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Abstract—In this paper, we present an efficient robust labeling
method for coronary arteries from X-ray angiograms based on
energy optimization. The fundamental goal of this researchis to
facilitate the analysis and diagnosis of interventional surgery in
the most efficient way, and such effort could also improve the
performance during doctor training, and surgery simulation and
planning. Compared to prior state-of-the-art, our method is much
more robust to resist noises and is tolerant to even incomplete
data because of the”built-in” nature of global optimization. We
start with a fully parallelized algorithm based on Hessian matrix
to extract the tubular structure from the X-ray angiograms
as vessel candidates. Then, instead of using the candidates
directly, we use the Grow Cut [1] method which is similar
with Graph Cut [2] but with better performance to extract the
precise vessel structure from the images. Next, we use the fast
marching method with second derivatives and cross neighbors
to extract accurate skeleton segments. After that, we propose an
efficient method based on Iterative Closest Point [3] to organize
skeleton segments by treating continuity and similarity asextra
constraints. Finally, we formulate the vessel labeling problem
as an energy optimization problem and solve it using belief
propagation. We also demonstrate several typical applications
including flow velocity estimation, heart beat estimation, and
vessel diameter estimation to show its practical uses in clinical
diagnosis and treatment. Our experiments exhibit the correctness
and robustness, as well as high performance of our algorithm.
We envision that our system would be of high utility for diagnosis
and therapy to treat vessel-related diseases in a clinical setting
in the near future.

Index Terms—X-ray Angiograms, Coronary Artery, Energy
Optimization.

I. I NTRODUCTION

T HE morbidity of Cardiovascular Disease (CVD) is rapid-
ly increasing over the past few decades. Cardiovascular

disease is the leading cause of death in both developed and
developing countries. For example, it accounts for 17% of
overall deaths in the USA [4, 5]. In Singapore, one out of
three deaths are due to heart disease or stroke [6]. Because
of the gradually-aging population in the world, the percentage
of cardiovascular disease patients is expected to dramatically
increase [7] in the near future. The golden standard for
diagnosis of CVD is X-ray coronary angiography. Reading
and analyzing angiograms accurately is a compulsory course
for fresh physicians involved in intervention surgery or for
diagnosis of heart diseases. Accurate coronary artery segmen-
tation and recognition are imperative for both cardiologists-in-
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training and medical practitioners towards high-precision diag-
nosis, surgery planning, and treatment. This paper’s originality
hinges upon our efficient solution to extract coronary arteries
and recognize each artery with known labels. Besides, we
apply our method in practical cases, gleaning all the important
information from X-ray angiograms which will in turn provide
more quantitative guidance for later treatments.

Although various researches have been done, there are still
some unsolved challenges currently. First, the angiogramsare
with low image quality, sometimes incomplete, making it
difficult to extract accurate structures. Second, current methods
are time-consuming facing tremendous amount of angiograms
produced daily. Third, the skeleton organization of current
methods is usually based on either prior knowledge or ge-
ometrical structures and may not ensure a globally-optimized
solution. Finally, current methods calculate parameters of
coronary arteries such as flow velocity simply at the pixel level
from acquired images without considering the global vessel
structures and the structure relationship among images, which
is not only wasting high-level, more valuable information
available in acquired images but also far from being accurate.

To overcome the aforementioned shortcomings, we present
an efficient and robust vessel extraction and labeling method in
this paper, and explore several applications using the proposed
method, including flow velocity estimation, heart beat rate
estimation, etc. Compared to previous methods, our method
is more robust to resist noise and to handle even incomplete
data. The pipeline is shown in Fig. 1 consisting four stages:
vessel and skeleton extraction (Section III), vessel organization
(Section IV), tree structure labeling (Section V), and applica-
tion (Section VII). Firstly, we design a parallel algorithmbased
on Hessian matrix [8] to extract candidate vessels and make
use of the Grow Cut [1] method based on cellular automata
to further process the candidates for more accurate foreground
coronary arteries. Then, we propose an iterative distance and
similarity evaluation method based on Iterative Closest Point
(ICP) with the property of optimization to organize extracted
vessel skeleton into segments. After that, all vessel segments
will be organized as well-structured trees. Then, we formulate
the labeling problem of the organized skeletons into an energy
optimization problem and solve it using belief propagation.
Finally, we apply our method to several practical estimation
problems to facilitate better diagnosis and treatment. Themain
contributions of our work include:

• We develop an efficient parallelized vessel extraction and
thinning method using Hessian matrix as well as the
Grow Cut method. One advantage is that, at the image
level, we take into consideration the probability and the
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continuity of each pixel/voxel belonging to vessels.
• We develop an efficient, iterative distance and similarity

evaluation method based on ICP. We propose a frame-
work based on this new descriptor to organize the ex-
tracted vessel skeletons into well structured trees, greatly
simplifying the labeling problem at little performance
loss.

• We develop a novel labeling method based on global
energy optimization being solved using belief propagation
with distanceand topologyconstraints, which is robust
to noisy and incomplete data from images.

• We explore several typical practical applications using the
newly-proposed method to extract physiological parame-
ters from the X-ray angiograms automatically.

II. RELATED WORK

Our work relates to vessel extraction, skeleton tracking,
energy optimization, etc. We now briefly review them in the
following categories.

Vessel and Skeleton Extraction.The vessel extraction
methods can be classified into different categories (See [9]).
In addition, researchers took more focus on energy based
segmentation methods with combination of many classical
methods. Salazar et al. [10] proposed a vessel segmentation
method for retinal images based on energy optimization by
combining the well known Graph Cut method with the classi-
cal optic disc method. Hoover et al. [11] used a mathematical
filter to offer a broad range of vessel enhancement, and Li et
al. [12] conducted this task using a non-linear filter. Frangi
et al. [8] used the eigenvalues of Hessian matrix to extract
the tube-like structures from X-ray images. Condurache et
al. [13] used this method while adding a hysteresis threshold-
ing method to purify the extracted data, which is not robust
to handle blurry images. Zhang et al. [14] proposed a novel
extension of the matched filter approach which is composed
of a zero-mean Gaussian function and the first-order derivative
of Gaussian. Typically, vessels extracted from angiogramsare
quite complicated. Centerline extraction for vessels is essential
for both data simplification and further processing. Zhang et
al. [15] proposed a two-step thinning method based on the
structure analysis of the candidate vessel structures. Vanet
al. [16] and Hassouna et al. [17] proposed methods based
on Eikonal equation and fast marching method to find vessel
skeletons. Yet, they could not process isolated vessel segments.

Vessel Labeling.Labeling coronary arteries, focusing both
on 2D such as X-ray angiograms and 3D such as CT images,
aims to offer semantic information corresponding to geometric
structures. Ezquerra et al. [18] proposed a model-guided
method automatically labeling vascular structures in coronary
angiographic images. They compared a feature graph with a
symbolic graph based on feature correspondence which is local
and ignores the global nature. Haris et al. [19] proposed a
segmentation and labeling method for coronary arteries based
on artery tracking, morphological tools of homotopy modifica-
tion and watersheds. However, their method is not automatic
and needs user interactions. Yang et al. [20] proposed a two-
step matching algorithm including main branch identification
and all segments labeling based on 3D ground truth models

to label coronary from computed tomographic angiography.
Throughout all labeling techniques, most are based on features,
which may not only cause mistakes due to blurry images, but
also be unable to achieve globally optimized results.

Optimization Techniques. Optimization techniques are
widely used in various areas such as image restoration, 3D
reconstruction, etc. Geman et al. [21] first proposed the classi-
cal theories of Markov Random Field (MRF), Gibbs Sampling
and Maximum a Posteriori estimate. Lafferty et al. [22]
proposed the Conditional Random Field (CRF) providing a
tool for structural classification and prediction. Meanwhile,
Belief Propagation (BP) was proposed by Pearl [23] to solve
the optimization problems in MRF. Ever since the inception of
BP, various methods for improving its performance [24], as
well as speeding up the method [25] have been proposed,
which indicates its important role in energy optimization
theory. Besides BP, Graph Cut is widely used in computer
vision including image segmentation [26], stereo disparity
and motion [2]. In [2], Boykov et al. presented an efficien-
t α-expansion andα-β swap algorithm for metric energy
minimization based on Graph Cut. Kolmogorov et al. [27]
introduced the characteristics of the energy function which
could be minimized by Graph Cut and conducted the genetic
construction of the minimization function. Many extensions
for Graph Cut have been proposed such as Grab Cut [28]
etc. Despite the typical methods, Vezhnevets [1] proposed a
method called Grow Cut which is similar with Graph Cut but
is based on cellular automata with better performance.

Practical Applications. As with applications in medical
image analysis, Liu et al. [29] have proposed a method based
on energy optimization to extract shape, motion from X-
ray angiograms at different views. As relevant technologies
advance, more sensors and instruments have been applied to
measure physiological parameters in coronary arteries which
facilitates the computational fluid dynamics (CFD). Tremen-
dous progresses have been made in applying image-based CFD
simulation techniques to elucidate the effects of hemodynam-
ics in vascular pathophysiology toward the initializationand
progression of CAD [30].

III. V ESSEL ANDSKELETON EXTRACTION

Given X-ray angiograms, we design an efficient algorithm
with the help of GPU for extracting enhanced images as vessel
candidates. After that, we use Grow Cut method which is
based on cellular automata to selectforeground (vessels)from
vessel candidates with the knowledge from knownforeground,
backgroundand vessel continuity. At last, we apply the Multi-
stencils Fast Marching method with second derivative and
cross neighbors to track skeletons from segmented vessels.The
final vessels as well as their skeletons are shown in Fig. 2.

A. Vessel Extraction

Original angiograms captured by X-ray machines are usu-
ally with low contrast, high dynamic range, and low lumen.
To extract vessels from such images, we devise a global
optimization method consisting of three steps, vessel enhance-
ment, Hessian based vessel candidate extraction and globally-
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Fig. 1. Pipeline of our method consisting of four steps. Inputs are X-ray angiograms and one 3D coronary artery model, while outputs are labeled skeletons
with traced diameters, flow speed, and heart rate. Legends are given to indicate different meanings of colors and shapes.

Fig. 2. Results of vessel and skeleton extraction. Catheter, LAD, and LCX
branch are identified. Different colors correspond to different segments. Round
filled circles identify bifurcations and distal points.

optimized precise extraction based on Grow Cut. The pipeline
is described in Fig. 3.

1) Angiogram Enhancement: We first apply the enhance-
ment of radiography based on Musicale Retinex with Color
Restoration (MSRCR) [31] method since it can can combat
these artifacts while keeping edges sharp with low computa-
tional cost. This step is very important since it is a base for
further processing. Without this step, images processed inthe
next step will be full of small artifacts, and some of which
might be easy to be smoothed but many others are hard to
distinguish. Then, we use the gain/offset method to fix the
negative values. After the pre-processing procedure, original
images are enhanced in contrast and lumen, providing better
basis for vessel extraction.

2) Candidates from Hessian Matrix: The filter [8] based
on Hessian matrix affords a good start of extracting tubular
structures for segmentation, and improving efficiency via GPU
acceleration. Besides, the filtered values denote the corre-
sponding probability for each pixel belonging to vessels, mak-
ing it convenient to add further process to ensure continuity
constrains. We convolve original images by Gaussian filters
with differentσ which are related to maximum vessel size of
the image and then we normalize the convolved image using

correspondingσ for further process.
In our application, for every angiogram among the imaging

sequence and for every specifiedσ, our parallelized extraction
method consists of the following steps. First, we build the
Gaussian kernel mask depending onσ on CPU side and
transfer them into GPU. Second, we convolve the entire
image using this Gaussian kernel and each pixel point on the
image corresponds to one CUDA kernel. Third, we extract the
eigenvalues and eigenvectors and compute the coefficients for
each point’s Hessian matrix. This is also done per kernel on
GPU. Fourth, we use a double swap buffer on GPU to compute
the possibility of being part of vessel structures for each pixel
(refer to Eq. 15 of [8] for details). In all the procedures, except
initialization, data are processed on the GPU side and stored
for further process.

3) Precise Results using Grow Cut: Filtered values from
Hessian matrix are discrete in isolation without any knowledge
of adjacency information. Simply using threshold can not
extract satisfactory results from Hessian matrix. Therefore,
Hessian Matrix together with Grow Cut are used to guarantee
more purified extraction results from images. Hessian Matrix
is a good start for extracting tubular structures and easy to
be parallelized. However, Hessian is more focused on local
’pixel’ level on images while Grow Cut could use the output
of Hessian as an input and take neighboring information of
current local pixel into consideration. These two methods are
pair-wisely used to ensure the continuity as well as tubular
feature of current pixel on images. Grow Cut [1] is an alter-
native to Graph Cut, yet with much better performance. This
method can be regarded as having a biological metaphor that
each image pixel is formulated as a cell of certain type. These
cells can beforeground, background, undefinedor others. As
the algorithm proceeds, these cells compete to dominate the
image domain. The ability of the cells to spread is related to
the image pixel intensity.

Based on the probability image acquired from GPU-
accelerated Hessian, we divide the candidates on the image
into three categories:background, foreground (vessel), and
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Fig. 3. Pipeline of vessel extraction. We use Hessian matrixto extract
vascular candidates from MSRCR enhanced images and classify them into
three categories which are the inputs for Grow Cut to producethe final
segmentations.

Fig. 4. Pipeline of skeleton extraction. Multi-stencils Fast Marching is used
with cross neighbours and second derivatives to improve accuracy.

undefinedpixels. For all pixelsp on the image, the processing
stage mainly comprises the following steps. First, currentstate
and weighted strength from last iteration are saved. Second,
for all neighboursq of pixel p under forceF and strengthS,
we will compute the new strength throughF ×S and replace
the old one if it is smaller. Third, all pixels on the image will
be assigned with a label by0 and 1, indicating background
andforeground, respectively. Fourth, we collect theforeground
pixels as vessel segments and calculate the length (i.e. number
of points) of each segment. Finally, segments whose number
of points are smaller than a given value are omitted and in this
way we can obtain clear vessel images as the Final Results in
Fig. 3.

B. Skeleton Extraction

Vessel skeletonization is essential for data simplification.
The Fast Marching method [32] [17] with second derivatives
and cross neighbors provides a precise way to extract skeleton-
s. As illustrated in Fig. 4, we extract the accurate skeletonof
objects represented by binary images using the Fast Marching
distance transform. First, we compute the distance map for
the whole binary image (Ln. 5, Alg. 1). Second, we trace the
shortest path from start point to source point using Runge-
Kutta method in the distance map (Ln. 11, Alg. 1). Finally,
we organize and split traced points into line segments (Ln. 12,
Alg. 1). With the help of both second derivatives and cross
neighbors, we obtain segmented skeletons more accurately.
Meanwhile, we extracted diameters for each skeleton point
during the distance transform. Tracked skeleton segments have
been shown in Fig. 2.

Algorithm 1 Multi-stencils Fast Marching Skeleton Extraction
Input:

1: bIMG, binary image representing vessels.
2: nIter, maximum iteration count.

Output:
3: retLines, traced vessel skeletons.
4: function SKELETON((bIMG))
5: boundDist← GETBOUNDARYDIST(bIMG)
6: (source,maxD)← MAX DISTPOINT(boundDist)
7: speedImage← boundDist/maxD
8: while (itt < nIter) do
9: (T, Y )← MSFM(speedImage,source)

10: start← MAX DISTPOINT(Y )
11: Line← SHORTESTPATH(T, start, source)
12: retLines(itt)← TRIML INES(Line)
13: itt← itt+ 1
14: end while
15: return retLines
16: end function

IV. V ESSELORGANIZATION

In principle, extracted vessel skeletons are messy, less-
accurate segments consisting of many pixels which may not
exhibit well-behaved structures, not suitable for immediate
labeling. Since importance of coronary branches is different
(e.g., LAD and LCX are more important since they are root
branches, mis-labeling them would cause all the following
subsequent labeling wrong), here we adopted a two-step
procedure based on prior knowledge to first extract the most
important two branches in coronary arteries, called Vessel
Organization (Section IV) problem and Tree Structure Label-
ing (Section V) problem. In the first step, we organize the
messy skeletons, transforming them into well-organized tree
structures with an ICP based similarity term. We select ICP
as core of the similarity term for its high efficiency. Thus,
this step only consumes a little in terms of temporal cost, yet
highly simplifies the labeling problem and increases accuracy.
In the second step, we compute optimized labeling results,
mainly focusing on LAD (Left Anterior Descending), LCX
(Left Circumflex), OM (Obtuse Marginal) and D (Diagonal)
branch. We put different emphasis on different branches since
they may have different levels of significance during labeling.
The pipeline of organizing extracted skeletons is described
in Fig. 5 consisting of three steps. Based on our Vessel
Organization step, the meaningless segments are organized
into tree structures with known properties (e.g., leaf depth,
leaf parent-child relationship, etc.). This step highly improves
the robustness of our method and reduces labeling error caused
by the mis-labeling of the tree’s root node.

A. 2D Ground Truth Building

Our prior knowledge comes from a 3D skeleton model
with known labels. Since we are labeling 2D angiograms,
we project the 3D skeletons onto 2D images to derive the
geometric structure and their relationship according to the
viewing angles of current data set. With the known labels of
the 3D skeleton model, we can easily label key vessel branches
(which we call landmark, e.g., LAD, LCX, etc.) on the 2D
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projected images. Landmarks at a given angle are shown in
Fig. 1 where LAD and LCX are labeled both on 3D and 2D
projected ground truth images. On the projected images, we
call the geometrical and structural information of LAD and
LCX asTemplateand use them for evaluation in the landmark
building step. One LAD template at a given angle is shown
in Fig. 5 (b).

B. Landmark Building

Obviously, coronary arteries are tree-structured with root,
branches, and leaves. It is necessary to identify the root and
primary branches to build the entire tree structure. Because of
the special characteristics of vascular angiography, we mainly
concentrate our attention on extraction and analysis of three
landmarks, theCatheter, LAD branch andLCX branch by our
ICP-based method. The ground truth landmarks at a given
angle are shown in Fig. 2.

1) Similarity Term Definition: For landmark building, we
focus on extraction of three branches includingCatheter, LAD,
and LCX. We define ground truth for each branch asGCAT ,
GLAD, andGLCX , respectively.GCAT is derived from the
extraction of beginning images of the sequence whileGLAD

andGLCX are from 2D projected ground truth. We call these
three ground truth asTemplateand use a similarity term to find
similar branches from to-be-labeled vessel trees. By denoting
Templateas l where l ∈ {GCAT , GLAD, GLCX} and each
extracted skeleton line segment ass, we define the similarity
term D(l, s) based on the results of ICP registration in the
extracted image. TheD(l, s) is devised to consider structural
and geometrical features and evaluated via:

D(l, s) = N(l, s)T (l, s)R(l, s)/C(s), (1a)

N(l, s) = |L(s)/L(l)− 1|+ 1, (1b)

T (l, s) = Tl(s) + γErrl(s), (1c)

R(l, s) = 1 +Rl(s)/180, (1d)

in which L(s) stands for the length of segments, Tl(s),
Errl(s) andRl(s) are parameters calculated fors from ICP
with templatel, γ is a constant andC(s) stands for the number
of points of segments. Eq. 1b is used to ensure the similar
length of labeling and the ground truth segment. Eq. 1c is used
to evaluate transformations in image pairs. Eq. 1d indicates the
rotation from labeling to ground truth segments.

2) Catheter Building: In our experiments, the angiograms
are taken at the very beginning of the intervention, when the
catheter is inside the coronary artery and no contrast agentis
injected. Therefore, we can use our vessel extraction method
to process the beginning images of the sequence to extract
catheter, which is used as ground truth for labeling catheter
branches in the following frames of the sequence.

3) LAD and LCX Building: LAD and LCX branches are
even more important than catheter. Once we calculate the
D(l, s) for each segment, we obtain corresponding segments
for the template colored in red as shown in Fig. 5 (c). Mean-
while, since catheter is directly intervened into LAD branch
due to our prior knowledge, we start from the intersection
segment and search for the neighbors for each working node

Fig. 5. Pipeline of skeleton organization. (a) Skeleton segments. (b) LAD
template. (c) Candidates using LAD. (d) Different organized candidates. (e)
and (f) Processed skeletons and their relationship.

until it is a distal node. As there are multiple distal nodes
during search, there are several options that LAD might have.
After LAD has been determined, the same procedure advances
for LCX branch. Suppose there arem choices for LAD andn
choices for LCX, there are totallym×n options for the whole
combinations. We transform the messy data into vessel trees
according to selected LAD and LCX (See Section V-A), and
iterate all them × n combinations, calculating the globally
optimized energy (See Section V-B) for each combination
to ensure the robustness of our algorithm. At last, we select
combination with minimal energy as the final structure. The
entire computational procedure is described in Algorithm 2.

Algorithm 2 ICP-based Skeleton Segments Organization
Input:

1: Cath, extracted catheter segments.
2: LADGr
3: LCXGr, ground truth for LAD
4: LCX branch.
5: LNodes, to be labeled segments.
6: Coeff , coefficients between line segments.

Output:
7: segment combination with minimal energy.
8: function PROCESSONEIMAGE

9: cathCandi← ICPLOOKUP(Cath,LNodes)
10: iCath← cathCandi
11: LADCandi← ICPLOOKUP(LADGr,LNodes)
12: vProcessed← insert iCath
13: LADs← COLLECTPATHS(LADCandi,Coeff )
14: for m = 0→ Count(LADs) do
15: LCXCandi← ICPLOOKUP(LCXGr, LNodes)
16: vProcessed← insertLADs(m)
17: LCXs← COLLECTPATHS(LCXCandi,Coeff )
18: for n = 0→ Count(LCXs) do
19: vMerged← MERGE(LADs(m), LCXs(n))
20: Energy ← vesselT reeBP (vMerged)
21: end for
22: end for
23: minE,mMin, nMin← min(Energy)
24: sF inal← MERGE(LADs(mMin), LCXs(nMin))
25: end function



2168-2194 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JBHI.2015.2485227, IEEE Journal of Biomedical and Health Informatics

6

C. Segments Organization

As soon as LAD and LCX segments are identified, we
can organize rest of segments clearly based on the correlation
Corr(p, q) between neighboring segmentsp and q, which is
defined as:

Corr(p, q) = arctan

(

|S(p)− S(q)|

(1 + S(p)S(q))

)

, (2)

whereS(p) denotes the average slope value for skeletonp and
it is defined as:

S(p) =

N
N
∑

i=1

(Xp(i)Yp(i))− (
N
∑

i=1

Xp(i))(
N
∑

i=1

Yp(i))

N
N
∑

i=1

(Xp(i)Xp(i))− (
N
∑

i=1

Xp(i))(
N
∑

i=1

Xp(i))

, (3)

where for each skeleton segmentp, N denotes the number
of points, Xp and Yp represent the X-coordinate and Y-
coordinate, respectively. In our experiments, onceN is smaller
than a predefined value,Corr(p, q) is slightly raised to give
smaller segments better chances of merging into longer ones.

We start from a random skeleton segment and group neigh-
bors of the current working segment with high correlation
recursively. After each group is processed, we continue search-
ing from the other uncovered segments until all segments have
been covered. At last, segments belonging to the same group
will be merged into a new segment, the points belonging to
each old segment will be queued and sorted by its location
and the starting point and ending point for this new segment
will be refreshed. After the organization, we obtain a totally
new structure with more reasonable, continuous segments and
skeleton fragments with a reasonable length.

V. V ESSELTREE LABELING

After the messy segments have been transformed into well-
organized unique tree structures, it is ready to derive the vessel
tree (Section. V-A) and label the vessels (Section. V-B) based
on Belief Propagation as described in Fig. 6.

A. Vessel Tree Building

We build the vessel tree from each organized vessel struc-
tures. Each tree node corresponds to a vessel segment in
which LAD and LCX correspond to the root node and one of
the primary branch respectively. During the construction,we
compute the depth, neighborhood and parent-child relationship
for each tree node based on depth-first iteration.

First, we collect the merged skeletons and analyze key
points including bifurcations and distal nodes as input. Second,
we build parent-child relationships between segments accord-
ing to two-tuple (i, p) which indicates that it is a bifurcation
point p on segmenti. Third, we assign each node with a
unique code consisting of the inherent code from its parent
and the unique code of itself. This code enables us to compute
the minimal path between nodes efficiently. Finally, we shall
analyze if the node is a distal node with one bifurcation or
an inner node with two bifurcations through looking up the
bifurcation table. After all of these analysis, we traverseall
nodes in a depth-first manner and record both the depth and
the root nodes.

Fig. 6. Pipeline of vessel tree labeling. We define two energyterms to
formulate the labeling problem as an energy optimization problem.

Fig. 7. Illustrative sketches for X-ray intrinsic parameters.DI2H andDO2H

represent the distance from intensifier to patient and from optical center to
patient, respectively.θV andθH are angles the C-arm rotates in space. LAO
and CRA are defined as positive angles while RAO and CAUD are defined
as negative angles along their corresponding axes.

B. Labeling using Belief Propagation

We present an energy-based method to analyze the tree-
structured vessels robustly with the property of global opti-
mization. The energy term at timet is defined as:

Et(f) =
∑

p∈P

Dp(fp) + λ
∑

p,q∈Np

Vp,q(fp, fq), (4)

where P is the node set of the vessel tree,Np is the
neighboring node set of nodep. We defineDp(fp) as the
minimal normalized value that is the same as Eq. 1a, which
is called byDistanceterm:

Dp(fp) = norm(min(D(l, fp))). (5)

Meanwhile, we define theVp,q(fp, fq) as theRelationshipterm
to ensure the continuity between adjacent segmentsp and q.
This term is related to the path length between the nodep and
its ground truth nodefp. We defineVp,q(fp, fq) as:

Vp,q(fp, fq) = (1 +Rp,q(fp, fq))(Dp(fp) +Dq(fq)), (6)

whereRp,q(fp, fq) denotes the path length from the corre-
sponding ground truth nodefp to nodefq. Since message
propagation is processed between neighboring nodes, they
have relationships including both parent-child and siblings.
Therefore, largerRp,q(fp, fq) can easily penalize labels not
well fitted with the ground truth.

Once we have theDistance and theRelationshipterms,
we find the minimumEt(f) using Belief Propagation (BP)
algorithm, which is comprised of two main steps, message
propagation and energy minimization. In the message prop-
agation step, we formulate the message propagated between
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TABLE I
LABELING STATISTICS

Image
Count

Labeling Accuracy ( correct/extracted count)
CAT LAD LCX OM D

1770 1770/1770 1405/1429 1344/1368 953/1006 1101/1126
100.0% 98.3% 98.2% 94.7% 97.8%

nodes at thei-th iteration as:

mi
p→q(fq) = min(αDp(fp) + βVp,q(fp, fq)+

γ
∑

s∈Np\q

mi−1
s→p(fp)),

(7)

where α, β and γ are constants controlling the weights
of different components.Np\q represents all neighbors of
segmentp except q. We compute the message propagated
to neighborq from each source nodep. With a givenq, we
compute the minimum energy for eachp to make the message
minimal. After I iterations we compute the belief vector as:

bq(fq) = D(fq) +
∑

p∈Nq

mI
p→q(fq). (8)

After obtaining the energy term att, we use temporal
information to ensure the continuity between frames within
the same sequence. We define the energy term as:

E(f) = (1− η)Et(f) + ηEt−1(f), (9)

whereη is a parameter controlling the strength of continuity
between framet and framet− 1. Eventually, we compute the
minimum sum of all grouped vessel skeleton segments and
obtain the optimal solution forE(f). Et−1(f) is the labeling
state of last frame and the method proceeds for the next frame
until we arrive at the end of the sequence.

Our algorithm is robust for incomplete data due to its global
optimization nature. Most classical methods proposed before
are based on feature extraction and matching while some oth-
ers improve the matching method by using iterating techniques
or coarse-to-fine techniques to enhance robustness. However,
the intrinsic nature of these methods has undoubtedly given
rise to the low efficiency for handling blurry and incomplete
imaging data since they can not guarantee globally-optimized
results. Our method could automatically overcome these diffi-
culties because it is not based on classical geometrical feature
matching but is rooted in the energy optimization theory which
can achieve global-optimized result. It may be noted that, we
do not apply feature matching directly, but formulate features
as energy terms and spread the message of the term using BP
which enables to achieve correct labeling results even when
features are not precise in the first place.

VI. EXPERIMENTS AND VALIDATION

We use X-ray angiograms from 19 persons, each comprising
several data sets from different view angles to validate both
the correctness and the robustness of our method, best suited
for handling blurry and incomplete data. Each data set at a
single view consists of at least forty images.

We have shown some typical cases for robustness validation.
Meanwhile, labeling statistics are described in Table I for
whole data set. Due to page limit, detailed information for
each data set are described in the supplementary material.

According to the statistics, All catheter branches are extracted
correctly from the original angiograms. Incorrectly-labeled
LAD and LCX branches are mainly caused by the blurry or
overlapping problems. Incorrectly-labeled OM branches are
mainly distributed in some typical sets where OM and other
branches are overlapped because of the viewing angles. It is
also the same reason for D branches.

Data Acquisition. Among all the procedures, we use clin-
ical data captured by a Philip single-plane X-ray machine.
The system setup and view angles in X-ray angiography are
illustrated in Fig. 7. We use four parameters (DI2H , DO2H ,
θH , θV , also described in Fig. 7) to represent the intrinsic and
external state during imaging.

Robustness Validation. The robustness of our method
mainly lies in two aspects: its ability to extract well-structured
vessel trees when handling blurry images, and its robustness
for obtaining correct labeling results on incomplete data.

First, cases for blurry angiograms are given in Fig. 8 (a) (low
contrast, blurry), Fig. 8 (b) (low contrast, vessel narrowness),
Fig. 9 (a) (blurry, organs), Fig. 9 (d) (blurry, vessel narrowness)
and Fig. 10 (a) (blurry). Blurry images are usually caused
because of the vessels’ narrowness or the shortage of contrast
agent. Also, images in Fig. 8 (c) (spines captured), Fig. 8
(d) (spines, pulmonary, severe artifacts), Fig. 9 (b) (spines,
pulmonary), Fig. 9 (b) (spines, pulmonary), Fig. 9 (c) (spines,
pulmonary, ribs), Fig. 10 (b) (spines, vessel narrowness),
Fig. 10 (c) (spines, pulmonary) and Fig. 10 (d) (ribs) denote
another problem that artifacts as well as other organs are
captured in angiograms. The experiments above have shown
that our method can handle images of low quality and still
extract correct vessel structures and labels.

Second, in Fig. 8, Fig. 9 and Fig. 10, we have shown
results during contrast injection. At the beginning of each
subfigure, although the entire cardiovascular structure has not
been contrasted since the contrast agent is being injected,our
method can figure out exact labels from current incomplete
structures. The temporal information from the previous frame
also helps derive correct labels from incomplete data.

Therefore, even though with images of low quality (blurry,
organs, etc.) or incomplete data (incomplete vascular structures
during contrast injection), our method can still have the
capability of deriving correct, coherent results, hence demon-
strating its overall robustness due to its global optimization
nature and the utility of temporal information.

Preprocessing and Labeling.Preprocessing and labeling
results are documented in Fig. 8, Fig. 9 and Fig. 10. The first
row indicate the original angiograms with extracted coronary
artery trees organized in different colors. Skeletons inRed
indicate they are root skeletons and they are more likely
the LAD branches. Skeletons inblue indicate more likely
the LCX branches. Skeletons inGreen indicate they are side
branches. Original tree structures are one pixel width but they
are expanded and drawn in a visible way (i.e., becoming
thicker) to make them clear. The second row indicates the
labeled vessels. We evaluate major branches includingLAD,
LCX, OM andD to validate the correctness.

Performance.The performance of our proposed method is
documented in Fig. 14. We use different legends to represent
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Fig. 8. Extraction and labeling results. Note that, original skeletons are of only one pixel width and are expanded for better visualization. For every image,
top row: tree structures; bottom row: labeling results.

Fig. 9. Extraction and labeling results. On the top row of each sub-figure, red segments: primary branches; blue segments: secondary branches; green segments:
side branches. Bottom row: labeling results.

different procedures of our method. Besides, performance fig-
ure is attached to each data set in the supplementary material.
Totally, the processing time reaches maximum at 4 seconds
and is around 2 seconds in most cases. Therefore, although
our method is composed of several steps, the performance is
reasonable according to our statistics.

Comparison. Mukherjee and Gopi [33] proposed an itera-

tive method to look for similarities between geometric trees
based on features whose efficiency greatly relies on featureex-
traction. Chalopin et al. [34] proposed a coarse-to-fine search
method and the matching quality in the following steps highly
relies on prior results. Similar methods may have considered
geometrical or feature similarities which are not robust enough
to handle blurry, low-quality, or even incomplete images. In
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Fig. 10. Extraction and labeling results. All images have shown severe artifacts, demonstrating the robustness of our method through strong visual effects.

sharp contrast, our method is based on the rigorous theory
of energy optimization and its powerful numerical solvers,
hence capable of obtaining optimized results that guarantee
the robustness to the greatest extend. The experiments and
results have shown that, our method can extract and label the
vessel tree structure well for both clear and blurry images.

Discussions.This paper has detailed a robust method com-
prising several steps for vessel labeling. The necessity ofeach
step lies in the strong requirements for both data simplification
and assuring the robustness of our method. Since the coronary
artery labeling for X-Ray is a very specific subject for medical
image analysis, we haven’t found reasonable and comprehen-
sive performance statistics in other pulications. Nevertheless,
to our best knowledge, we have validated our method on the
largest experiment data set (with 39 data sets from 19 persons,
totally 1770 X-Ray angiograms) in this area and the achieved
results have shown the robustness and correctness of our
method. Besides, the maximum processing time is 4169.7ms,
minimum is 1411.1ms and average is 2733.9ms, which are
reasonable and adequate for both research and clinical uses.

Limitations. Although our method has achieved robust
results, there are still certain shortcomings due to low quality
of images. Due to dynamic movements of heart, the imaging
quality is very poor, unavoidably causing severe artifactsif
the contrast agent is not injected steadily, and unfortunately,
this scenario is extremely challenging for all cardiovascular
processing methods. To improve the overall performance in
this situation, we intend to integrate our method with user
interaction to combat severe artifacts, and it is also possible
to enhance the efficiency of our method.

VII. A PPLICATIONS

Our efficient method can be easily applied for analysis and
diagnosis tasks relevant to heart disease. We have conducted
three more applications to validate the correctness and scala-
bility of our method.

Vessel Diameter Estimation and Analysis.The diameter
of vessels is an important indicator for disease, especially
for heart-related diseases, such as vessel stenosis. Collecting
and analyzing diameters from the X-ray images affords strong
basis for doctors’ diagnosis. In our application, we collect the
diameters for all the extracted vessels and provide reason-
able advice and assistance for diagnosis by calculating the
distance map on binary images. We analyze the diameters
and seek nodes whose diameters are abnormal compared with
their neighbors. We provide numerical analysis as well as
visual analysis for better diagnosis. We have shown some
stenosis prediction results in Fig. 13. We use hollow circles
to indicate vessels whose diameters change severely. Larger
circles indicate more severe changes and should attract more
attention from doctors. Nine images from different data sets
are shown while six of them are enlarged to give a better view
on diameter visualization.

Flow Velocity Estimation and Analysis. Flow velocity
of coronary arteries is also an significant indicator for many
heart-related disease. State of the art methods collectingflow
velocity statistics are mainly based on measurements from
medical instrumentations, making it complicated and hard to
be operated, sometimes not accurate either. The starting point
of this application is to select those patients who probablyhave
stenosis with irregular blood flow speed. In our application, we
label framet and framet+ 1 in the same sequence based on
our proposed method so that we can obtain the corresponding
structureSt(p) and St+1(fp) in adjacent frames. Based on
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Fig. 11. One traced cardiac cycle consisting of seventeen images. The rate is close to the standard value.

Fig. 12. One traced cardiac cycle consisting of thirteen images. The rate is only 42 bpm. This patient may be suffering from irregular heart rhythm or even
bradycardia based on diagnosis from our extracted rate.

Fig. 13. Stenosis prediction based on diameter analysis. Larger circles indicate more severe diameter changes. Six outof nine images have been enlarged to
give a better visualization on diameter.

these corresponding structures, we can compute the changes
of movements between frames enabling us to compute both
the instantaneous movement speed for each segment and the
average speed for the whole structures. We have shown some
results for flow speed estimation in Fig. 11 and Fig. 12. Sta-
tistical parameters related to flow speed are shown separately
in each figure including the minimum and maximum speed.
Instant speed for each image is labeled in the bottom row in
mm/s.

Heart Beat Rate Estimation and Analysis.The state of
art methods for X-ray angiograms will always require the
cardiogram synchronized with the image sequences to explic-
itly identify corresponding images among different sequences

which unavoidably increases the requirements and limits the
applicability. In our application, we calculate the weighted av-
erage distance from each skeleton segments to other segments.
Longer segments will have larger weights. With frames at time
t and timet+1, we shall seek corresponding vessel structures
between adjacent frames using our method. By comparing
the distanceMt(s) andMt+1(fs), we obtain the movement
trend of each vessel tree node between the adjacent frames
in the same sequence and determine if the coronary arteries
are at relaxation or contraction stage. IfMt+1(fs) > Mt(s)
repeatedly, it is justified as diastole, otherwise it is systole. We
can automatically extract the systole period and diastole period
in the sequence. We have also tested heart beat estimation as
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shown in Fig. 11 and Fig. 12, where we derive the number of
images of one cardiac cycle, duration of each image, and the
heart rate as tracking parameters. The heart rate is countedin
bpmmeaningbeat per minuteand the flow speed is inmm/s.
The heart rate in Fig. 11 is close to the standard value 75 bpm
while Fig. 12 has a heart rate much lower than standard value,
indicating that the patient may suffer noisy heart rhythm and
even bradycardia if this situation continues to repeat.

VIII. C ONCLUSION

We have developed a novel coronary artery labeling system
from X-ray angiograms. The uniqueness of our system is its
simultaneous handling on labeling as well as various appli-
cations for physiological parameter extraction. The critical
technical components of our system include the robust global
optimization formulation for vessel labeling and the parallel
algorithms supporting great performance and robustness. At
the stage of vessel tree building, our system has the capa-
bility of transforming extracted messy, unorganized segments
into well-organized tree structures. At the labeling stage, we
formulate the labeling problem using an energy optimization
approach solved by belief propagation without the need of
explicit feature extraction, registration, and tracking.Besides,
we had explored three applications to highlight the usefulness
as well as possible generalization of our method. The experi-
mental results have shown that our method is robust to noise
and even incomplete data mainly because of the algorithms’
global optimization nature. Our immediate goal in our ongoing
and upcoming work is to continue to improve the system’s
performance and expand its functionalities towards clinictrial
in the near future.
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