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Unsupervised Multi-Class Co-Segmentation via
Joint-Cut Over L1-Manifold Hyper-Graph of

Discriminative Image Regions
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Abstract— This paper systematically advocates a robust and
efficient unsupervised multi-class co-segmentation approach
by leveraging underlying subspace manifold propagation to
exploit the cross-image coherency. It can combat certain image
co-segmentation difficulties due to viewpoint change, partial
occlusion, complex background, transient illumination, and clut-
tering texture patterns. Our key idea is to construct a powerful
hyper-graph joint-cut framework, which incorporates mid-level
image regions-based intra-image feature representation and
L1-manifold graph-based inter-image coherency exploration. For
local image region generation, we propose a bi-harmonic distance
distribution difference metric to govern the super-pixel clustering
in a bottom-up way. It not only affords drastic data reduction but
also gives rise to discriminative and structure meaningful feature
representation. As for the inter-image coherency, we leverage
multi-type features involved L1-graph to detect the underlying
local manifold from cross-image regions. As a result, the implicit
supervising information could be encoded into the unsupervised
hyper-graph joint-cut framework. We conduct extensive exper-
iments and make comprehensive evaluations with other state-
of-the-art methods over various benchmarks, including iCoseg,
MSRC, and Oxford flower. All the results demonstrate the
superiorities of our method in terms of accuracy, robustness,
efficiency, and versatility.

Index Terms— Unsupervised co-segmentation, L1-graph,
hyper-graph joint-cut, bi-harmonic distance.

I. INTRODUCTION AND MOTIVATION

CO-SEGMENTATION aims to jointly segment the
co-occurring similar objects by exploiting mutual super-

vising information implied in image sets. And it facilitates
many downstream applications, including object recognition,
video segmentation, image-based modeling and analysis, etc.
Following the pioneering co-segmentation work [1], various
methods have been proposed by enhancing different technical
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foci, such as Markov random field (MRF) [1]–[5], dis-
criminative clustering [6]–[8], sub-modular optimization and
anisotropic diffusion [9], subspace clustering [10]–[12], hier-
archical clustering [13], semi-supervised learning [14], [15],
segmentation propagation [5], etc. Although co-segmentation
methods have achieved growing successes and can accom-
modate more and more complex image sets, some common
challenges still exist due to lacking enough flexibility, robust-
ness, and efficiency. Specifically, the typical difficulties can be
summarized as follows.

From the perspective of basic primitive generation, most of
the methods explore local coherency based on low-level vision
primitives such as pixel or super-pixel. It inevitably gives rise
to less meaningful supervising information exploration, time-
consuming calculation, and weak robustness. Some methods
also employ patch-based mid-level primitives [13], [16]–[18]
or object-based high-level primitives [5], [19] to facilitate the
co-segmentation process. However, cross-image co-occurring
contents may vary in shape, color, scale, occlusion, and
local deformation. Thus, it is nontrivial to adaptively conduct
meaningful pre-segmentation.

From the perspective of feature representation, most of
the methods directly adopt color histogram [1], [3], [6]
[7], [14] or bag-of-words [4], [6], [7], [20] related descriptors,
which are hard to capture the intrinsic feature of co-occurring
objects. Although some more advanced methods [13], [18],
[21] begin to take complementary multi-features into account
via histogram concatenation and/or its weighted superposition,
it may cause unpredictable error accumulations for some basic
primitives only having strict consistency in certain feature
space.

From the perspective of global correlation analysis,
simple k − nearest − neighbor based graph construction [9]
has become an off-the-shelf tool to explore the underlying
intra-image and inter-image structures. However, such unbi-
ased neighbor-sampling graph structure tends to weaken the
anisotropy, because less discriminative coherency propagation
may lead to overly-relaxed co-segmentation.

From the practical perspective, most of the state-of-the-
art methods are hard to accommodate moderately large scale
image sets due to computation overhead, such as building
image correlation structure (e.g., pixel-wise kernels [6], [7])
and nonlinear optimization (e.g., the multi-task low-rank
affinity pursuit [11]), which will increase in linear or even
exponential time as the scale of image set grows. Moreover,
except for low-level vision primitives based computation, most
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of the time-consuming tasks in existing methods are hard to
be parallelized.

To tackle the aforementioned challenges, based on the
bi-harmonic distance definition in 2D image space and the
graph clustering based global co-segmentation idea proposed
in our previous work [8], we further propose some brand
new technical elements and integrated them into a newly-
designed L1-manifold hyper-graph based joint-cut framework.
It gives rise to a novel and flexible unsupervised multi-class
co-segmentation framework. Specifically, the salient contribu-
tions can be summarized as follows:

• We pioneer an L1-manifold hyper-graph joint-cut frame-
work for unsupervised multi-class co-segmentation,
which gives rise to intrinsic exploitation of implied cross-
image information in a bottom-up way, while affording
light-weight GPU-parallel computation, and thus enables
efficient, robust, and flexible co-segmentation.

• We suggest a meaningful local image region generation
method based on the intra-image bi-harmonic distance
distribution analysis, which not only affords the data
reduction of the basic primitives to be processed, but
also gives rise to soft invariant feature representation of
flexible co-occurring objects.

• We formulate a coherency measurement based on
L1-manifold graph by integrating multi-type features,
which defines the affinities of inter-image mid-level
regions in a more meaningful way, and strengthens the
anisotropy property of the coherency propagation of
co-occurring candidates.

Besides, in our proposed framework, each involved tech-
nical element is well designed with full justification.
In Section VIII-E, we quantitatively analyze the benefits and
limitations of the key technical elements (bi-harmonic distance
distribution based metric, mid-level regions, L1-graph, and
joint-cut) by intentionally disabling different elements one by
one. Please refer to Section VIII-E for more details.

II. RELATED WORK

A. Visual Primitives for Coherency Analysis

In the co-segmentation field, many methods directly
employ pixels as the basic primitives for the coherency
analysis [1]–[3], [12], [15]. To combat certain co-segmentation
challenges due to multiple foregrounds, partially co-occurring
objects, high-variability objects, and larger image set,
Kim et al. [13], [22] adopted super-pixels as the primitives,
and some others resort to object-level primitives [5], [10], [19].
Thus, researchers gradually form a consensus that the role
of discriminative visual primitives is important. However, it
is still hard to perform unsupervised meaningful object-level
pre-segmentation. To deal with it, many methods in computer
vision are proposed to employ mid-level regular-rectangle
patches to serve as discriminative visual primitives [23]–[26],
wherein the generated patches are expected to be structure-
preserving as much as possible while avoiding segmenting
an entire object into many overly-messy parts. To extend this
concept and get better results, [18] took advantage of irregular
mid-level regions via roughly pre-segmenting some candidate
parts that may co-occur across the image set.

Given the basic visual primitives, a common way to com-
pute intra-image and inter-image affinities is to measure
the Euclidean distance or Chi-square distance between
primitive-pair’s histogram-like feature descriptors. Many
works strive to find adapted descriptors to solve certain
problem. Rubio et al. [4] encoded the graph matching
information into the inter-image affinities based on MRF.
Glasner et al. [27] proposed a novel region contour based
descriptor. In addition, Kim and Xing [16] measured affinity
based on Gaussian mixture model (GMM) and spatial pyra-
mid matching (SPM), and Faktor and Irani [18] proposed
a composed reconstruction error based affinity metric. By
comparison, some physics-based metrics are more general to
handle various complex cases. For example, anisotropic heat
diffusion distance [28], commute time distance [4], [29], and
geodesic distance [30], can enable more robust and informative
affinity measurement for the flexible visual primitives with
deformation, occlusion, and noise perturbation.

B. Correlation-Structure Construction

Upon the definition of affinity metric, it still needs to con-
struct a correlation structure to facilitate the global coherency
propagation towards co-segmentation. Currently, various graph
based methods are widely used, such as k − nearest −
neighbor methods and ε − ball methods. And Hash table
is also be applied to search nearest neighbor [31], [32]. To
make the correlation-structure more anisotropic, many graph
embedding based subspace learning methods are also pro-
posed [12], [33]–[35]. As Mukherjee et al. [12] suggested, this
kind of methods usually formulate co-segmentation problem
as an elegant framework that permits general non-parametric
appearance model compositions. Recently, sparse represen-
tation based correlation-graph [36] attracts more and more
attentions because of its many built-in advantages, such as
being robust to data noise, supporting subspace abstrac-
tion, and global sparsity. For example, Cheng et al. [36]
experimentally demonstrated the superiority of L1 graph in
spectral clustering, subspace learning, and semi-supervised
learning. Li et al. [37] devised an L1-norm governed dis-
criminative low rank matrix recovery algorithm for robust
co-segmentation. And [10] and [11] further integrated
the sparse representation based subspace clustering into a
multi-feature co-segmentation framework. Moreover, being
different from the aforementioned L1-graph based works,
Meng et al. [38] formulated a multi-feature selection based
model, wherein the best feature combination can be learned
adaptively by optimizing an L1 regularized energy function.

C. Joint-Segmentation Models

Learning-based models are usually used to conduct
co-segmentation, which usually employ priori knowledge
to guide the labeling of co-occurring objects via iterative
refinement. For instance, Wang and Liu [14] proposed a
semi-supervised co-segmentation method to handle a large
image set with only a few training-image foregrounds. Sim-
ilarly, Kttel et al. [15] recursively propagated the already-
segmented images to guide the segmentation of new images,
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Fig. 1. The pipeline of our framework, wherein our salient contributions are highlighted with red dotted rectangles. (a) Input image set (only showing two
images of the image set); (b) Over-segmented super-pixels; (c) Mesh construction and Laplacian matrix computation; (d) Bi-harmonic distance field over (c);
(e) Bi-harmonic distance distribution difference based metric; (f) Generated mid-level structure-meaningful regions; (g) Multi-type features extraction for local
regions; (h) Inter-image graph construction based on our defined L1-manifold; (i) Hyper-graph construction by combining the inter-image L1-manifold graph
and intra-image coherency-structure graphs; (j) Final co-segmentation results.

wherein they designed an increasing pool with existing anno-
tations to exploit the semantic hierarchy of ImageNet. As for
noisy Web image collections, Wang et al. [39] trained their
co-segmentation framework with dozens of top-ranked images
obtained through text query. Besides, co-segmentation prob-
lem can also be casted as coherency-preserving spectral
clustering or optimization based discriminative clustering
problems [6], [8], [10], [13], [17], [27], [40]. Although
all of these methods can be roughly classified into the
clustering category, they all have unique technical highlights.
For example, Rubinstein et al. [41] introduced the hypothesis
that the co-occurring objects are cross-image salient ones.
Meanwhile, to efficiently solve the co-clustering problem,
Glasner et al. [27] formulated the problem as a quadratic semi-
assignment problem. Joulin et al. [6], [7] imposed additional
constraints to accommodate multi-class co-segmentation based
on positive definite kernels. And Kim et al. [13] proposed
hierarchical image clustering co-segmentation framework by
taking into account the connections of multi-scale regions.

III. METHOD OVERVIEW

Fig. 1 shows the pipeline of our framework, wherein the
novel parts corresponding to our contributions are highlighted
with red dotted rectangles and also briefly described as
follows:

A. Bi-Harmonic Distance Distribution
Based Metric Definition

Following our previous work [8], we further define a new
Laplace matrix by naturally incorporating 5D coordinates
information. And then, we leverage the distribution differences
of different super-pixels’ bi-harmonic distance fields to define
a physics-based intra-image coherency metric. Please refer to
Section IV and Section V-A for details.

B. Structural Meaningful Mid-Level Region Generation

Based on the proposed metric, we iteratively build a pre-
liminary anisotropic diffusion region for each super-pixel. The
regions will be further used to guide the iterative merging and

refinement of super-pixels towards meaningful image region
generation. Please refer to Section V-B for details.

C. Multi-Type Features Involved L1-Manifold
Hyper-Graph Construction

We compute the affinities among inter-image regions by
optimizing the L1-norm constrained energy function, wherein
the multi-type features are encoded to facilitate the sub-
space construction. Based on the inter-image L1-manifold
graph, we further adopt the proposed metric to only construct
local spatially-adjacent intra-image graphes. Please refer to
Section VI for details.

D. Unsupervised Hyper-Graph Joint-Cut Model

Following the bottom-up idea throughout this paper, which
proceeds from pixel, to super-pixel, meaningful local regions,
and hyper-graph segments gradually, we first adopt spec-
tral clustering over this hyper-graph to roughly obtain
co-segmentation candidates. And then, we generalize the con-
ventional supervised GrabCut method [42] to an unsupervised
case aided by a joint model for cross-image candidates.
Finally, we conduct joint-cut over the hyper-graph to obtain
the final co-segmentation results. Please refer to Section VII
for details.

IV. BI-HARMONIC DISTANCE COMPUTATION OVER

SUPER-PIXEL SPANNED MANIFOLD

Bi-harmonic distance [43] is a type of intrinsic metric and
has achieved great success in geometry processing, whose
calculation is built upon the Laplacian matrix constructed
on a manifold mesh. In our previous work [8], a mesh
corresponding to a 2D image can be directly constructed
by extruding the image plane along the pixel’s gray value
(Z − axis). As shown in Fig. 2(a), the flower image has been
over segmented with super-pixels, and its corresponding 3D
mesh is built by computing each super-pixel’s average gray
value to serve as the Z − axis coordinate. And the top-row of
Fig. 2(b) shows the 2D bi-harmonic distance distribution by
projecting that of the 3D mesh (shown in the bottom-row of
Fig. 2(b)) to 2D image.
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Fig. 2. Illustration of bi-harmonic distance based metric definition.
(a) Super-pixel segmentation and corresponding manifold mesh construction;
(b) Bi-harmonic distance distribution over the manifold, wherein the anchored
super-pixel Spanchor is highlighted with white circle and the color bar shows
the normalized distance; (c) The opposite angles αi j and βi j on the mesh.

Motivated by our previous work [8], we propose a new
Laplacian matrix definition to better respect the image struc-
tural anisotropy based on Lab color features rather than gray
values [8]. To begin with, we extrude the 2D image to a
3D mesh by assigning a 5D coordinate (x, y, L, a, b)
to each mesh vertex (super-pixel), wherein x and y denote
an average spatial position of the pixels within certain super-
pixel, and L, a, b represent three channels of the Lab color.
Then, the vertex set can be denoted as S = {s1, s2, . . . , sn},
wherein the mesh topology of these vertices (super-pixels) can
be constructed via Delaunay triangulation. Next, we define the
new bi-harmonic distance metric based on discrete Laplacian-
matrix L = A−1M. Here A is a diagonal matrix to normalize
the affinity matrix M (defined by opposite angles, and refer to
Fig. 2(c)), and Aii is proportional to the average area of the
triangles sharing vertex si . M is formulated as

M(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j=1

mij if i = j

−mij if si and s j are adjacent

0 otherwise,

(1)

where mij = cot αi j + cot βi j . In particular, when computing
the opposite angles αi j and βi j (Fig. 2(c)) involved in M, we
should take into account 5D information as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αi j = arccos

(
(vi − vp) · (vj − vp)

∣
∣(vi − vp)

∣
∣ · ∣

∣(vj − vp)
∣
∣

)

αi j = �si sps j

βi j = arccos

(
(vi − vq) · (vj − vq)

∣
∣(vi − vq)

∣
∣ · ∣

∣(vj − vq)
∣
∣

)

βi j = �si sq s j ,

(2)

where vi = (xi , yi , Li , ai , bi ) denotes the 5D components
of vertex (super-pixel) si .

In sharp contrast, although our previous work [8] also uses
the same 5D information, it considers them separately and
takes (L, a, b) as one dimension via deciding difference
sign in gray space. This design can help the image mesh to be
visualized in 3D space but cannot fully represent anisotropic
property, because it makes the manifold shape be greatly
affected and even disturbed by the gray value. As shown

Fig. 3. Performance comparison between two types of Laplacian
matrix definition. The color bar shows normalized distance projected
from the manifold mesh to its corresponding image. (a) Original image;
(b) Bi-harmonic distance distribution from the anchor super-pixel (white
boundary) to others computed by the method of [8]; (c) Laplacian
matrix defined by the proposed high-dimensional angles (Eq. 2) and the
corresponding distance distribution from the anchor super-pixel (white
boundary) to others.

Fig. 4. Illustrations of why distribution differences can serve as intra-image
coherency metric. The color bar shows normalized distance. (a) Super-pixel
segmentation over original images, with anchor super-pixels (ear, cheek, and
body) marked in red; (b) Bi-harmonic distance fields corresponding to differ-
ent anchor super-pixels; (c) Illustration of the bi-harmonic distance distribution
differences, red curve represents distribution differences from cheetah’s ear to
cheek (WB (sear , ∗) − WB (scheek , ∗)), and blue curve represents the distrib-
ution differences from cheetah’s ear to body (WB (sear , ∗) − WB (sbody , ∗)).
And super-pixel indices are sorted in the ascend order from the cheetah’s ear
to other regions of the image; (d) The dissimilarity measurement based on
bi-harmonic distance distribution difference.

in Fig. 3, comparing with [8], the proposed Laplacian matrix
definition gives rise to better anisotropic property. Specifically,
the distance propagations of our method are almost along the
local structures of “sky” and “ox” (See Fig. 3(c)). However,
the structure-awareness results in [8] are more local under
the same parameter setting with our current results. Moreover,
since such distance in some sense represents dissimilarity, we
can further transform the bi-harmonic distance matrix dB to
the similarity metric matrix WB by the Gaussian function.

V. STRUCTURE-MEANINGFUL IMAGE

REGION GENERATION

A. Bi-Harmonic Distance Distribution Metric Definition

Comparing with bi-harmonic distance metric (Fig. 4(b)),
we elaborate a more compact and local-global structure-
aware metric (Fig. 4(d)) by exploring the bi-harmonic distance
distribution differences among super-pixels. This metric goes
beyond the pair-wise view of the distance to handle a more
global case. It is motivated by two aspects. In the global sense,
the super-pixels located within the same structure/object of
an image should be not far from each other in the spatial
and feature spaces. So, they should have similar bi-harmonic
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distance distribution because of the intrinsic structure-aware
property of this metric. Moreover, in the local sense, the
distribution similarity between two super-pixels should be
more expressive and compact compared with directly using
the distance as measurement, because the encoded global
information is able to eliminate the instability of local features
to certain extent. In other words, although two parts belonging
to one object may not be near under certain measurement, both
of them are far from the background, which makes them close
to each other in a global view.

The dissymmetric distribution difference matrix dDE is
defined as:

dDE (si , s j ) = FDE (si , s j ) + WLab(si , sk)FDE (sk, s j )

1 + WLab(si , sk)
, (3)

where WLab is the color similarity matrix, sk is the adjacent
super-pixel that has the highest Lab color affinity to si . And
FDE denotes the distribution difference via

FDE (i, j) = ||WB(i, ∗) − WB( j, ∗)||22 . (4)

Here WB is a symmetric affinity matrix governed by
bi-harmonic distance, WB(i, ∗) is the i -th row of WB , and
|| ∗ ||22 is the square of the Euclidean distance. In a nut-
shell, WB(i, ∗)−WB( j, ∗) measures two anchor super-pixels’
similarity by considering the differences of their resulted
bi-harmonic distance distributions over the entire manifold.

It should be noted that, only FDE can fully illustrate the pro-
posed metric. The weighted average of Eq. 3 exactly follows
the key idea “global” of the metric, and further improves the
metric robustness. Here we adopt the traditional color affinity
rather than the bi-harmonic distance governed affinity WB to
compute the weight, because bi-harmonic distribution may be
unreliable in some fuzzy boundaries or narrow regions. Finally,
we further convert the distribution difference matrix dDE to
the affinity matrix WDE through a Gaussian function. And
we perform different normalization for the convenience of
parameter setting, which is one of the critical goals of this
robust metric. In details, all the elements in WB and WLab

are normalized to be within 0 to 1 in a matrix-wise fashion,
while those in WDE are normalized to be within 0 to 1 in a
row-wise fashion.

Fig. 4 illustrates why our idea is feasible over a complex
cheetah image, wherein the texture of the cheetah makes the
feature coherency very messy. As shown in Fig. 4(b), the
bi-harmonic distance between the ear and cheek is not
as near as that in Euclidean space, and both ear and
bi-harmonic distance distribution differences by subtracting
two super-pixels’ distance distribution vectors (WB(sear , ∗)−
WB(scheek , ∗)). In order to observe some implicit tendencies,
we have sorted the super-pixels in an ascend order according
to the bi-harmonic distance distribution of the “ear” super-
pixel (WB(sear , ∗), the first row of Fig. 4(c)). Although the
beginning of red line in Fig. 4(c) shows weaker distribution
differences around the “ear” region (from “ear” to “cheek”),
the differences decrease gradually in the far regions. This
explains why the super-pixels covering the head have high
similarity (Fig. 4(d) shows that the head region’s distributions
corresponding to “ear” and “cheek” super-pixels are both red).

Fig. 5. The pipeline of meaningful region generation method. (a) Original
images with anchored super-pixels marked by red circles; (b) Basic region
generation; (c) Merge basic regions according to the overlapping ratio;
(d) Merge the regions in (c) to form mid-level regions according to the
proposed affinity consistency metric; (e) Refine the merging results to obtain
the final regions, wherein the merged super-pixels during refinement are
marked with red circles.

In contrast, the distribution difference of “ear” to “body” is
large (the blue line in Fig. 4(c)), because they belong to
different local structures. Thus, such metric can well reveal
the meaningful structures of an image, and it is both globally
stable and locally discriminative.

B. Meaningful Image Region Generation

We integrate the proposed affinity metric and a novel affinity
consistency metric to facilitate the robust generation of mean-
ingful image regions. These regions consist of some irregular
overlapping super-pixels, which in some sense represent
certain local structures. We prefer the obtained regions to
be both structure-meaningful and relatively as local as possi-
ble. However, the commonly-used up-front region generation
methods, such as super-pixel or graph based clustering, are
not robust for complex image scenes. In contrast, we find
that generating local structures (basic regions) and selectively
merging them are superior to those up-front methods, because
the accuracy and size of the regions can be conservatively and
gradually controlled. As a result, if the generated local struc-
tures have been accurate enough, the final regions will have
high possibility to be correct even if it may not be structurally
integrated. And the proposed bi-harmonic distribution based
metric could help us obtain accurate local structures.

For local structure generation, we initialize a basic region
for each super-pixel via a diffusion process (Fig. 5(b)). These
basic regions cannot only be easily controlled by the proposed
structure-meaningful metric but also represent higher-level
information compared to original super-pixels. Suppose the
neighboring local structures will be overlapped or similar
with each other, we merge them to form structure-meaningful
regions according to their affinity consistency and the over-
lapping ratio (Fig. 5(c-d)). It should be noted that, the local
structure may overlap with each other, and the final mid-level
regions will keep this property. Besides, the dissection and
discussion of this “soft” scheme can found in Section VIII-E.
Fig. 5 illustrates the pipeline of our meaningful region
generation method. Here it involves several bottom-up steps,
and the details are described as follows.



MA et al.: UNSUPERVISED MULTI-CLASS CO-SEGMENTATION VIA JOINT-CUT OVER L1-MANIFOLD HYPER-GRAPH 1221

Algorithm 1 Basic Region (Structure) Constructing

1) Basic Region Initialization: Our strategy can be summa-
rized as “pick the best one while abandoning the worst one”.
This discreet strategy aims to avoid trapping in local wrong
results for those complex image scenes, which also conforms
with the motivation of our local-to-global, progressive frame-
work, and more details can be found in Algorithm 1. Generally
speaking, each basic region begins with an anchored super-
pixel (Step 2) and a candidate super-pixel set (Step 3). In each
loop, the current region merges one super-pixel (Step 7)
and updates the candidate set by considering a larger spatial
range (Step 8). Meanwhile, the candidate super-pixel with
the weakest color affinity is removed from the candidate set
(Step 11), which can avoid possible border-crossing risk due
to the diffusion on some fuzzy boundaries. Moreover, the
merging criterion is determined by the weighted average of
WDE (Score in Step 9), which in fact decides the propagation
direction.

The key steps of this algorithm have been marked in
blue. During the iterative propagation, in order to merge a
new super-pixel into the current incomplete region, the most
significant problem is how to decide the weights. We consider
this problem mainly from two aspects. First, the structure-
aware propagation should not be far away from the anchor
super-pixel (In WDE (si , sc), si is the anchor super-pixel).
Second, as for a diffusion process, we need to find the best
diffusion trajectory that has the highest structural affinity
(In max(WDE(sr , sc)), sr is actually the super-pixel on the
boundary of Ri ). Benefiting from the proposed compressive
and convincing metric in Section V-A, we can set a fairly
high value for Tnear , whose threshold value is fixed to be 0.9
for all cases.

2) Affinity Consistency Definition: Although the neighbor-
ing local structures have high possibility to overlap with each
other, overlapping rate is insufficient to guide the merging

process for two reasons. First, the region is defined by super-
pixels, thus it is hard to find an appropriate overlapping
rate threshold when two regions have significant difference
in size. Second, the image structures may gradually change.
It means that, the overlapping rate may mistakenly merge
those different but fuzzy connected structures. Therefore, we
propose a region-wise structure-meaningful metric to evaluate
the merging result based on WDE .

In detail, if region RA can be merged with region RB ,
they must share the same structure, and the change of the
interior affinity distribution should not be drastic after merging.
Therefore, we define an affinity consistency error metric
Emerge(RA, RB) as

|Fstd(WDE(RA ∪ RB)) − Fstd(WDE(RB))|. (5)

Here WDE is an affinity matrix of super-pixels, and ∗ denotes
the super-pixels covered by the region. Thus, WDE(∗) means a
sub-matrix describing region’s inner affinity distribution. And
Fstd measures the standard deviation or average value of the
matrix elements.

3) Affinity Consistency Guided Merging: We have explained
why affinity consistency metric Emerge and overlapping rate
can be used as merging criteria. During merging, we still
follow the strategy of (“pick the best one while abandoning the
worst one”) to merge only one pair of regions in each loop.
And the method is detailed in Algorithm 2. To begin with,
we find the merging candidates with similar local structures
(Step 1) according to overlapping rate. Then, the best can-
didate, which is really needed to be merged rather than just
overlapped, can be found easily. Meanwhile, since we expect
to merge small-size fragments into integrated large-size region,
we sort the existing regions R1, R2 . . . Rn in an ascend order
according to their sizes (Step 7). In each loop, the structure-
meaningful region is initialized by an anchored region Rend at
the tail of the region queue, which is the biggest one. Then we
orderly search the appropriate regions along the region queue,
and merge them in Rend (Step 10). It means that Rend keeps
changing during the search process, which prevents it from
becoming too large to conform with its mid-level size.

The key steps of Algorithm 2 are marked in blue.
Specifically, if two regions have the same structures
(Wor(Rk, Rend ) >= Tstru) and low-affinity consistency error
(Emerge(Rk, Rend ) < Terr ), we merge the fragment Rk into
the largest anchor region Rend . Since the pre-merged regions
produced in Step 1 themselves are already very similar if they
belong to the same local structure, the reasonable changes of
the involved two fixed parameters can only effect the region
size. Specifically, Tstru is set to be 0.5 in this paper, which
means that two regions may be in the same local structure.
Besides, Terr is designed to measure the affinity consistency
changes after the merging procedure. We fix it to be 0.2 in
this paper.

4) Affinity Consistency Based Refinement: We have
obtained many meaningful regions at this point but some
fragmental regions still exist. It is mainly because of the
complexity of natural images, such as abrupt change of
illumination, tunes, fine details, and so on. The reason why we
do not solve it in Algorithm 2 is that we cannot judge the best
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Algorithm 2 Basic Region Merging

Algorithm 3 Merging Refinement

ownership of these “noise regions” if we have not obtained
all the meaningful regions. Therefore, we need an additional
refinement process to merge them into some already-obtained
meaningful regions (see Algorithm 3). The merging process is
still decided by the proposed affinity consistency error metric
Emerge. It should be noted that, the algorithm searches the
best merging pairs (Step 3) globally here until there are no
fragmental regions (Step 2).

Finally, as shown in Fig. 5(e), the black ox comprises
three overlapped meaningful regions. The merged fragmental
patches via refinement procedure are marked with red
circles. And the quantitative analysis for the superiority of
the proposed metric and meaningful image regions is detailed
in Section VIII-E.

VI. L1-MANIFOLD HYPER-GRAPH CONSTRUCTION

For the obtained structure-meaningful mid-level region, we
should further extract proper region-level features to represent
it in alternative feature space. In this paper, we use simple
average Lab/RGB color features, uniform local binary pat-

tern histogram (uniform LBP), and bag-of-words descriptors.
In practical implementation, we parallelize LBP algorithm on
CUDA, wherein each CUDA thread is responsible for single
sample point. According to our experiments, we can extract
one million of LBP features and organize them properly within
3 seconds.

A. Multi-Feature Involved Inter-Image L1-Manifold Graph

Following the key idea of [10] and [11], we employ graph-
based methods to exploit the implicit coherency across images.
From the perspective of manifold learning, the common idea
is that, one point on a non-linear high-dimensional manifold
can be approximated as a sparse linear combination of other
data points.

Assume N denotes the total number of the gener-
ated mid-level regions, given H types of feature X =
{X1, X2, · · · , XH }, Xh is a D × N matrix whose column
denotes a D-dimension feature vector corresponding to certain
region in the h − th feature space, and Wh denotes an
N × N coefficient matrix representing the region affinities
in the h-th feature space. And let W = {W1, W2, · · · , WH }
be the coefficient matrix set of all types of features, we can
reformulate the objective function as

W̄ = arg min
W

H∑

h=1

(||XhWh − Xh ||2F + λ||WT
h Wh ||1,1)

+ α||Z||2,1 + β||Z||1,1

s.t . diag(Wh) = 0 and Wh > 0. (6)

Here the minimization of ||XhWh − Xh ||2F denotes that, the
h-th feature of a region should be approximated by others
with the least possible error. The minimization of ||WT

h Wh ||1,1
requires Wh to be as sparse as possible. And λ is used
to control the weight of the sparsity of the reconstruction
coefficients. In addition, though ||Wh ||1,1 is usually employed
as a penalty term to get a sparse coefficient matrix Wh , its
optimization is expensive when N is large. For this reason,
we change it to ||WT

h Wh ||1,1 (note that, it was initially
proposed by Wang et al. [35]). Benefiting from this, the
involved subspace clustering is much faster than traditional
sparse subspace clustering (SSC) methods [34]. Moreover,
Z = [W′

1, . . . , W′
H ]T is used to seek the cross-feature consis-

tency, wherein W′
i denotes the vectorized Wi (transforming

N × N matrix Wi to a N2 × 1 vector W′
i ). In Eq. 6, the

minimization of ||Z||2,1 = ∑N2

j=1 ||Z(∗, j)||2 is the key, which
intrinsically integrates the multi-type features. Specifically,
each column Z(∗, j) denotes the affinity of a region pair
in different feature space. This penalty term enforces some
columns of Z to be zero to pursue column-wise sparsity, so that
the regions should be far away from each other in each feature
space. However, single L2,1-norm cannot exploit more mutual
information among different feature spaces, because H -feature
elements of each column are considered as a whole due to
L2-norm. In contrast, the penalty term ||Z||1,1 is the sum of all
elements in matrix Z, which controls the overall sparsity of Z.
Accordingly, combining ||Z||1,1 with ||Z||2,1 is designed for
row-wise sparsity, which is expected to control the number of
features involved in each column, and thus gives rise to certain
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type of “feature selection”. Besides, the L1-norm governed
two penalty terms enforce the obtained affinities to be both
sparse and consistent in multi-feature space. Here we employ
the spectral project gradient method [44] to solve Eq. 6, and
get the optimal region reconstruction coefficient set for each
feature space W̄ = {W̄1, W̄2, · · · , W̄H }. Finally, we sum the
affinities generated from multi-type features to define the edge
weights of the L1 graph as

ai j = 1

2

⎛

⎝

√
√
√
√

H∑

h=1

(W̄h)2
i j +

√
√
√
√

H∑

h=1

(W̄h)2
j i

⎞

⎠ . (7)

B. Local Structure Coherency Based Intra-Image Graph

To further strengthen the intra-image region affinities to
be the L1 graph, we define the weights of the intra-image
sub-graphs according to their structural differences under our
bi-harmonic distance distribution based metric. The affinity of
two intra-image regions pk and pl is defined as follows:

akl =
⎧
⎨

⎩

∑

si∈pk

∑

s j∈pl

WDE (si , s j ) if pk and pl are adjacent

0 otherwise,
(8)

where si means the i -th super-pixel in the region pk , and s j

is the j -th super-pixel of region pl . Since WDE is decided by
the local structure and can be explained as a type of affinity
diffusion, it confirms well with our understandings about intra-
image graph. Thus, we replace the intra-image parts (diagonal
blocks) of Eq. 7 with the newly-defined Eq. 8 to form the
final hyper-graph. And the entire elements in both inter-image
graph matrix and each intra-image sub-graph are normalized
to [0, 1].

VII. HYPER-GRAPH JOINT CUT BASED ON

UNSUPERVISED GRABCUT

We first perform Normalized cuts over the meaningful
region hyper-graph to obtain a set of sub-graphs. Each of them
is roughly a candidate of co-segmentation results comprising
of some regions. After that, we manually assign which sub-
graph result represents the foreground in single-foreground
co-segmentation cases and this step is not necessary for most
multi-class cases. Benefiting from our meaningful regions
and robust graph design, these candidates can segment out
the foreground perfectly in some simple cases and give rise
to roughly correct results in most commonly-encountered
cases. However, the foreground generated from meaningful
regions still may be coarse and incomplete. Therefore, we
will further conduct a pixel-level refinement via hyper-graph
joint-cut aided by candidate results. We design pixel-level
hyper-graph joint-cut model by extending the popular GrabCut
algorithm [42] in the cross-image sense. The state-of-the-art
GrabCut requires supervised stroke guidance and ignores inter-
image information which is apparently not suitable for the
multi-image co-segmentation problem. Therefore, we improve
it to handle co-segmentation refinement mainly in two aspects.
First, our candidate results can serve as a reasonably good
initialization to the GrabCut algorithm compared with the

Algorithm 4 Hyper-Graph Joint-Cut

bounding box based supervised approach. Second, our method
can put candidate foregrounds from all images together to
define a joint object model during iterations. It can be seen as
a “the minority is subordinate to the majority” way.

Generally speaking, the macro-view on the pipeline of our
hyper-graph joint-cut algorithm is very similar to that of the
original GrabCut algorithm. But there are also some different
nontrivial details, which can be found in Algorithm 4 (marked
in blue). First, we initialize Gaussian mixed model (GMM)
using our candidate co-segmentation result instead of super-
vised stroke and bounding box. Second, we use the pixels in
the cross-image candidate regions to build a foreground GMM.
As for the background GMMs, we compute them in an image-
wise fashion because of the flexibility of the image set. Our
pixel-level hyper-graph only covers the nearest neighborhood
of the candidate regions that locate in one or two super-pixel
spacing distance, which not only avoids error accumulation
but also limits the possible labels of the foregrounds to be
assigned in the image set. And our methods can automatically
accommodate multi-class co-segmentation in a completely
unsupervised way, because we can run the proposed joint-cut
algorithm for each candidate region belonging to different
classes.

Fig. 6(a) demonstrates a typical instance, wherein the geese
with white body and yellow mouth swim on the dark water.
Fig. 6(b) shows the inaccurate co-segmentation results in the
regions of stones, because the colors of white geese are not
distinctive enough under different view point and illumination
conditions. And some state-of-the-art methods also produce
the similar inaccurate results. Fig. 6(d) shows the single-
image Grabcut iterative results. The algorithm takes both
stone and geese as the foreground due to the fact of loosing
extra supervised information during iterations. However, our
hyper-graph joint-cut algorithm can adopt the inter-image
affinity to solve this problem. As shown in Fig. 6(c), joint
foreground model can wipe off the false-alarmed distinctive
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Fig. 6. Hyper-graph Joint-cut. (a) One of original images; (b) Our
co-segmentation candidates with wrong foreground regions; (c) The gradual
changes of foreground segments during joint-cut iterations; (d) Foreground
segment changes during original GrabCut iterations.

foreground parts. Specifically, as shown in the first column of
Fig. 6(c), even though the algorithm may integrate the wrong
foreground regions during the first few iterations, it converges
to the correct results quickly. In all of our experiments, we
empirically set the iteration number to be 10. And quantitative
evaluation between our joint-cut and GrabCut is detailed in
Section VIII-E.

VIII. EXPERIMENTAL RESULTS AND EVALUATIONS

We have implemented our method on a PC with Geforce
GTX 660 GPU, Intel Core I7 CPU and 24G memory using
C++ and MATLAB R2013a. We demonstrate the accuracy
and efficiency advantages of our method via extensive
experiments on the popular iCoseg, MSRC, and Oxford
flower datasets. As for evaluation, we name our method
as “MCJLH ” (Multi-class Co-segmentation via Joint-Cut
over L1-Manifold Hyper-Graph) and compare our method
with the state-of-the-art unsupervised co-segmentation meth-
ods, including Kim11 [9], Joulin12 [6], Faktor13 [18],
Rubin13 [41] and Li14 [5]. And the well-known Jaccard
similarity (J) is employed to conduct quantitative accuracy
analysis (J = GTi

⋂
Ri

GTi
⋃

Ri
, where i is the foreground index and

GT means the ground truth).

A. Parameter Settings of Different Methods

1) Our Method (MCJLH): The number of super-pixels
is empirically set to be 200 in all the experiments, which
can well facilitate our physics-based affinity measurement
and structure-meaningful region generation. Three threshold
values Tnear , Tstru , and Terr mentioned in region generation
Algorithm 1, and Algorithm 2 are assigned the same values
for all the experiments as explained in Section V. Meanwhile,
for meaningful region’s representation, we select Lab / SIFT /
CSIFT combination for iCoseg dataset, SIFT / CSIFT for
MSRC dataset, and Lab / CSIFT for Oxford flower dataset. We
denote this feature combination of our method as “MCJLH
(Bow)”. Furthermore, LBP, as a weaker but efficient fea-
ture, is combined with Lab for all datasets to verify the
robustness of our method “MCJLH (LBP)”. The number
of Lab color histogram bins of each channel is set to be
22. And the uniformly-sampled bag-of-words SIFT / CSIFT
descriptors are extracted with the toolbox [45], and then are
constructed via LLC coding [46] with 100 codebook words.
As for LBP, we use 2 × 2 window based 16-ring uniform
sampling to build 243 16−bi t pattern. Then, we employ these

TABLE I

THE ACCURACY COMPARISON FOR TWO-CLASS CO-SEGMENTATION. “-”:
THE METHOD’S SOURCE CODE / WEBSITE CANNOT PROVIDE

CORRESPONDING DATA FOR THIS EXPERIMENTAL SETTING

histogram-formed feature to weigh the edges of L1-manifold
graph in Eq. 6, wherein the involved parameters are set as
λ = 1000, α = 0.01, β = 0.1. Besides, we make the cluster
number range from K to 2K (K is the number of objects to be
segmented), and the same setting is also applied to Kim11 and
Joulin12. For the joint-cut step, we set the maximum number
of iterations to be 10. And the refining domain is set as the
regions covered by two super-pixel spacing neighborhoods of
the candidate segments.

2) Kim11: Since its central idea is to orderly select the
color-coherency area as large as possible based on the greedy
algorithm, which is very color-sensitive. To compensate it, we
allow tuning its Gaussian parameter within the range of 0.25 �
β � 0.6 (default) when Kim11 produces unsatisfactory results.

3) Joulin12: Joulin12 involves two types of features, which
are SIFT and color histogram, we finally select the better
results obtained from the two-type feature selection for com-
parison. Moreover, we respect its default option that initializes
Joulin12 with Joulin10 [7] for the best results. Besides, we
allow slightly tuning the parameter “Laplacian weight” to be
0.1 (default), 1, and 10 when their results are less promising.

4) Faktor13: The only parameter in their source codes is the
feature type, which can be chosen from the color histogram
and color HOG descriptors. We run the experiment based on
these selections and choose the results with the best accuracy
for comparison.

5) Rubin13 and Li14: We directly take their published
results for comparison. But Li14 focuses on evaluation and
repairing of the state-of-the-art methods’ co-segmentation
results. It means that Li14 improves accuracy to certain extents
when using the co-segmentation results from different methods
as the initialization. Therefore, we just use Li14’s best results
for comparison.

B. Accuracy Evaluation for Two-Class Co-Segmentation

According to the quantitative accuracy evaluations listed
in Table I, our method outperforms other methods in most
cases. In a nutshell, Faktor13, Rubin13, and our method
are better than Kim11, Joulin12 and Li14. Besides, since
the iCoseg, MSRC, and Oxford flower datasets have their
own characteristics, these compared methods have different
advantages in different datasets respectively, which are detailed
as follows.

1) iCoseg: iCoseg is one of the best datasets to verify the
initial motivation of co-segmentation problem. It is challenging
for all the methods, because the objects’ co-occurring in
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Fig. 7. Two-class co-segmentation comparison over iCoseg and MSRC datasets.

the images shows variation in perspective, tone, illumination,
complex around environments, etc. From Table I, we can see
that MCJLH (Bow) outperforms the competitors. And even
when MCJLH (LBP) is the third best, it almost approaches
the second best one (Faktor13). As shown in Fig. 7, our
proposed meaningful region can better guarantee the integrity
of the foreground, such as the cases of “Ferrari 599 GTB”, and
“goose”. Kim11 produces the most amount of false results
because of two reasons. First, it measures similarities by
direct Euclidean distance in single color feature space. Second,
the greedy algorithm based orderly selection of the color-
coherency areas is too specific to handle most of situations
without obvious similar color-coherency areas among different
images. Thus, the method lacks an intrinsic meaningful feature
representation and measurement to express various complex
cases. It illustrates a sharp contrast to our bi-harmonic distance
distribution based metric and multi-feature based L1-manifold
graph. Joulin12 outperforms others in very few cases, wherein
the foregrounds always comprise fragmented parts that have
no clear affiliations. We think that the segment-size related
constraints in Joulin12 play key roles to enforce the fragments
together. Rubin13 is good but not the best, which depends on
matching and saliency detection in their framework. On iCoseg
dataset, it cannot detect clear saliency distribution in many
images, while we can clearly notice messy saliency distribu-
tion in the whole image sets. Faktor13, which also employs
a variant of joint models based on GrabCut (similar to our
method), is the second-best method because each image set
in the iCoseg dataset contains common foreground object.
However, since our hyper-graph joint-cut process is initialized
with candidate regions, which have been as good as possible,
we can limit the potential area of the possible foreground in
a small local region. Thus, it makes our joint-cut method fast
and eliminate redundant parts easily.

2) MSRC: The foregrounds in the image groups of MSRC
dataset may be totally different in colors and textures, which
should heavily affect the accuracy of co-segmentation. For the
co-segmentation framework with limited power, it will gener-
ate an undesirable inter-image graph in some cases. In contrast,
our structure-meaningful region gives rise to less-accurate
affinities among cross-image regions. Compared with Kim11,

Fig. 8. Two-class co-segmentation comparison over Oxford flowers dataset.

Joulin12, Faktor13 and Li14, our method shows superiority
on most of subsets of MSRC dataset (see Fig. 7). However,
Rubin13 outperforms all other methods over the full image set
(not a regrouped subset) in Table I, because it relies on strong
single image classifier and its inter-image terms affect the
results less. This phenomenon can also be observed from their
own experimental analysis [41]. Another reason for Rubin13’s
good performance is that the foreground in MSRC dataset is
always the main body of an image, which shows good saliency
property, unlike those in iCoseg dataset. Although Li14 can
propagate good segmentations by consistency evaluation and
completeness evaluation, Li14’s results are not outstanding in
iCoseg and MSRC datasets. The reason is that their framework
depends on uncontrollable pre-segmentation and many criteria
of quality evaluation. In some sense, Li14 provides a practical
way to select good objective-like segments. However, since
its evaluation energy function has nine terms, it is complicated
and unstable for various segmentation initializations. And such
instability may effect its following propagation step.

3) Oxford Flower: All of the image sets in Oxford flower
dataset are obviously larger than others. They are readily avail-
able to test the robustness and efficiency of co-segmentation
methods because more images bring more cross-image infor-
mation with large variation, it becomes extremely challenging
to build robust affinities. Fig. 8 shows some results. Even if
there is a distinguishable color similarity, different images
in an image set also vary drastically in tone, illumination,
and details. Although this difficulty will be amplified with
the increase of image number, our method outperforms other
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Fig. 9. Multi-class co-segmentation comparison over MSRC dataset.

methods in accuracy (see in Table I). In this dataset, a flower
always comprises only 2 − 6 meaningful regions, and about
20 regions for each image. Combining the distinguishable
color coherency and L1-manifold based affinity measurement
over a small number of meaningful regions, as shown in
Fig. 8, it is not hard for our method to separate the regions
into different feature space, and further pick good candidate
foreground regions.

C. Accuracy Evaluation for Multi-Class Co-Segmentation

The multi-class co-segmentation results are shown in
Table II and Fig. 9. For each image set, we compute the
Jaccard similarity (J) for each object class. The most difficult
challenge in multi-class cases is to distinguish different classes
in an enormous feature space. Directly benefiting from our
meaningful image region generation, our method outperforms
Kim11 and Joulin12. The final step of all three methods
are based on certain type of co-clustering, wherein Kim11
uses a cross-image greedy algorithm, Joulin12 optimizes an
energy function, and we make use of the hyper-graph joint-
cut framework. In contrast, our proposed meaningful image
region can effectively express the underlying structural object
and facilitate the grouping of relevant features. However,
Kim11’s super-pixel-wise clustering and Joulin12’s pixel-wise
clustering (even if they also take the advantage of super-pixel
in a rather different way) tend to easily mix up the foreground
parts. Besides, our multi-feature based L1-manifold graph
is another reason to guarantee better results. As shown in
Fig. 9, Kim11 obtains good results on “ox subset 2” image
set mainly because of the high color coherency. Except for
color information, Joulin12 uses SIFT descriptor, and our
method adopts LBP descriptor. However, we can obtain fairly
good affinities when there is no color similarity between
foregrounds. For Joulin12, it performs a bit worse than ours
on the image sets of “car subset 1”, “ox subset 2”, and “tree”,

TABLE II

THE ACCURACY COMPARISON FOR MULTI-CLASS CO-SEGMENTATION

OVER THE REGROUPED SUB-SET OF MSRC DATASET

because solely using the SIFT descriptor cannot guarantee
meaningful intra-image measurement.

D. Efficiency Evaluation

Table I and Table II have proved that our method is still
capable of obtaining competitive accuracy under weaker LBP
features. Taking this fact as the prerequisite, Table III shows
the average time cost according to the statistical results.
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TABLE III

THE AVERAGE RUNTIME (S) COMPARISON PER IMAGE FOR
TWO-CLASS CO-SEGMENTATION. N : THE NUMBER OF IMAGES

TABLE IV

THE AVERAGE PERCENTAGE (%) OF EACH STEP’S TIME

COST IN OUR METHOD

It shows that our method outperforms others in efficiency. The
most important reason is that, an image is represented by fewer
primitives (i.e., meaningful regions). Kim11 is the second
most efficient one but has lower accuracy. Generally speaking,
Faktor13 is better than Joulin12 in efficiency, but both of
them cannot handle larger image sets rapidly. In contrast,
our method can segment each image in about one second on
average.

Moreover, Table IV shows the average percentage of each
step’s time cost of our method, which takes into account all
the designed experiments. According to our experiments, the
time cost of our method has approximately linear relationship
with the image set scale. And the statistical results show
that the intra-image processing (45.62%) and inter-image
processing (54.38%) have a similar influence on efficiency,
while the final hyper-graph joint-cut step (47.77%) is the most
time consuming step in our framework. Therefore, when less
accurate results enabled by the candidate segments are enough
in some applications, we could probably bypass the joint-
cut step completely to gain better efficiency. Yet, the time
expense of the joint-cut step is relatively mild in spite of
different number of inter-image processing tasks, because the
time complexity of updating foreground model is O(N) for
each iteration. As for the time cost of intra-image processing,
“Region feature” could have been a time-consuming task, but
our CUDA-based parallel implementation makes it much more
efficient, especially for LBP descriptor. On the other hand,
k-means and coding steps in “MCJLH (BoW)” are relatively
slow, but it is almost irrelevant to other steps.

E. Component Dissection and Limitation
Discussion of Our Framework

As shown in Table V, our accuracy improvements
mainly benefit from three key technical elements, including
bi-harmonic distance distribution based metric, structure-
meaningful image region generation, and hyper-graph joint-
cut, which is quantitatively analyzed by intentionally disabling
different steps of our method one-by-one. And each of such

TABLE V

THE ACCURACY COMPARISON FOR DIFFERENT SETTINGS OF
OUR FRAMEWORK. EACH ROW REPRESENTS AN ALTERNATIVE

SOLUTION DETAILED IN SECTION VIII-E

well-designed competitor only has one different step com-
pared with our full-version framework “MCJLH”. For the
competitors, WLab+Clustering represents: super-pixel level
clustering results based on Lab color affinities instead of the
structure-meaningful regions; WDE+Clustering represents:
super-pixel level clustering results based on the proposed
metric instead of the structure-meaningful regions; Large
super-pixel represents: super-pixels with large size instead of
the structure-meaningful regions (the number of super-pixels
is set to be same as the number of the structure-meaningful
regions); GrabCut represents: original GrabCut algorithm
instead of our joint-cut method but with the same initialization
as “MCJLH”.

According to the experiment results, if the step of our
structure-meaningful region generation is disabled, the three
competitors (WLab+Clustering, WDE+Clustering, and Big
super-pixel) all tend to ignore the local constraints, and thus
cannot achieve satisfactory results for many details due to
the lack of a powerful metric. In sharp contrast to these
three competitors, the “propagation” property involved in our
structure-meaningful region generation plays a very important
role in guaranteeing the obtained regions to be both structure-
meaningful and relatively as local as possible. Meanwhile,
benefitting from a series of bottom-up steps, the accuracy
and size of the regions can be conservatively and gradu-
ally controlled. Moreover, the proposed robust metric makes
the corresponding parameters’ setting more easy, which can
absolutely be fixed for all cases. Although the final accuracy
gaps between the competitors and “MCJLH” may be reduced
by the same joint-cut step in some sense, “MCJLH” still
outperforms them at about 5.4% to 10.3% precision, because
the joint-cut step also depends on the quality of the candi-
date segments. As for the joint-cut step, according to our
experiments, the wrongly-assigned image regions to certain
candidates have more negative effect than those missed
regions, which can be filled up by a proper cross-image joint
model. Thus, to reduce such negative influence as much as
possible, we resort to some local constraints to avoid the over-
boundary problems during propagation. Besides, we should
notice the fact that, WDE+Clustering is obvious better than
WLab+Clustering except for Oxford flower dataset (high
color affinity). We believe with confidence that the gain is
from our structure-meaningful metric WDE, because there
are no other variables being involved, just as our afore-
mentioned analysis for Fig. 3 in Section IV and Fig. 4 in
Section V-A. Besides, our hyper-graph joint-cut can accom-
modate co-segmentation problem better than the original
GrabCut method because of the full utility of implied
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cross-image supervised information, which has also been
proved in Section VII (Fig. 6).

Overlapping and structure-meaningful are two salient
properties of our mid-level regions, which are worth to be
further discussed. We elaborately make the regions overlap
with each other via Step 1 in Algorithm 2. Since the
overlapped parts of the regions involve multi-type features,
it will bring extra connection to enhance the intra-image
affinities. For inter-image case, this scheme also contributes
to sparse-coding and manifold learning based processing,
because the underlying key idea is “local linear represen-
tation” in certain feature space while the overlapped parts
definitely have a common feature representation. As shown
in Fig. 11(a), the obtained regions always overlap with
each other and show good structure-propagation. Although
the competitor WLab+Clustering also performs well for
this simple case, its resulted regions are too local to be
structure-meaningful (Fig. 11(c)). Fig. 12 clearly illustrates
the structure-meaningful property when one object only
comprises fewer simple parts. Benefiting from the propagated
merging based on our concise metric, here our method can
better produce the four relatively integrated local structures
(Fig. 12(a)). Specifically, the tiny black words on the board
are uniformly assigned to a meaningful region. Moreover, with
the fixed parameter settings (Section VIII-A), our method can
commonly segment an image to about 20 regions, which gives
rise to drastic and reliable data reduction, so it is not surprising
that we can achieve outstanding efficiency. Taking the Oxford
flower dataset as an example, each of its image sets is relatively
larger than those of iCoseg and MSRC datasets, and on average
it has about 70 − 100 images. According to Table III, our
method can achieve the co-segmentation of such image sets
in few minutes while having higher accuracy like Faktor13 and
Joulin12, however, Faktor13 and Joulin12 would need spend
about 4 to 17 hours to finish the same tasks. Therefore, in
unsupervised co-segmentation field, we are confident that our
framework could have greater potential to handle large-scale
image sets.

The L1-manifold hyper-graph makes our method more
flexible to deal with various applications by way of appropriate
feature combinations. Although multi-type features can be
adaptively encoded in the graph, how to select features with
great care is still worth of discussion. First, single-type feature
is insufficient for complex real-world cases. Fig. 10 shows
a case where the co-segmentation results are respectively
computed based on single Lab color feature (Fig. 10(b)),
single SIFT feature ((Fig. 10(c))) and the combination of
Lab/SIFT features (Fig. 10(d)). Although the original images
are not complicated, obviously single-type feature cannot cap-
ture enough information to support correct co-segmentation.
For example, the dark shadows (dissimilar with the Christ
statue) and white clouds (similar with the Christ statue) are
incorrectly segmented due to the fuzzy Lab color affinity.
Moreover, there are some incorrectly-segmented parts in the
SIFT-driven result (Fig. 10(c)), because SIFT feature performs
badly in the smooth region without distinct gradient changes.
In sharp contrast, the combination of Lab and SIFT features
can produce the best results. Second, unsuitable multi-features

Fig. 10. Co-segmentation results based on different types of features.
(a) Original images; (b) Single Lab color feature; (c) Single SIFT feature;
(d) The combination of Lab and SIFT features.

Fig. 11. Illustration of a failure case. (a) Four generated region examples over
a white panda’s head; (b) The incorrect foreground (panda) co-segmentation
result generated by our method; (c) Four region examples generated by
WLab+Clustering.

Fig. 12. Illustration of the structure-meaningful property of our mid-level
regions. (a) A sign board is divided into four relative integrated structures
by our structure-meaningful mid-level region generation scheme; (b) Region
generation results of WLab+Clustering; (c) Region generation results of Big
super-pixel; (d) Region generation results of WLab+Clustering.

or naive combination of massive feature types may also
confuse the global optimization of Eq. 6, because it cannot
guarantee that dissimilar regions will be far away from each
other in each feature space. For example, for some image
sets in MSRC dataset (Fig. 7), the penalty terms (||Z||1,1
and ||Z||2,1 in Eq. 6) are hard to meet the expectation that,
SIFT feature should play a more important role than color-
like features when many color features are involved in the
optimization.

Yet, our framework still has some limitations. For
example, as shown in Fig. 11, the foreground “panda” has
two distinguishable color parts (black and white), which are
hard to be integrated (see in Fig. 11(b)), because the intra-
image coherency is too weak in all images, and the implied
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cross-image supervised information loses its role in nature.
Specifically, although Eq. 8 is expected to depict the structural
meanings by defining the intra-image connections based on
bi-harmonic distribution difference governed affinities WDE ,
we must recognize that this kind of structure essentially
depends on color coherency because of the Laplacian
matrix definition in Eq. 2. Meanwhile, although clustering
by Normalized-Cuts step is naturally suitable for multi-
class co-segmentation cases. However, due to the globally-
unsupervised characteristics underlying the definition of WDE ,
it is still hard to segment certain foreground objects with
some discriminative parts partitioned by clear boundaries,
because the algorithm tends to regard them as different classes
(clusters). Therefore, our structure-meaningful regions can
facilitate to alleviate this problem to some extent by extending
conventional local difference to mid-level difference. Obvi-
ously, in most cases, the foregrounds comprise of some
different parts that are not too discriminative with each other,
for example, the “panda” case shown in Fig. 11. When
handling these cases, benefitting from the global perspective
of inter-image mid-level coherency exploitation, our parallel
normalization for each intra-image sub-graph facilitates to
amplify such weak intra-image coherency (see Section VI-B).

IX. CONCLUSION

In this paper, we have detailed a novel and powerful method
to address a suite of research challenges in the unsupervised
co-segmentation problem with multiple foregrounds and high
variability. The extensive experiments and accompanying eval-
uations verify the versatility and superiority of our method.
In particular, the critical and novel technical components of
our approach include: bi-harmonic distance distribution based
new metric design, structure-meaningful mid-level region
generation, L1-manifold hyper-graph construction involving
multi-type features, and unsupervised hyper-graph joint-cut
model. Specially, the proposed metric can also contribute to
other physics-based affinity measurement, and the structure-
meaningful mid-level regions should give rise to better
performance than the traditional primitives for sparse-coding
and manifold learning, while the hyper-graph based joint-cut
model provides a good scheme to improve certain supervised
or semi-supervised co-segmentation methods.

Since our framework lays emphasis on the leverage of
the mutual effects among different features, our ongoing
efforts are geared towards finding a self-tuning or adaptive
way to determine the involved parameters in a more intu-
itive way, so that they can be more easily understood and
expressed comparing with pure mathematic subspace based
method. Besides, exploring other relevant applications also
deserves our immediate research endeavor. For example, we
are planning to generalize our key idea to handle group
saliency detection, image annotation, image retrieval, and
context-aware image editing.
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