have been pro-
posed in recent years. Now, we would like to classify them into two categories:
soft-modification and hard-modification.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. L1 graphs generated by different construction algorithms. From left to right:
2D toy dataset; L1 graph; Greedy-L1 graph with Euclidean metric (K=15); Greedy-L1

graph with Diffusion metric (K=15).

1. Soft-modification algorithms. Algorithms in this category usually add one or
more regularization terms to the original L1 minimization objective function
in Eq. (1). For example, the structure sparsity [16] preserves the local struc-
ture information of input data, the auto-grouped sparse regularization [6]
adds the group effect to the final graph, and the Graph Laplacian regu-
larization [13] [14] lets the closed data samples have similar sparse coding
coefficients (or αi).

2. Hard-modification algorithms. These algorithms define a new dictionary for
each data sample during L1 minimization. By reducing the solvers’ solution
space for each data sample into a local space, the locality of input data
is preserved and the computational time of L1 minimization (Eq. (1)) is
reduced. For example, the locality preserved (LOP) L1 graph is utilizing
k-nearest neighbors as dictionaries [7].

The soft-modification algorithms preserve the nonparametric feature and im-
prove the quality of L1 graph by exploiting the intrinsic data information such as
geometry structure, group effects, etc. However, those algorithms still have high
computational cost. This is unpleasant for the large-scale dataset in this ”Big-
data” era. To improve, in this paper we propose a greedy algorithm to generate

L1 graph. The generated graphs are called Greedy-L1 graphs. Our algorithm
employs greedy L1 minimization solvers and is based on non-negative orthogo-
nal matching pursuit (NNOMP). Furthermore, we use ranked dictionaries with
reduced size K which is a user-specified parameter. We provide the freedom to
the user to determine the ranking strategy such as nearest neighbors, or diffusion
ranking [3]. Our algorithm has significant time-reduction about generating L1

graphs. Comparing to the original L1 graph construction method, our algorithm
loses the nonparametric characteristics and is only offering a sub-optimal solu-
tion. However, our experimental results show that the graph generated by our
algorithm has equal (or even better) performance as the original L1 graph by
setting K equals to the length of data sample. Our work is a natural extension
of existing L1 graph research. A concise summary of the connection between our
proposed Greedy-L1 graph and other graphs is illustrated in Figure 1. The main
contributions of our paper can be summarized by

1. We propose a greedy algorithm to reduce the computational time of gener-
ating L1 graph.

2. We introduce the Ranked Dictionary for L1 minimization solver. This new
dictionary not only reduces the time of minimization process but also pre-
serves the locality and geometry structure information of input data.

3. Our algorithm removes the randomness of edges in final L1 graph and pre-
serves the uniqueness except for the edge weights. Moreover, our algorithm
can generate L1 graphs with lower sparsity.

4. We present experiment and analysis results by applying our algorithm to
spectral clustering application with different datasets. Our experimental re-
sults show that the graphs generated by our proposed greedy algorithm have
equal clustering performance even though it is only providing a sub-optimal
solution.

The organization of our paper is as follows. First, an overview of the disadvan-
tages of original L1 graph construction algorithm will be presented in Section 2.
Second, we will introduce our proposed greedy algorithm in Section 3. After
that, we will give a review of existing works on how to improve the quality of L1

graph. Finally, we will present our experimental results in Section 5 and draw
conclusion in Section 6.

2 Overview

In this section, we make our attempts to address two problems of original L1

graph construction algorithm. They are: (1) curse of dictionary normalization,
and (2) non-local edges.

2.1 Curse of Dictionary Normalization

While solving L1 minimization, the atoms of dictionary are normalized to have
unit length. The goal of this step is to satisfy the theoretic requirement of Com-
pressive Sensing. The less-ideal part about this normalization is that it is not

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Before normalization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
After normalization

Fig. 3. Demonstration of dictionary normalization for a toy dataset. The red and blue
points represent two different clusters. Left: before normalization; right: after normal-
ization. We can see that the neighborhood relationship is changed after normalization.

preserving neighborhood information of input data. This can be illustrated in
Fig. 3. To illustrate this phenomenon, we manually create a toy dataset in 2D
and it has two clusters visually. After normalization, we can see that the neigh-
bors of a node are changed. This normalization step projects all data samples
onto a unit hypersphere and the original geometry structure information is lost.

2.2 Non-local Edges

During the construction of L1 graph, an over-complete dictionary is required for
each data sample. The original method simply selects all other data samples as
the dictionary. This strategy affords the nonparametric property of L1 graph.
However, it also introduces non-local edges. In other words, it doesn’t preserve
the locality of input data [7]. This phenomenon can be illustrated in Fig. 4,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pathbased Shape dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pathbased Shape dataset, node id: 2,172,296

Fig. 4. L1-graph of path-based dataset. Left: the entire graph; right: edges of three
selected points. We can see the existence of non-local edges.

3 New Algorithm

In this section, we introduce the concept of ranked dictionary with two different
strategies: Euclidean metric and diffusion metric. Furthermore, we present our

proposed greedy algorithm and describe how to generate Greedy-L1 graph from
it.

3.1 Ranked Dictionary

The use of k-nearest neighbors as dictionary is proved to have better quality
than original L1 graph [7]. However, it can not solve the dilemma that there
might exist data samples with the same direction but different length in input
data. The dictionary normalization process will project them onto to the same
location at hypersphere. Since they have the same values, the L1 minimization
solver will choose one of them randomly. To avoid this randomness, we need to
rank those atoms (or data samples) of dictionary.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

1

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 data samples

Fig. 5. Ranked dictionary. Left: eight data samples have the same direction but with
different length. Red cross is the target data sample for calculating sparse coefficients.
Right: after normalization, those eight data samples have the same location.

Euclidean Metric. Using Euclidean metric to rank atoms of dictionary is quite
straightforward. We rank them by distance. The shorter distance will have a
higher rank score. The Euclidean distance is defined as:

dist(xi,xj) = ‖xi − xj‖2 (2)

Diffusion Metric. As pointed out by Yang et al. [14], many real-world datasets
are similar to an intrinsic low dimensional manifold embedded in high dimen-
sional ambient space, and the geometry structure of manifold can be used to
improve the performance of learning algorithms. we now present a strategy to
search dictionaries following the geometry structure of input data. Based on the
diffusion theory [3] [5], we rank the atoms of dictionary through diffusion ma-
trix. A diffusion process has three stages [5]: (1) initialization; (2) definition of
transition matrix; (3) definition of the diffusion process. In our setting, the first
stage is to build an affinity matrixA from the input datasetX. We use Gaussian
kernel to define the pairwise distance:

A(i, j) = exp

(
−‖xi − xj‖
−2σ2

)
, (3)

where A(i, j) is the distance between data sample xi and data sample xj , and
σ is a normalization parameter. In our configuration, we use the median of K
nearest neighbors to tune σ. The second stage is to define the transition matrix
P :

P = D−1A, (4)

where D is a n× n degree matrix defined as

D(i, j) =

{∑n
j=1A(i, j) if i = j,

0 otherwise.
(5)

Now the diffusion process can be defined as:

W t+1 = PW tP
′
, (6)

where W 0 = A and t is the number of steps for diffusion steps. Each row of W t

is the diffusion ranking scores. In this paper, we let t equal to K for the sake of
simplicity. Once W t is calculated, the first K data samples with top scores of
each row is selected as dictionary. The algorithmic details can be documented
as follows:

Algorithm 1: Diffusion Dictionary

Input : Data samples X = [x1, x2, · · · , xn], where xi ∈X;
Size of dictionary: K;

Output: Diffusion dictionary index matrix ΦK .

1 Calculate Gaussian similarity graph A;
2 P = D−1A;

/* calcualte diffusion process iteratively. */

3 for t = 1 : K do

4 W t = PW t−1P
′

5 end
/* sort each row in descend order. */

6 for i = 1 : n do
7 sort(W t(i, :))
8 end

/* fetch the index of highest K values in each row of Wt */

9 for i = 1 : n do
10 Φ(i, :) =index(W t(i, 1 : k))
11 end

3.2 Greedy-L1 Graph

We now propose a greedy algorithm to build L1 graph. Our proposed algorithm
is based on non-negative orthogonal matching pursuit (NNOMP) [1] [9]. By using
this solver, we switch the L1 minimization problem (P1) back to the original L0

optimization with non-negative constraints (P2) as:

(P2) min
αi

‖αi‖0 subject to xi = Φiαi,αi ≥ 0. (7)

The main difference between our algorithm and the original NNOMP [1] is
that the atoms of dictionary are ranked. We let the solver choose and assign
higher coefficient values to atoms that are closer to source data sample. The
detailed processes are described in Algorithm 2.

Algorithm 2: Greedy Solver

Input : Data sample x;
Ranked dictionary ΦK ;
Residual threshold θthreshold

Output: Sparse coding α of x.

1 for i = 1 : ‖x‖1 do
2 if i == 0 then
3 Temporary solution: αi = 0;

4 Temporary residual: ri = x−ΦKα
i;

5 Temporary solution support: Si = Support{αi} = ∅;
6 else
7 for j = 1 : k do

/* φj is the j-th atom of ΦK */

8 ε(j) = minαj≥0 ‖φjαj − ri−1‖22 = ‖ri−1‖22 −max{φTj ri−1, 0}2.

9 end
10 Find j0 such that ∀j ∈ Sc, ε(j0) ≤ ε(j), if there are multiple j0 atoms,

choose the one with smallest index value.;

11 Update support: Si = Si−1 ∪ {j0};
12 Update solution: αi = minz ‖ΦKα− x‖22 subject to Support{αi} = Si

and αi ≥ 0;

13 Update residual: ri = x−ΦKα
i;

14 if ‖ri‖22 < θthreshold then
15 Break;
16 end

17 end

18 end

19 Return αi;

4 Related Works

Original L1 graph [2] is a pure numerical result and doesn’t exploit the physical
and geometric information of input data. To improve the quality of L1 graph,
several research works are proposed to use the intrinsic structure information
of data by adding one or several regularization terms to the L1 minimization
P1. For example, consider the elastic net regularization [6], OSCAR regulariza-
tion [6], and Graph Laplacian regularization [14].

Another research direction of L1 graph is to reduce its high computational
cost. Zhou et al. [16] propose a kNN-fused Lasso graph by using the idea of
k-nearest neighbors in kernel feature space. With a similar goal, Fang et al. [6]

propose an algorithm which transfers the data into reproducing kernel Hilbert
space and then projects them into a lower dimensional subspace. By these op-
erations, the dimension of the dataset is reduced and the computational time is
reduced.

Name #samples #attributes #clusters

BreastTissue (BT) 106 9 6
Iris 150 4 3
Wine 178 13 3
Glass 214 9 6
Soybean 307 35 19
Vehicle 846 18 4
Image 2100 19 7

Table 1. Data set statistics.

5 Experiments

We now present our experimental results. We first document our configuration of
parameters and datasets. Second, we evaluate the effectiveness of our proposed
graph construction methods through spectral clustering application. To satisfy
the input of spectral clustering algorithm, we transform the adjacency matrix of

L1 graph W into a symmetry matrix W
′

by W
′

= (W +W T)/2. All analyses
and experiments are carried out by using Matlab on a PC with Intel 4-core
3.4GHz CPU and 16GB RAM.

5.1 Experimental Setup

Datasets. To demonstrate the performance of our proposed algorithm, we eval-
uate it on seven UCI benchmark datasets including three biological data sets
(BreastTissue, Iris, Soybean), two vision image data sets (Vehicle, Image), one
chemistry data set (Wine), and one physical data set (Glass), whose statistics
are summarized in Table 1. All of these data sets have been popularly used in
spectral clustering analysis research. The diverse combinations of data sets are
necessary for our comprehensive studies.
Parameters Setting. In our experiments, we use the l1 ls solver [8] for original
L1 graph construction algorithms. We set the solver’s parameter λ to 0.1. The
threshold θthreshold of Greedy solver 2 is set to 1e − 5. For Gaussian graph
and Greedy-L1 graph, we select three different K values and document their
clustering performance results respectively. The K is set to be the multiple of
data attribute size.

5.2 Spectral Clustering Performance

Baseline. To evaluate the quality of our algorithms, we compare the spectral
clustering performance with Gaussian similarity graph, and original L1 graph.
The results are documented in Table 2 and Table 3.

Name L1 Gaussian Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)

K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

BT 0.4582 0.3556 0.4909 0.4722 0.5473 0.4517 0.5024 0.4197 0.4073 0.3839

Iris 0.5943 0.4557 0.5923 0.7696 0.3950 0.4623 0.4070 0.5106 0.4626 0.4640

Wine 0.7717 0.8897 0.8897 0.8897 0.8943 0.9072 0.8566 0.6925 0.4291 0.6093

Glass 0.3581 0.1598 0.2941 0.2614 0.2569 0.3688 0.3039 0.2991 0.3056 0.2918

Soybean 0.7373 0.6839 0.6911 0.6541 0.6919 0.6833 0.6775 0.5788 0.5493 0.5432

Vehicle 0.1044 0.1528 0.1519 0.1341 0.1512 0.2121 0.2067 0.1438 0.1035 0.1244

Image 0.4969 0.2461 0.3382 0.0486 0.5821 0.6673 0.6649 0.4866 0.4483 0.3155

Average 0.5030 0.4205 0.4926 0.4614 0.5170 0.5361 0.5170 0.4473 0.3865 0.3903

Table 2. NMI comparison of graph construction algorithms. M is the number of
attributes.

Name L1 Gaussian Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)

K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

BT 0.5472 0.3208 0.5189 0.5472 0.6698 0.4811 0.5943 0.4528 0.4906 0.4717

Iris 0.7400 0.6667 0.6867 0.9090 0.6933 0.7200 0.6800 0.7200 0.6533 0.64

Wine 0.9326 0.9719 0.9719 0.9719 0.9719 0.9719 0.9551 0.8989 0.7865 0.8596

Glass 0.4206 0.4206 0.4486 0.4206 0.4579 0.4533 0.4346 0.4626 0.4813 0.5187

Soybean 0.6156 0.5440 0.5570 0.5505 0.5244 0.4853 0.5016 0.4430 0.3746 0.4876

Vehicle 0.3713 0.3983 0.3983 0.4066 0.4539 0.4243 0.4090 0.3664 0.3522 0.3605

Image 0.5629 0.3262 0.3919 0.1895 0.6348 0.7181 0.7043 0.5190 0.5524 0.3505

Average 0.6105 0.5546 0.5757 0.5746 0.6227 0.6288 0.6141 0.5683 0.5334 0.5362

Table 3. AC comparison of different graph construction algorithms. M is the number
of attributes.

Evaluation Metrics. We evaluate the spectral clustering performance with
Normalized Mutual Information (NMI) and Accuracy (AC). NMI value ranges
from 0 to 1, with higher values meaning better clustering performance. AC is
another metric to evaluate the clustering performance by measuring the fraction
of its clustering result that are correct. It’s value also ranges from 0 to 1, and
the higher the better.
Greedy-L1 Graph vs. Gaussian Graph. Overall, the Greedy-L1 graph using
Euclidean metric has better average spectral clustering performance than Gaus-
sian graphs. However, since the Gaussian graph we used are not tuned, the best
clustering performance of Gaussian graphs may not occur in our experiments.
Greedy-L1 Graph vs. L1 Graph. Greedy-L1 graph has better clustering
performance than L1 graph on average. However, for iris and soybean datasets,
the L1 graph shows the best clustering result: Iris (NMI=0.5943, AC=0.74);
Soybean (NMI=0.7373, AC=0.6156). The best result of Greedy-L1 graph are:
Iris (NMI=0.5106, AC=0.72); Soybean (NMI=0.6919, AC=0.5244).
Euclidean Metric vs. Diffusion Metric. The Euclidean metric appears to
have better clustering performance than that of diffusion metric in general. This
is rather a surprising result to us. Only for Iris dataset, the result of diffusion
metric is better than that of Euclidean metric.

5.3 Discussions

Running Time. We report the running time of generating L1 graphs using
different construction algorithms. As we can see from Fig. 6, the Greedy-L1

graphs have consumed significantly less construction time than that in original
L1 graphs.

Fig. 6. Running time of different L1 graph construction algorithms. Left: original L1

graph construction algorithm. Right: the construction of L1 graph using greedy solver.

Graph Sparsity. We check the sparsity of graphs by calculating the edge den-
sity:

sparsity(G) =
|E|

|V | ∗ (|V | − 1)
. (8)

The results are reported in Table 4. We can see that Greedy-L1 graphs with
diffusion metric are more sparse than that with Euclidean metric.

Name L1 Gaussian Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)

K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

BT 0.0604 1 1 1 0.0457 0.0615 0.0705 0.0341 0.0442 0.0548

Iris 0.0403 1 1 1 0.0217 0.0288 0.0311 0.0203 0.0237 0.0265

Wine 0.0600 1 1 1 0.0413 0.0496 0.0552 0.0347 0.0409 0.0437

Glass 0.0369 1 1 1 0.0242 0.0308 0.0349 0.0188 0.0204 0.0239

Soybean 0.030 1 1 1 0.0286 0.0317 0.0346 0.0258 0.0299 0.034

Vehicle 0.0135 1 1 1 0.0104 0.0124 0.0135 0.0062 0.0074 0.0084

Image 0.0039 1 1 1 0.0034 0.004 0.0044 0.0026 0.0029 0.0027

Table 4. Graph sparsity comparison of different graph construction algorithms. M is
the number of attributes.

6 Conclusion

In this paper, we have devised a greedy algorithm to construct L1 graph. More-
over, we introduced the concept of ranked dictionary for our greedy solver. Ex-
cept for the Euclidean metric and diffusion metric that have been discussed in
this paper, the user can choose other ranking methods such as manifold rank-
ing that could be more appropriate for specific dataset in real applications. Our
greedy algorithm can generate sparse L1 graph faster than the original L1 graph
construction algorithm, and the resulting graphs have better clustering perfor-
mance on average than original L1 graph. Nevertheless, our algorithm could be
generalized in a straightforward way by introducing regularization terms such as

elastic net into the current solver, which would indicate the quality of generated
L1 graphs could be further improved.
Acknowledgments. This research is supported in part by NSF (IIS-0949467,
IIS-1047715, and IIS-1049448), and NSFC (61532002, 61190120, 61190125, 61190124).
We thank the anonymous reviewers for their constructive critiques.

References

1. Bruckstein, A.M., Elad, M., Zibulevsky, M.: On the uniqueness of nonnegative
sparse solutions to underdetermined systems of equations. IEEE Transactions on
Information Theory, 54(11), 4813–4820 (2008)

2. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.S.: Learning with-graph for image
analysis. IEEE Transactions on Image Processing, 19(4), 858–866 (2010)

3. Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic
Analysis 21(1), 5–30 (2006)

4. Correa, C.D., Lindstrom, P.: Locally-scaled spectral clustering using empty region
graphs. In: Proceedings of the 18th ACM SIGKDD international conference on
Knowledge Discovery and Data mining. pp. 1330–1338. ACM (2012)

5. Donoser, M., Bischof, H.: Diffusion processes for retrieval revisited. In: IEEE Con-
ference on Computer Vision and Pattern Recognition. pp. 1320–1327. IEEE (2013)

6. Fang, Y., Wang, R., Dai, B., Wu, X.: Graph-based learning via auto-grouped
sparse regularization and kernelized extension. IEEE Transactions on Knowledge
and Data Engineering, 27(1), 142–154 (2015)

7. Han, S., Huang, H., Qin, H., Yu, D.: Locality-preserving l1-graph and its applica-
tion in clustering. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing. pp. 813–818. ACM (2015)

8. Koh, K., Kim, S.J., Boyd, S.P.: An interior-point method for large-scale l1-
regularized logistic regression. Journal of Machine Learning Research 8(8), 1519–
1555 (2007)

9. Lin, T.H., Kung, H.: Stable and efficient representation learning with nonnegativ-
ity constraints. In: Proceedings of the 31st International Conference on Machine
Learning (ICML-14). pp. 1323–1331 (2014)

10. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996)

11. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear
inverse problems. Proceedings of the IEEE 98(6), 948–958 (2010)

12. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition
via sparse representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(2), 210–227 (2009)

13. Yang, Y., Wang, Z., Yang, J., Han, J., Huang, T.: Regularized l1-graph for data
clustering. In: Proceedings of the British Machine Vision Conference. BMVA Press
(2014)

14. Yang, Y., Wang, Z., Yang, J., Wang, J., Chang, S., Huang, T.S.: Data clustering
by laplacian regularized l1-graph. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence. pp. 3148–3149 (2014)

15. Zhang, Y.M., Huang, K., Hou, X., Liu, C.L.: Learning locality preserving graph
from data. IEEE Transactions on Cybernetics 44(11), 2088–2098 (2014)

16. Zhou, G., Lu, Z., Peng, Y.: L1-graph construction using structured sparsity. Neu-
rocomputing 120, 441–452 (2013)

