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Abstract—The National Synchrotron Light Source II (NSLS-
II) at Brookhaven National Laboratory (BNL) is now providing 
some of the world’s brightest x-ray beams. A suite of imaging 
and diffraction methods, exploiting megapixel detectors with 
kilohertz frame-rates at NSLS-II beamlines, generate a variety of 
image streams in unprecedented velocities and volumes. A 
complete understanding of a complex material system often 
requires a cluster of x-ray characterization tools that can reveal 
its elemental, structural, chemical and physical properties at 
different length-scales and time-scales. The flourish and 
continuing refinement of x-ray probes enable that the same 
sample may be studied with different perspectives and 
granularities, and at different time and locations; these powerful 
tools generate a correspondingly daunting big data challenge, 
with multiple image streams that outpaces any manual efforts 
and traditional data analysis practice. In this paper, we applied 
deep learning methods, in particular, deep convolutional neural 
network (CNN) to automatically recognize image features from 
image streams from NSLS-II, and integrated our deep-learning 
methods into the Google Tensorflow to cluster and label both real 
and synthetic 2-D scattering image patterns. These methods 
would empower scientists by providing timely insights, allowing 
them to steer experiments efficiently during their precious x-ray 
beamtime allocation.  Experiment shows that the CNN-based 
image labeling attains a 10% improvement over traditional K-
mean and Support Vector Machine.   
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I. INTRODUCTION  
X-ray scattering is a powerful technique for probing the 

physical structure of materials at the molecular and nanoscale, 
where strong x-ray beams are shined through a material to 
learn about its structure at the molecular level. This can be used 
in a wide variety of applications, from determining protein 
structure to observing structural changes in materials. Modern 
x-ray detector can generate 50,000 to 1,000,000 images/day (1-
4 TB/day), thus it’s crucial to automate the workflow as much 
as possible. 

However, the current standard workflow in an x-ray 
scattering experiment consists of an experimental team 
traveling to a synchrotron beamline, capturing a detailed 
dataset over several days, and then returning to their home 
institution with the images for later analysis. The lack of  

  
Fig. 1. Illustration of a computer-directed beamline experiment. The x-ray 
scattering experiment is controlled by A.I. software that runs a deep learning 
algorithm and has access to a stream of samples. The software automatically 
analyzes the stream of x-ray scattering images, clustering them and organizing 
them so as to generate scientifically-meaningful results. The extracted trends 
are used to inform further automated measurements, leading to a rich 
exploration of parameter spaces. 

immediate feedback during the experiment limits the scientific 
productivity. To reduce this data-analysis bottleneck, we 
explored the use of machine learning and computer vision to 
automate the process of image analysis.  

We envision a transformative paradigm for synchrotron 
studies, where data acquisition and analysis are automated, and 
scientists are thereby liberated to focus on deep scientific 
questions, rather than micro-managing the experiment. 
Towards this goal, we propose to develop a set of intelligent 
automated methods, which will be the “brain” of a computed-
directed beamline experiment, as illustrated in Figure 1. These 
methods will be used in real-time to extract hierarchical and 
physically-meaningful insights from scientific datasets 
collected at NSLS-II beamlines: 1) Low-level: identifying 
characteristic features in a diffraction image; 2) Intermediate-
level: detecting the occurrence of a physical process from a 
sequence of images; and 3) High-level: learning and predicting 
scientifically-meaningful trends.  

Machine Learning itself is undergoing a shift, with a re-
thinking from traditional, naive, neural networks, towards deep 
learning models where the neural hierarchy is more rational, 
optimized, and informative. This has already led to clear 
advances in several fields including computer vision and 
speech recognition, and we aim to demonstrate similarly 
transformative gains with respect to scientific image streams. 
The core idea in deep learning is to design multiple levels of 
representations corresponding to a hierarchy of features, 
wherein the high-level concepts and knowledge are derived 
from the lower layers. This multi-level representation can 
capture the complex relationships hidden within rich datasets. 
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This hierarchical representation motif closely matches how 
scientific knowledge is organized, and indeed how physical 
systems can be understood, as illustrated in Figure 2.  

To the best of our knowledge, only one paper addresses the 
classification of x-ray scattering images, examining 7 different 
features commonly used in computer vision [5]. However, 
most of image processing algorithms, such as HOG, LBP, and 
SIFT, are traditionally used with conventional images (e.g. 
photographs). In addition, many of the algorithms that are used 
in this context depended on image gradients of the boudaries of 
an object. Since x-ray scattering images lack discernable 
objects, edge detection is not as well-suited for this task, so the 
algorithms may not have performed as well as intended. 

In this paper, we investigate deep learning based feature 
extraction for x-ray scattering images, and compare with 
traditional dictionary-based approaches.  

 

 
Fig. 2.  Comparison of hierarchies underlying physical systems and deep 
learning models. Constituents organize into well-defined structures, which give 
rise to emergent properties, which in turn dictate functional response. By 
developing a machine-learning hierarchy closely aligned with this physically-
relevant hierarchy, we will enable meaningful insights to be automatically 

extracted from scientific data at multiple levels. Similarly, deep learning 
recognizes raw images represented as a collection of pixel values to an object 
identify by breaking the complicated mapping into a series of simple mappings 
recursively, which creates a hierarchy. The input pixels are fed to the bottom 
visible layer, then a series of hidden layers abstract complex features from the 
lower layer. Both of them demonstrate similarity in feature extractions. 

II. METHODS 

A. Dataset 
We use two datasets. The first is a ‘real’ dataset of 

experimentally-measured x-ray scattering images [5], collected 
by casting a powerful x-ray beam through a collection of 
samples; in this dataset, each image was labeled by a materials 
scientist expert.  The second dataset is a collection of synthetic 
scattering images, generated by simulation software. The 
simulation software generates artificial scattering images based 
on the known physics underlying x-ray scattering experiments, 
and adds add-hoc features meant to emulate the artifacts and 
defects that present in experimental images (e.g. shot noise). 

In the experimental dataset, there are 2832 gray-scale x-ray 
scattering images in total, obtained during 13 different x-ray 
scattering measurement runs — a set of related x-ray scattering 
images collected for closely-related material samples, 
continuously captured over a short time period. All of the 
images have been labeled with 104 binary attributes by a 
domain expert. These attributes represent a diverse set of 
characteristics ranging from the type of measurement, to 
appearance based scattering features, to chemical composition 
and physical properties of the mate- rials. The list of all tags 
and its correponding number is in Figure 5.  

We also visualized some of x-ray images as shown in 
Figure 3 and 4. In Figure 4, we show 2 different x-ray images 
collected in a different experimental geometry: small-angle x-
ray scattering (SAXS) and wide-angle x-ray scattering 
(WAXS). In Figure 5, we show x-ray images exhibiting the 
same tag: ‘ring’.  Each image may include a diverse selection 
of image features, i.e., tags, which makes classification of x-ray 
scattering images difficult. 

 

 

Fig. 3. Images in false color from real X-ray scattering dataset images The 
left image uses wide-angle x-ray scattering (WAXS), while the right image 
uses small-angle x-ray scattering (SAXS) 



 

Fig. 4. Example of false color images with the “Ring” tag. Tags can include 
a diverse selection of images, which makes classification of x-ray scattering 
images difficult 

 
Fig. 5. List of the 104 tags used in this experiment and their counts and 
staticstics. 

B. Traditional Methods 
In this section, we explore tradictional Bag-of-Features 

(BoF)  and Spatial Pymaid Matching (SPM) [6,7,8] based 
approach for X-ray image classification. Bag-of-Features is a 
widely used approach for feature extraction. In each image, we 
random sample 1000 image patches (including multiple 
scales). Then a dictionary of patches are built using k-means 
clustering algorithm. After forming the k-means dictionary, 
every patch in each image is assigned to a cluster.  

Next, we perform three-level spatial pyramid matching. At 
each level, we subdivide the image into “bins” and compute the 
histograms at each bin, weighing each histogram a certain 
amount. This approach allows the classifier to better 
understand the spatial relationship between different areas of 
an image. In this experiment, we used sum pooling, since we 
are computing histograms and we need the frequency of each 
cluster.  

After extracting features, an SVM [9] with exponential chi-
square kernels is used for the classification. 

C. Deep learning based approach 
Deep learning has achieved huge success for image 

classication in recent years. The breakthough in the area is 
mainly because of huge amount of data available and good 
network architecture. Alex-Net is the first Convolutional 
Neural Network that has successfully applied in this area.  

Instead of using hand-crafted image features for image 
classification, neural network can be used to learn features for 
image classification. However, it requires many customization 
and hand tunings to attain an effective and efficient 
implementation. The basic units in Convolutional Neural 
Network (CNN) are: 

• Convolutional Layer: A fully connected network 
requires an excessive number of free parameters. 
Instead, we apply a convolutional neural network 
(CNN) that allows sharing parameters among 
different image patches. As a result, CNN  reduces 
the number of parameters, and automatically 
discovers local patterns. Figure 6 shows the 
comparison between fully connected neural 
network and convolution neural network. 

• Subsampling / Pooling Layer: Pooling Layer 
allows local patterns to be pooled in a large region 
as Figure 7 shows [10]. 

• Activation Layer: Non-linear Activation allows 
the neural network to learn non-linear functions. 
Traditional activation layers utilize sigmoid 
fuction. However, the problem of sigmoid is that 
the gradient decreases significantly during the 
back-propogation processing across many layers 
of deep networks.  In addition, sigmoid is easy to 
saturate, when it’s saturated, the gradient is close 
to 0. If the network has multiple sigmoid layers, 
the gradient at early layer will be every small, 
which make the parameters of early layers hard to 
optimize. Instead, the most widely used activation 
function is Rectified-Linear Units (ReLU). If the 



value is below 0, the output of ReLU is 0, 
otherwise, the output is the same as input. Figure 8 
show shows the comparision of sigmoid and 
ReLU [10]. 

  
Fig. 6. Comparison between fully connected neural network (left) and 
convolutional neural netowrk (right). With parameter sharing, CNN is able to 
reduce the number of parameters. 

 

Fig. 7. Subsampling / Pooling Layer 

 

Fig. 8. Comparison between different activation function: sigmoid (left) and 
ReLU (right) 

We use the stochastic gradient descent based approach 
(SGD) to train CNN. The entire dataset is divided into multiple 
batches. Each batch contains ten to one hundred images. The 
gradient with respect to parameters is computed in each batch 
to estimate the gradient across whole dataset. 

In this experiment, we adopt Alex-Net based architecture 
for x-ray scattering image classification, but with following 
changes: We changed the last layer from softmax layer to 
sigmoid layer, where the output has dimension the same as the 
number of tags. Each output represents the probability of 
having that specific attribute.  

 
Fig. 9. CNN Network architecture overview. We use Alex-Net based 
architecture, which contains 5 layer convolutional layers. We changed the  
last layer from softmax layer to sigmoid layer, since one image could have 
multiple tags 

III. EXPERIMENTS 

A. Traditional Methods 
We perform BoF and SPM based approach on both 

experimental x-ray images and synthetic x-ray images. The 
number of clustering we choose is 2000. There are 104 
possible tags for the images. However, some tags had very few 
images associated with them, so we eliminated 12 tags with 
less than ten images. In addition, we considered six high-level 
attributes found in [5], bringing the number of tags used to 98. 
We use average precision (AP) for performance evaluation. 

For synthetic dataset is much unbalanced compared the real 
dataset, so we group further grouped the number of tags into 20 
high level attributes for evaluation.  

TABLE I.  TRADITIONAL METHODS RESULTS 

 Real Dataset Synthetic Dataset 
Mean Average 

Precision 0.6018 0.6705 

 

B. Deep learning based approach 
Since we only have 2832 experimental x-ray Scattering 

image, it is hard to train a CNN based on those images. Thus, 
we generate 100,000 synthetic x-ray images to train CNN. The 
network we are using is based on Alex-Net. The number of 
parameters in our network is about 72 million. Due to the large 
unbalanced problem of the data (as Figure 5 shows, some tags 
are really rare), we take a sublist of 17 most frequent tags and 
the CNN is trained on those tags. Figure 10 shows the training 
loss across different epochs (every epoch goes through the 
whole dataset). 

 
Fig. 10. Training Loss 
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We also report the mean Average Precision using Deep 

learning in Table 2. From the results, we notice that the CNN 
based approach outperforms BoF and SPM based approach by 
a large margin.  

TABLE II.  CNN BASED RESULTS 

 Synthetic Dataset 
Mean Average 

Precision 0.771 

 

IV. CONCLUSION 
In this work, we addressed the complexity of hierarchical 

self-assembling nano-materials by developing a corresponding 
hierarchy of deep learning methods. We integrated our deep-
learning methods into the Google Tensorflow software to 
cluster and label both real and synthetic 2D scattering image 
patterns. The preliminary results from our intensive cross-
validation processing showed that deep learning networks, with 
a minimal tuning, easily attained better performance compared 
to traditional methods.  

 

V. FUTURE WORK 
With the help of simulation software, we may generate 

more images that have rare tags to train the Convolution 
Neural Network and hope to mitigate the unbalanced dataset 
problem. We will also test our network trained on synthetic 
dataset on real X-ray images to automate the current workflow 
as much as possible. 
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