
Int J Data Sci Anal
DOI 10.1007/s41060-016-0020-3

REGULAR PAPER

A greedy algorithm to construct sparse graph by using ranked
dictionary

Shuchu Han1 · Hong Qin1

Received: 14 July 2016 / Accepted: 3 August 2016
© Springer International Publishing Switzerland 2016

Abstract L1 graph is an effectiveway to represent data sam-
ples in many graph-oriented machine learning applications.
Its original construction algorithm is nonparametric, and the
graphs it generates may have high sparsity. Meanwhile, the
construction algorithm also requires many iterative convex
optimization calculations and is very time-consuming. Such
characteristics would severely limit the application scope
of L1 graph in many real-world tasks. In this paper, we
design a greedy algorithm to speed up the construction of
L1 graph. Moreover, we introduce the concept of “Ranked
Dictionary” for L1 minimization. This ranked dictionary not
only preserves the locality but also removes the randomness
of neighborhood selection during the process of graph con-
struction. To demonstrate the effectiveness of our proposed
algorithm, we present our experimental results on several
commonly used datasets using two different ranking strate-
gies:One is based onEuclidean distance, and another is based
on diffusion distance.

Keywords Graph based learning · Sparse graph · Spectral
clustering · Subspace learning

This paper is an extension version of the PAKDD2016 Long
Presentation paper: “A Greedy Algorithm to Construct L1 Graph with
Ranked Dictionary”.

B Shuchu Han
shhan@cs.stonybrook.edu

Hong Qin
qin@cs.stonybrook.edu

1 Stony Brook University, Stony Brook, NY, USA

1 Introduction

For graph-oriented learning tasks, a quality graph representa-
tion [6] of input data samples is the key to success. In the past
few decades, researchers in machine learning area propose
many different methods to solve such tasks, for example,
k nearest neighbor (kNN) graph and ε-ball graphs. These
methods are very straightforward and proved to be efficient
for general data. The reason of these methods’ success is
that their construction algorithm acts as a local smooth “fil-
ter” which sets the weight between faraway data points and
source point to zero. The built graph is constructed by many
such local star-shaped patches (or subgraphs). However, both
of them need a user-specified parameter such as k or ε which
is chosen empirically. Considering the versatility and uncer-
tainty of the real-world data, a bad selection of parameter k
and ε will lead to an inaccurate conclusion for subsequent
machine learning tasks. Recently, a nonparametric graph
called L1 graph is proposed by Cheng et al. [4]. Based on
existing sparse representation frameworks [21,25], the con-
struction algorithm of L1 graph can be described as follows:
Given an input data samples X = [x1, x2, . . . , xn], where
each xi , i ∈ [1, . . . , n] is a vector that represents one single
data sample. The L1 graph of X is built by finding a sparse
coding [23] of each xi with a dictionary constructed from
all data samples except xi itself. The coefficient of sparse
coding is used as the edge weight of resulted L1-graph. The
mathematical definition of sparse coding is:

(P1) min
αi

‖αi‖1 subject to xi = Φ iαi , (1)

where dictionary Φ i = [x1, . . . , xi−1, xi+1, . . . , xn], and
αi ∈ R

n−1 is the sparse code of xi . The coefficients of αi

could be negative, depending on the choices of L1 mini-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0020-3&domain=pdf

Int J Data Sci Anal

mization solvers. To make them have the physical meaning
of “Similarity,” the absolute value or nonnegative constraints
are employed.

As we could see from the above description, the L1 graph
construction algorithm is nonparametric and the user is not
required to input any parameters except for the solver. The
construction algorithm is a pure numerical process based on
convex optimization. Cheng et al. [4] show thatL1 graph has
three advantages comparing traditional graph construction
methods. They are: (1) robustness to data noise; (2) spar-
sity; (3) datum-adaptive neighborhood. Their experimental
results also prove that L1 graph has significant performance
improvement in many machine learning applications such as
spectral clustering, subspace learning and semi-supervised
learning [4]. Nevertheless, just like each sword has double
edges, L1 graph also bears some disadvantages such as: (1)
sensitive to duplications. For example, if every data sample
has a duplication, the resulted L1 graph will only have edge
connections between the data sample and its duplication; (2)
randomness, the edge and edge weight are highly dependent
on the solver; (3) high computational cost [4]; (4) lost of the
locality [10,11,32]. To overcome these disadvantages, many
improved algorithms have been proposed in recent years.
Now, we would like to classify them into two categories:
soft-modification and hard-modification.

1. Soft-modification algorithms.Algorithms in this category
usually add one or more regularization terms to the orig-
inal L1 minimization objective function in Eq. (1). For
example, the structure sparsity [33] preserves the local
structure information of input data, the auto-grouped
sparse regularization [10] adds the group effect to thefinal
graph, and the graphLaplacian regularization [29,30] lets
the closed data samples have similar sparse coding coef-
ficients (or αi).

2. Hard-modification algorithms. These algorithms define
a new dictionary for each data sample during L1 min-
imization. By reducing the solvers’ solution space for
each data sample into a local space, the locality of input
data is preserved and the computational time of L1 min-
imization [Eq. (1)] is reduced. For example, the locality
preserved (LOP)L1 graph is utilizing k nearest neighbors
as dictionaries [11].

The soft-modification algorithms preserve the nonparamet-
ric feature and improve the quality ofL1 graph by exploiting
the intrinsic data information such as geometry structure and
group effects. However, those algorithms still have high com-
putational cost. This is unpleasant for the large-scale dataset
in this “Big-data” era. To improve, in this paper we pro-
pose a greedy algorithm to generateL1 graph. The generated
graphs are calledGreedy-L1 graphs. Our algorithm employs
greedy L1 minimization solvers and is based on nonnega-

tive orthogonal matching pursuit (NNOMP). Furthermore,
we use ranked dictionaries with reduced size K which is
a user-specified parameter. We provide the freedom to the
user to determine the ranking strategy such as nearest neigh-
bors or diffusion ranking [5]. Our algorithm has significant
time reduction about generating L1 graphs. Comparing the
original L1 graph construction method, our algorithm loses
the nonparametric characteristics and is only offering a sub-
optimal solution. However, our experimental results show
that the graph generated by our algorithm has equal (or even
better) performance as the original L1 graph by setting K
equals to the length of data sample. Our work is a natural
extension of existing L1 graph research. A concise summary
of the connection between our proposed Greedy-L1 graph
and other graphs is illustrated in Figs. 1 and 2. This paper is
an improved version of accepted conference paper [12]. We
summary the main contributions as:

1. We propose a greedy algorithm to reduce the computa-
tional time of generating L1 graph.

2. We introduce the ranked dictionary for L1 minimization
solver. This new dictionary not only reduces the time of
minimization process but also preserves the locality and
geometry structure information of input data.

3. Our algorithm removes the randomness of edges in final
L1 graph and preserves the uniqueness except for the
edge weights. Moreover, our algorithm can generate L1

graphs with lower sparsity.
4. We present experiment and analysis results by applying

our algorithm to spectral clustering application with dif-
ferent datasets. Our experimental results show that the
graphs generated by our proposed greedy algorithm have
equal clustering performance even though it is only pro-
viding a suboptimal solution.

5. We discuss the connection between L1 graph and sparse
subspace clustering and also explain the different with
locally linear embedding [19].

Fig. 1 Connection of greedyL1 graph to other graphs. Several of them
are: kNN-fused Lasso graph [33], group sparse (GS) L1 graph, kernel-
ized group sparse (KGS) L1 graph [10], Laplacian regularized (LR) L1
graph [30] and locality preserving (LOP) L1 graph [11]

123

Int J Data Sci Anal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 L1 graphs generated by different construction algorithms. From left to right: 2D toy dataset; L1 graph; Greedy-L1 graph with Euclidean
distance ranking (K = 15); Greedy-L1 graph with diffusion distance ranking (K = 15)

6. We review the recent research works related to L1 graph
such as L0 graph which has better subspace persevering
ability in theory [28] and scalable sparse subspace clus-
tering [31] for the computational challenges of large size
data.

The organization of our paper is as follows. First, an
overview of the disadvantages of originalL1 graph construc-
tion algorithm will be presented in Sect. 2. Second, we will
introduce our proposed greedy algorithm in Sect. 3. After
that, we will give a review of existing works on how to
improve the quality of L1 graph. Finally, we will present
our experimental results in Sect. 5 and draw conclusion in
Sect. 6.

2 Overview

In this section,wemake our attempts to address twoproblems
of original L1 graph construction algorithm. They are: (1)
curse of dictionary normalization and (2) nonlocal edges.

2.1 Original L1 graph construction algorithm

This section reviews the original construction algorithm of
L1 graph (1) in advance for the purpose of comparison with
our proposednewalgorithm inSect. 3. The details can be seen
as algorithm (1). As we can see from the original construc-
tion algorithm, it includes n repeat optimization steps, while
n equals to the number of data samples. Moreover, each opti-
mization step involves an over-complete dictionaryΦ i which

123

Int J Data Sci Anal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Before normalization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
After normalization

Fig. 3 Demonstration of dictionary normalization for a toy dataset. The red (bottom left) and blue (up right) points represent two different clusters.
Left before normalization; right after normalization. We can see that the neighborhood relationship is changed after normalization (color figure
online)

has size n−1. These properties label the original construction
algorithmwith “time-consuming.” Nevertheless, the original
construction algorithm also bears two other disadvantages as
we will go details in following two sections.

Algorithm 1: L1-graph [4].

Input : Data samples X = [x1, x2, . . . , xn], where xi ∈ R
d ;

Output: Adjacency matrixW.

1 Normalize each data sample xi to has unit length: ‖xi‖2 = 1;
2 for xi ∈ X do
3 �i = [x1, x2, xi−1, . . . , xi+1, xn];
4 Solve the following optimization problem:

min
αi

‖αi‖1, s.t. xi = �iαi;

5 if j <i then
6 Wi j = αi(j)
7 else if j ≥ i then
8 Wi j = αi(j − 1)
9 end

10 Wii = 0;
11 end

/* Modify W into a similarity matrix
manually. */

12 W = (|W | + |W ′ |)/2;
13 Return W.

2.2 Curse of dictionary normalization

While solving L1 minimization, the atoms of dictionary are
normalized to have unit length. The goal of this step is to
satisfy the theoretic requirement of compressive sensing. The
less-ideal part about this normalization is that it does not
preserve neighborhood information of input data. This can
be illustrated in Fig. 3. To illustrate this phenomenon, we

manually create a toy dataset in 2D and it has two clusters
visually.After normalization,we can see that the neighbors of
a node are changed. This normalization step projects all data
samples onto a unit hypersphere, and the original geometry
structure information is lost.

2.3 Nonlocal edges

During the construction of L1 graph, an over-complete dic-
tionary is created for each data sample. The original method
simply selects all other data samples as the dictionary. This
strategy affords the nonparametric property of L1 graph.
However, it also introduces nonlocal edges. In other words,
it does not preserve the locality of input data [11]. This phe-
nomenon can be illustrated in Fig. 4.

2.4 Unstable solutions caused by different L1 solvers

To solve the optimization problem (1), we need a numerical
solver. There are many popular ones with various minimiza-
tion methods [27] such asgradient projection, homotopy and
proximal gradient.Moreover, all these solvers have their own
special parameter settings. As a result, if we choose differ-
ent parameters, the numerical results will be not same, or
say, unstable. To illustrate this phenomenon, we exam the
UCI Image dataset with “spams-matlab” software [16] and
“l1_ls” software [13]. For each solver, we set the parame-
ter λ to different values as: [0.01, 0.001, 0.0001]. For the
experiment, we select the first sample of image dataset as
source sample and others as dictionary. To see the unstable
solutions, we list the top five neighbors (Index) and its corre-
sponding weights (Value). The result is shown in Table 1. As
we can see, the majority neighbors between “spams-matlab”
and “l1_ls” are same except someminor difference.However,

123

Int J Data Sci Anal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pathbased Shape dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pathbased Shape dataset, node id: 2,172,296

Fig. 4 L1-graph of path-based dataset. Left the entire graph; right edges of three selected points. We can see the existence of nonlocal edges

Table 1 The effect of unstable
solutions caused by using
different solvers or with
different parameters

Solver λ Index (value)

L1-ls 0.01 5 (0.2111), 14 (0.4449), 17 (0.2718), 38 (0.0418), 575 (0.0163)

Spams-matlab 0.01 5 (0.2632), 13 (0.0044), 14 (0.3525), 17 (0.2819)

L1-ls 0.001 5 (0.0771), 14 (0.4540), 17 (0.3005), 38 (0.0715), 575 (0.0908)

Spams-matlab 0.001 5 (0.2851), 14 (0.3676), 17 (0.3142), 38 (0.0043)

L1-ls 0.0001 14 (0.3861), 17 (0.4051), 32 (0.0292), 36 (0.0211), 575 (0.1413)

Spams-matlab 0.0001 5 (0.2621), 14 (0.4171), 17 (0.2744), 38 (0.0346), 225 (0.0068)

the weights are very different and unstable. This unstable sit-
uation is not only with different parameter λ, but also with
different solvers. This is a disadvantage for usingL1 graph as
similarity graph for graph-oriented machine learning tasks.

3 New algorithm

In this section, we introduce the concept of ranked dictio-
nary and two different ranking strategies: Euclidean distance
ranking and diffusion ranking. These different ranking meth-
ods are proposed for different types of data. For example,
diffusion ranking is suitable for data with manifold struc-
ture, and Euclidean distance is the popular choice for general
data. Obviously, there are many other distance choices such
as cosine distance could be used for ranking, and it is upon
user’s judgment for the right choice. Furthermore, we present
a greedy algorithm at the end of this section.

3.1 Ranked dictionary

We propose a “ranked dictionary” to substitute the origi-
nal dictionary �i in Eq. (1). Our claim is that the “ranked
dictionary” not only preserves the locality of data, which

is important for clustering applications, but also solves the
“curse of dictionary normalization” dilemma. The idea of
“ranked dictionary” is to rank the neighborhood information
following a given distance metric such as Euclidean distance
in vector space. By selecting the top K nearest neighbors as
dictionary, the new dictionary �i

K keeps the order of nearest
neighbors and captures the local distribution of data sam-
ples. Moreover, �i

K has smaller size comparing n−1, while
n equals to the number of data samples.

There is a subtle difference between k value of popular k
nearest neighbor (kNN) graph and the K value in our pro-
posed “ranked dictionary” �i

K . Usually, the users set the
value k of kNN graph in the order of log(n) which is the
asymptotic connectivity result [1] that makes the kNN graph
to be connected. For K value of �i

K , it needs to be larger
than d which is the dimension of vector xi . This requirement
is to let �i

K be an over-complete dictionary.
The use of truncated version of dictionary � is proved to

be success in building quality L1 graph for clustering appli-
cation [11]. However, it cannot solve the dilemma that there
might exist data samples with the same direction but dif-
ferent lengths in input data. The dictionary normalization
process will project them onto the same location at hyper-
sphere. Since they have the same values, theL1 minimization

123

Int J Data Sci Anal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

1

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 data samples

Fig. 5 Ranked dictionary. Left eight data samples have the same direction but with different lengths. Red cross is the target data sample for
calculating sparse coefficients. Right after normalization, those eight data samples have the same location (color figure online)

solver will choose one of them randomly. To avoid this ran-
domness, we need to rank those atoms (or data samples) of
dictionary (Fig. 5).
EuclideanDistance Ranking.Using Euclideanmetric to rank
atoms of dictionary is quite straightforward.We rank themby
distance. The shorter distance will have a higher rank score.
The Euclidean distance is defined as:

dist (xi , x j) = ‖xi − x j‖2 =
(

n∑
k=1

|xi (k) − x j (k)|2
)1/2

.

(2)

Diffusion Distance Ranking. As pointed out by Yang et
al. [30], many real-world datasets are similar to an intrinsic
low-dimensional manifold embedded in high-dimensional
ambient space, and the geometry structure of manifold can
be used to improve the performance of learning algorithms.
We now present a strategy to search dictionaries following
the geometry structure of input data. Based on the diffusion
theory [5,7], we rank the atoms of dictionary through dif-
fusion matrix. A diffusion process has three stages [7]: (1)
initialization; (2) definition of transition matrix; (3) defini-
tion of the diffusion process. In our setting, the first stage is
to build an affinity matrix A from the input dataset X . We
use Gaussian kernel to define the pairwise distance:

A(i, j) = exp

(
−‖xi − x j‖2

2σ 2

)
, (3)

where A(i, j) is the distance between data sample xi and
data sample x j , and σ is a normalization parameter. In our
configuration, we use the median of K nearest neighbors to
tune σ . The second stage is to define the transition matrix P :

P = D−1A, (4)

where D is a n × n degree matrix defined as

D(i, j) =
{∑n

j=1 A(i, j) if i = j,

0 otherwise.
(5)

Now the diffusion process can be defined as:

W t+1 = PW t P
′
, (6)

where W0 = A and t is the number of steps for diffusion
steps. Each row ofW t is the diffusion ranking scores. In this
paper, we let t equal to K for the sake of simplicity. Once
W t is calculated, the first K data samples with top scores of
each row are selected as dictionary. The algorithmic details
can be documented as follows:

3.2 Greedy L1 graph

To solve theL1 normminimization problem, we need an effi-
cient solver [27]. For datasets that size are larger than 3, 000
with reasonable dimensions, greedy solver like Basic Pur-
suit (BP) [3,8] or Orthogonal Matching Pursuit (OMP) [22]
is more suitable [31]. In this section, We propose a greedy
algorithm to buildL1 graph. Our proposed algorithm is based
on OMP [31] and NNOMP [2,15]. By using greedy solver,
we switch the L1 minimization problem (P1) back to the
original L0 optimization with (P2)/without (P3) nonnega-
tive constraints as:

(P2) min
αi

‖αi‖0 subject to xi = Φ iαi ,αi ≥ 0. (7)

(P3) min
αi

‖αi‖0 subject to xi = Φ iαi . (8)

123

Int J Data Sci Anal

Algorithm 2: DiffusionDictionary
Input : Data samples X = [x1, x2, . . . , xn], where xi ∈ X ;

Size of dictionary: K ;
Output: Diffusion dictionary index matrix ΦK .

1 Calculate Gaussian similarity graph A;
2 P = D−1A;
/* calculate diffusion process iteratively.

*/
3 for t = 1 : K do
4 W t = PW t−1P

′

5 end
/* sort each row in descend order. */

6 for i = 1 : n do
7 sort(W t (i, :))
8 end
/* fetch the index of highest K values in

each row of Wt */
9 for i = 1 : n do

10 Φ(i, :) =index(W t (i, 1 : k))
11 end

The main difference between our algorithm and the orig-
inal OMP and NNOMP is that the atoms of dictionary are
ranked. We force the solver to choose and assign weights to
atoms that are closer to source data sample before normal-
ization. To clarify our idea, we present the improved version
of NNOMP solver in algorithm (3). For OMP solver, the idea
and process are same.

3.3 Connection to subspace clustering

L1 graph is almost the same as the similarity graph of sparse
subspace clustering (SSC) algorithm [9]. However, they have
different assumptions about the data. TheL1 graph is defined
for general data and does not have any specific assumption
about data like k nearest neighbor graph, while the similarity
graph of SSC assumes the data are lied in a union of low-
dimensional subspaces [9].

The success of L1 graph is first applied to human face
images clustering [25,26]. Those face images data have
two sufficient conditions for the success of using L1 graph
for spectral clustering: (1) The dimension of data vector
is high. (2) Different human face images stay in different
subspaces. However, for general data, these two conditions
not always exist. By the experimental results from research
work [11], theNg, Jordan,Weiss et al. (NJW) spectral cluster-
ing algorithm [18] with Gaussian similarity graph has better
performance than with L1 graph on several general datasets.
So here, we argue that the power of L1 graph follows the
assumption of sparse subspace clustering.

3.4 Connection to locally linear embedding

The idea of “ranked dictionary” has a connection to locally
linear embedding (LLE) [19]. LLE solves the followingmin-

Algorithm 3: GreedyL1Graph.
Input : Data sample x;

Ranked dictionary ΦK ;
Residual threshold θthreshold

Output: Sparse coding α of x.

1 for i = 1 : ‖x‖1 do
2 if i == 0 then
3 Temporary solution: αi = 0;
4 Temporary residual: r i = x − ΦKαi ;
5 Temporary solution support: Si = Support{αi } = ∅;
6 else
7 for j = 1 : k do

/* φ j is the j-th atom of ΦK */

8 ε(j) = minα j≥0 ‖φ jα j − r i−1‖22 =
‖r i−1‖22 − max{φT

j r
i−1, 0}2.

9 end
10 Find j0 such that ∀ j ∈ Sc, ε(j0) ≤ ε(j), if there are

multiple j0 atoms, choose the one with smallest index
value.;

11 Update support: Si = Si−1 ∪ { j0};
12 Update solution: αi = minz ‖ΦKα − x‖22 subject to

Support{αi } = Si and α i ≥ 0;
13 Update residual: r i = x − ΦKα i ;
14 if ‖r i‖22 < θthreshold then
15 Break;
16 end
17 end
18 end
19 Return αi ;

imization problem:

ε(w) =
∑
i

|xi −
∑
j

wi jx j |2. (9)

The cost function ε(w) is the add up of the squared dis-
tance between all data samples (xi) and their reconstructions∑

j wi jx j . There are two constraints during the minimiza-
tion process: (1) The x j are selected to be k nearest neighbor
of xi , where k is a parameter set by user; (2) the row ofweight
matrix sum to one:

∑
j wi j = 1.

If we compare Eq. 9 of LLE with Eq. 1 of L1 graph and
“ranked dictionary,” we can find that both of them are find-
ing a linear representation relationship between a given data
sample and its k nearest neighbors. However, L1 graph with
“ranked dictionary” looks for a sparse reconstructionweights
and prefer to assign nonzero weights for nearest neighbors
x j that stay in the same subspace as the given data sample xi .
The second difference is the unique advantage of L1 graph.

3.5 Quality as similarity graph for spectral clustering

One major application of L1 graph is spectral clustering.
Researchers use L1 graph as the similarity graph of spec-
tral clustering algorithm by treating the sparse coefficients

123

Int J Data Sci Anal

S2

S1

L1-graph

kNN

RD

Fig. 6 The range difference of “Ranked Dictionary” (RD), “kNN” and
original “L1 graph.” The toy dataset includes two subspace S1 and S2.
The selection range of nearest neighbors is shown by dash circles

as similarity values. The similarity graph models the cluster
structure of original data with pre-defined similarity metric
and has significant impact on the performance of spec-
tral clustering algorithm. A good similarity graph should
have high weights for edges within same cluster and low
weights for edges between different clusters. However, there
is no explicit measurement of the quality of similarity graph
from theoretic research as pointed out by [24]. Instead, the
clustering performance, like Mutual Information and Accu-
racy, is used to tell whether the similarity graph is in high
quality or not implicitly. “Locality” is another guidance
to judge the quality of similarity graph [10]. “Locality”
stresses that the edges of similarity graph should connect
data points locally as nonlocal edges will affect the result
of graph cut [20] and then the performance of spectral clus-
tering [24]. In this section, we try to explain how L1 graph
with “ranked dictionary” can generate high-quality similarity
graphs.

“Ranked dictionary” preserves the locality of data by only
selecting k nearest neighbors as dictionary. For a given source
data point, “ranked dictionary” constrains the possible can-
didates that it can connect to. There is a difference between
k nearest neighbor of kNN graph and our proposed greedy
L1 graph. We show it in Fig. 6.

As we can see, greedyL1 graph selects a larger range than
kNN graph but a much smaller one than original L1 graph. It
preserves the locality of data in a “Hard-modification”way as
we introduced in the beginning of this work. And this local-
ity preserving ability has been proved in previous research
work [11].

Another important aspect of greedy L1 graph is that it
preserves the local subspaces through OMP solver. As the
theory proof in [31], if coherence between the residual vec-
tors (set of r i in line 13 of algorithm (3)) and subspaces
satisfies a data-dependent condition, the OMP solver pre-

serves the subspaces of input data. Based on this, we observe
another difference with kNN graph: The greedy L1 graph
prefers to create connections between data samples within
same subspace, while the kNN graph selects edges accord-
ing to the given distance metric.

4 Related works

Original L1 graph [4] is a pure numerical result and does
not exploit the physical and geometric information of input
data. To improve the quality of L1 graph, several research
works are proposed to use the intrinsic structure information
of data by adding one or several regularization terms to the
L1 minimization P1. For example, consider the elastic net
regularization [10], OSCAR regularization [10] and graph
Laplacian regularization [30].

Another research direction of L1 graph is to reduce its
high computational cost. Zhou et al. [33] propose a kNN-
fused Lasso graph by using the idea of k nearest neighbors in
kernel feature space.With a similar goal, Fang et al. [10] pro-
pose an algorithm which transfers the data into reproducing
kernel Hilbert space and then projects them into a lower-
dimensional subspace. By these operations, the dimension of
the dataset is reduced and the computational time is reduced.

L1 graph has strong theory connection with sparse sub-
space clustering [9]. Recently, Yingzhen et al. [28] propose
the L0 graph which try to solve the same minimization prob-
lem P3 as in this paper. They intuition is that L0 norm has
better subspace preserving ability than L1 norm. Since min-
imization L0 norm is NP-hard, there are more nonconvex
optimization challenges remained to be solved.

5 Experiments

We present our experimental results in this section. The
datasets in our experiments can be divided into small size
data and large size data. The reason for this separation is
that calculating the global optimization for L1 minimization
is time-consuming for large size data (number of instances
are larger than 3000.) For those large size data, we use an
efficient OMP solver from “spams-matlab” [16]. As a conse-
quence, the generated L1 graphs are not from optimal sparse
coding solutions.

The effectiveness of our proposed graph construction
methods is evaluated through NJW spectral clustering algo-
rithm [18]. To satisfy the input of spectral clustering algo-
rithm, we transform the adjacencymatrix ofL1 graphW into
a symmetry matrix W

′
by W

′ = (W + WT)/2. All analy-
ses and experiments are carried out by using MATLAB on a
server with Intel 12-core 3.4GHz CPU and 64GB RAM.
Solvers We use three solvers in our experiments. For small
size dataset, “l1-ls” is used for creating L1 graph, and our
proposed NNOMP solver is used for greedy L1 graph. For

123

Int J Data Sci Anal

Table 2 Statistics of small size datasets

Name #samples #attributes #clusters

BreastTissue (BT) 106 9 6

Iris 150 4 3

Wine 178 13 3

Glass 214 9 6

Soybean 307 35 19

Vehicle 846 18 4

Image 2100 19 7

large dataset, we use “spams-matlab” software [16], which is
an efficient implementation of sparse optimization by using
multi-thread techniques, to build theL1 graph and greedyL1

graph.
Evaluation metrics We evaluate the spectral clustering per-
formance with Normalized Mutual Information (NMI) and
Accuracy (ACC). NMI value ranges from 0 to 1, with higher
values meaning better clustering performance. AC is another
metric to evaluate the clustering performance by measuring
the fraction of its clustering result that is correct. Its value
also ranges from 0 to 1, and the higher the better.

5.1 Small size data

5.1.1 Datasets

To demonstrate the performance of our proposed algorithm,
we evaluate it on seven UCI benchmark datasets including
three biological datasets (BreastTissue, Iris and Soybean),
two vision image datasets (Vehicle and Image), one chem-
istry dataset (Wine) and one physical dataset (Glass), whose
statistics are summarized inTable 2.All of these datasets have
been popularly used in spectral clustering analysis research.
The diverse combinations of datasets are necessary for our
comprehensive studies.

5.1.2 Baselines and parameters setting

We compare the spectral clustering performance with
Gaussian similarity graph and original L1 graph. For exper-
iments with small size datasets, we use the l1_ls solver [14]
for original L1 graph construction algorithms. We set the
solver’s parameter λ to 0.1. The threshold θthreshold of greedy
solver 3 is set to 1e − 5. For Gaussian graph and greedy-
L1 graph, we select three different K values and document
their clustering performance results, respectively. The K is
set to be the multiple data attribute sizes. The results are
documented in Tables 3 and 4.

5.1.3 Greedy-L1 graph versus Gaussian graph

Overall, the greedy-L1 graph using Euclideanmetric has bet-
ter average spectral clustering performance than Gaussian
graphs. However, we also observe that Gaussian graph has
overall better performance on “Iris,” “Soybean” and “Vehi-
cle” datasets.

5.1.4 Greedy-L1 graph versus L1 graph

Greedy-L1 graph has better clustering performance than
L1 graph on average. However, for Iris and Soybean
datasets, the L1 graph shows the best clustering result:
Iris (NMI = 0.5943, ACC = 0.74); Soybean (NMI =
0.7373, ACC = 0.6156). The best result of greedy-L1 graph
is: Iris (NMI = 0.5106, ACC = 0.72); Soybean (NMI =
0.6919, ACC = 0.5244).

5.1.5 Euclidean distance ranking versus diffusion ranking

The Euclidean distance ranking appears to have better clus-
tering performance than that of diffusion ranking in general.
This is rather a surprising result to us. Only for “Iris” dataset,

Table 3 NMI comparison of graph construction algorithms

Name L1 graph Gaussian graph Greedy-L1 graph (Euclidean) Greedy-L1 graph (diffusion)

K =1×M K =2×M K =3×M K =1×M K =2×M K =3×M

BT 0.4582 0.4606 0.5473 0.4517 0.5024 0.4197 0.4073 0.3839

Iris 0.5943 0.7364 0.3950 0.4623 0.4070 0.5106 0.4626 0.4640

Wine 0.7717 0.8002 0.8943 0.9072 0.8566 0.6925 0.4291 0.6093

Glass 0.3581 0.2997 0.2569 0.3688 0.3039 0.2991 0.3056 0.2918

Soybean 0.7373 0.6958 0.6919 0.6833 0.6775 0.5788 0.5493 0.5432

Vehicle 0.1044 0.1870 0.1512 0.2121 0.2067 0.1438 0.1035 0.1244

Image 0.4969 0.4652 0.5821 0.6673 0.6649 0.4866 0.4483 0.3155

Average 0.5030 0.5207 0.5170 0.5361 0.5170 0.4473 0.3865 0.3903

M is the number of attributes
Bold value indicates the best performance

123

Int J Data Sci Anal

Table 4 ACC comparison of different graph construction algorithms

Name L1 graph Gaussian graph Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)

K = 1×M K = 2×M K = 3×M K = 1×M K = 2×M K = 3×M

BT 0.5472 0.5377 0.6698 0.4811 0.5943 0.4528 0.4906 0.4717

Iris 0.7400 0.8867 0.6933 0.7200 0.6800 0.7200 0.6533 0.6400

Wine 0.9326 0.9438 0.9719 0.9719 0.9551 0.8989 0.7865 0.8596

Glass 0.4206 0.4112 0.4579 0.4533 0.4346 0.4626 0.4813 0.5187

Soybean 0.6156 0.5440 0.5244 0.4853 0.5016 0.4430 0.3746 0.4876

Vehicle 0.3713 0.4515 0.4539 0.4243 0.4090 0.3664 0.3522 0.3605

Image 0.5629 0.4595 0.6348 0.7181 0.7043 0.5190 0.5524 0.3505

Average 0.6105 0.6049 0.6227 0.6288 0.6141 0.5683 0.5334 0.5362

M is the number of attributes
Bold value indicates the best performance

Fig. 7 Running time of different L1 graph construction algorithms.
Top original L1 graph construction algorithm. Bottom the construction
of L1 graph using greedy solver

the result of diffusion ranking is better than that of Euclidean
distance ranking.

5.1.6 Running time

We report the running time of generating L1 graphs using
different construction algorithms. As we can see from Fig. 7,
the greedy-L1 graphs have consumed significantly less con-
struction time than that in original L1 graphs.

5.1.7 Graph sparsity

We check the sparsity of graphs by calculating the edge den-
sity:

Sparsity(G) = |E |
|V | ∗ (|V | − 1)

. (10)

The results are reported in Table 5. We can see that greedy-
L1 graphs with diffusion distance ranking are more sparse
than that with Euclidean distance ranking.

5.2 Large size data and multiple classes data

In this section, we present the experimental results of three
large datasets. To keep the integrity of our experiments, two
multiple classes data are also examined.

5.2.1 Datasets

We select following datasets for our experiments. Three
large size datasets are: first 2k testing images of MNIST
(MNIST4K), COIL 100 objects database (COIL100) and
USPS handwritten digit database (USPS). Two multiple
classes datasets are: isolet spoken letter recognition dataset
(ISOLET), extended Yale face database B (YaleB). The sta-
tistics of selected datasets can be described in Table 6.

5.2.2 Spectral clustering performance

The spectral clustering performance is shown in Tables 7
and 8. As we can see, Gaussian graphs have overall better
performance than different L1 graphs. For the performance
between original L1 graph (with OMP greedy solver) and
greedy L1 graphs, the greedy version is better.

123

Int J Data Sci Anal

Table 5 Graph sparsity comparison of different graph construction algorithms

Name L1 graph Gaussian graph Greedy-L1 graph (Euclidean) Greedy-L1 graph (diffusion)

K = 1×M K = 2×M K = 3×M K = 1×M K = 2×M K = 3×M

BT 0.0604 1 0.0457 0.0615 0.0705 0.0341 0.0442 0.0548

Iris 0.0403 1 0.0217 0.0288 0.0311 0.0203 0.0237 0.0265

Wine 0.0600 1 0.0413 0.0496 0.0552 0.0347 0.0409 0.0437

Glass 0.0369 1 0.0242 0.0308 0.0349 0.0188 0.0204 0.0239

Soybean 0.030 1 0.0286 0.0317 0.0346 0.0258 0.0299 0.034

Vehicle 0.0135 1 0.0104 0.0124 0.0135 0.0062 0.0074 0.0084

Image 0.0039 1 0.0034 0.004 0.0044 0.0026 0.0029 0.0027

M is the number of attributes

Table 6 The statistics of three large datasets and two multiple classes
datasets

Name #samples #attributes #clusters

ISOLET 1560 617 25

YaleB 2414 1024 38

MNIST4K 4000 784 9

COIL100 7200 1024 100

USPS 9298 256 10

5.2.3 Graph sparsity

We also check the sparsity of different similarity graphs. The
result in Table 9 shows that greedy L1 graphs with diffu-
sion ranking are more denser than other L1 graphs. And the
ordinary L1 graph (OMP) has the lowest sparsity.

It is known that the sparsity of graph will affect the per-
formance of graph cut and then to spectral clustering. And
the spectral clustering performance will drop if the sparsity
is lower than a threshold [17]. Since L1 graph is a sparse
graph in nature, we want to know the correlation between
the sparsity and clustering performance. To evaluate this, we
choose the “USPS” dataset and generating graphs with dif-

ferent sparsity by setting the reconstruction approximation
error bound to different thresholds. They are: [0.1, 0.05, 0.01,
0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001]. For the size
of “ranked dictionary,” we choose size to 2M which is 512.
The trend of spectral clustering performance with different
sparsity can be shown as the left subplot of Fig. 8. We can
see that when the sparsity value is lower than 0.0072 , the
spectral clustering performance drops catastrophically. The
relationship between the approximation error and the graph
sparsity is presented at the right side of Fig. 8. By reading
from the curve, we know that the approximation error and
sparsity have a negative relationship. To maintain the greedy
L1 as dense as possible, we need to set a lower bound of
approximation error.

5.2.4 Running time

We also record the running time of building different simi-
larity graphs. From Table 10, we see that the running time
increases, while the data size becomes larger. However, the
“USPS” has lesser running time than “COIL100” even its
data size is bigger. The reason is that “USPS” has smaller
number of features than “COIL100” and this causes the L1

solver to needmore computation time for finding sparse solu-
tions.

Table 7 NMI results of spectral clustering with different similarity graphs

Name L1 (OMP) Gaussian Greedy-L1 graph (Euclidean) Greedy-L1 graph (diffusion)

K = 1×M K = 2×M K = 3×M K = 1×M K = 2×M K = 3×M

ISOLET 0.2571 0.7821 0.5501 0.4202 NA 0.1903 0.2993 NA

YaleB 0.2349 0.4219 0.2493 0.2895 NA 0.2003 0.4408 NA

MNIST4K 0.2503 0.4426 0.2679 0.1850 0.2438 0.0737 0.0333 0.0575

COIL100 0.3556 0.7726 0.7072 0.6533 0.6283 0.4044 0.4166 0.4788

USPS 0.1585 0.6580 0.6608 0.6571 0.6488 0.0360 0.0621 0.0399

Average 0.2513 0.5457 0.4713 0.4462 0.5070 0.1809 0.2504 0.1921

M is the number of attributes
Bold value indicates the best performance

123

Int J Data Sci Anal

Table 8 ACC results of spectral clustering with different similarity graphs

NAME L1 (OMP) Gaussian Greedy-L1 graph (Euclidean) Greedy-L1 graph (diffusion)

K = 1×M K = 2×M K = 3×M K = 1×M K = 2×M K = 3×M

ISOLET 0.2038 0.6974 0.4205 0.3327 NA 0.1705 0.2558 NA

YaleB 0.1533 0.2618 0.2067 0.2606 NA 0.1831 0.4321 NA

MNIST4K 0.2787 0.5302 0.3900 0.2755 0.3538 0.1847 0.1685 0.1845

COIL100 0.1192 0.5201 0.4746 0.4368 0.4012 0.2381 0.2326 0.2778

USPS 0.2122 0.7018 0.6723 0.6740 0.6950 0.1590 0.1778 0.1663

Average 0.1934 0.5423 0.4328 0.3959 0.4833 0.1871 0.2534 0.2095

M is the number of attributes
Bold value indicates the best performance

Table 9 Graph sparsity results of different similarity graphs

Name L1 (OMP) Gaussian Greedy-L1 graph (Euclidean) Greedy-L1 graph (diffusion)

K = 1×M K = 2×M K = 3×M K = 1×M K = 2×M K = 3×M

ISOLET 0.0010 1 0.3304 0.2679 NA 0.4288 0.2804 NA

YaleB 0.0019 1 0.1968 0.1713 NA 0.3797 0.1952 NA

MNIST4K 0.0043 1 0.1022 0.0954 0.0929 0.1470 0.1267 0.1076

COIL100 0.0002 1 0.0786 0.0620 0.0574 0.1887 0.1198 0.0929

USPS 0.0003 1 0.0076 0.0072 0.0071 0.0246 0.0225 0.0214

M is the number of attributes

Sparsity

0.
00

03

0.
00

06

0.
00

21

0.
00

32

0.
00

72

0.
00

94

0.
01

50

0.
01

74

0.
02

23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
USPS

NMI
ACC

Approximation error

0
0.

02
0.

04
0.

06
0.

08 0.
1

S
pa

rs
ity

0

0.005

0.01

0.015

0.02

0.025
USPS

Fig. 8 The impact of graph sparsity to spectral clustering performance. Left graph sparsity versus NMI and ACC. Right L1 solver approximation
error versus graph sparsity

Table 10 Running time of different similarity graphs

Name L1 (OMP) Gaussian Greedy-L1 graph (Euclidean) Greedy-L1 graph (diffusion)

K = 1×M K = 2×M K = 3×M K = 1×M K = 2×M K = 3×M

ISOLET 243.9 1.1 202.5 310.6 NA 263.0 327.7 NA

YaleB 836.1 4.3 758.7 1187.6 NA 1097.9 1197.7 NA

MNIST4K 1435.8 9.8 814.8 1048.5 1341.9 848.9 1158.4 1412.7

COIL100 5541.3 36.1 2379.7 3225.0 5447.8 4108.5 5091.8 7475.3

USPS 2499.5 16.4 93.2 123.1 174.1 221.1 259.5 323.1

M is the number of attributes

123

Int J Data Sci Anal

6 Conclusion

In this paper, we have designed a greedy algorithm to con-
struct L1 graph. Moreover, we introduced the concept of
“ranked dictionary,” which not only preserves the locality
but also solves the curse of normalization. Moreover, it can
construct L1 graph efficiently for large size data (#instances
≥3000.) Except for the Euclidean metric and diffusion met-
ric that have been discussed in this paper, the user can choose
other rankingmethods such asmanifold ranking that could be
more appropriate for specific dataset in real applications. Our
greedy algorithm can generate sparse L1 graph faster than
the original L1 graph construction algorithm, and the result-
ing graphs have better clustering performance on average
than original L1 graph. Nevertheless, our algorithm could be
generalized in a straightforward way by introducing regular-
ization terms such as elastic net into the current solver, which
would indicate the quality of generated L1 graphs could be
further improved.

Acknowledgments This research is supported in part by NSF (IIS-
0949467, IIS-1047715 and IIS-1049448) and NSFC (61532002,
61190120, 61190125, 61190124). We thank the anonymous reviewers
for their constructive critiques.

References

1. Brito, M., Chavez, E., Quiroz, A., Yukich, J.: Connectivity of the
mutual k-nearest-neighbor graph in clustering andoutlier detection.
Stat. Probab. Lett. 35(1), 33–42 (1997)

2. Bruckstein, A.M., Elad, M., Zibulevsky, M.: On the uniqueness of
nonnegative sparse solutions to underdetermined systems of equa-
tions. IEEE Trans. Inf. Theory 54(11), 4813–4820 (2008)

3. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition
by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

4. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.S.: Learning with-
graph for image analysis. IEEE Trans. Image Process. 19(4), 858–
866 (2010)

5. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Har-
monic Anal. 21(1), 5–30 (2006)

6. Correa, C.D., Lindstrom, P.: Locally-scaled spectral clustering
using empty region graphs. In: Proceedings of the 18th ACM
SIGKDD international conference on Knowledge Discovery and
Data mining, pp. 1330–1338. ACM (2012)

7. Donoser, M., Bischof, H.: Diffusion processes for retrieval revis-
ited. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1320–1327. IEEE (2013)

8. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp.
2790–2797. IEEE (2009)

9. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm,
theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell.
35(11), 2765–2781 (2013)

10. Fang, Y., Wang, R., Dai, B., Wu, X.: Graph-based learning via
auto-grouped sparse regularization and kernelized extension. IEEE
Trans. Knowl. Data Eng. 27(1), 142–154 (2015)

11. Han, S., Huang, H., Qin, H., Yu, D.: Locality-preserving l1-graph
and its application in clustering. In: Proceedings of the 30thAnnual

ACM Symposium on Applied Computing, pp. 813–818. ACM
(2015)

12. Han, S., Qin, H.: A greedy algorithm to construct l1 graph with
ranked dictionary. In: Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pp. 309–321. Springer (2016)

13. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An
interior-point method for large-scale l 1-regularized least squares.
IEEE J Sel. Top. Signal Process. 1(4), 606–617 (2007)

14. Koh, K., Kim, S.J., Boyd, S.P.: An interior-point method for large-
scale l1-regularized logistic regression. J. Mach. Learn. Res. 8(8),
1519–1555 (2007)

15. Lin, T.H., Kung, H.: Stable and efficient representation learn-
ing with nonnegativity constraints. In: Proceedings of the 31st
International Conference on Machine Learning (ICML-14), pp.
1323–1331 (2014)

16. Mairal, J., Bach, F., Ponce, J., Sapiro,G.: Online learning formatrix
factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60
(2010)

17. Nadakuditi, R.R.,Newman,M.E.:Graph spectra and the detectabil-
ity of community structure in networks. Phys. Rev. Lett. 108(18),
188,701 (2012)

18. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering:
analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2, 849–
856 (2002)

19. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by
locally linear embedding. Science 290(5500), 2323–2326 (2000)

20. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

21. Tibshirani, R.: Regression shrinkage and selection via the lasso. J.
R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

22. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measure-
ments via orthogonal matching pursuit. Inf. Theory, IEEE Trans.
53(12), 4655–4666 (2007)

23. Tropp, J.A., Wright, S.J.: Computational methods for sparse solu-
tion of linear inverse problems. Proc. IEEE 98(6), 948–958 (2010)

24. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput.
17(4), 395–416 (2007)

25. Wright, J., Yang,A.Y., Ganesh,A., Sastry, S.S.,Ma,Y.: Robust face
recognition via sparse representation. IEEE Trans. Pattern Anal.
Mach. Intell. 31(2), 210–227 (2009)

26. Yan, S., Wang, H.: Semi-supervised learning by sparse repre-
sentation. In: Society for Industrial and Applied Mathematics.
Proceedings of the SIAM International Conference on Data Min-
ing, p. 792. Society for Industrial and AppliedMathematics (2009)

27. Yang, A.Y., Sastry, S.S., Ganesh, A., Ma, Y.: Fast l1-minimization
algorithms and an application in robust face recognition: a review.
In: 2010 17th IEEE International Conference on Image Processing
(ICIP)., pp. 1849–1852. IEEE (2010)

28. Yang, Y., Feng, J., Yang, J., Huang, T.S.: Learning l1-graph for data
clustering. CoRR (2015). arxiv:1510.08520

29. Yang, Y., Wang, Z., Yang, J., Han, J., Huang, T.: Regularized l1-
graph for data clustering. In: Proceedings of the British Machine
Vision Conference. BMVA Press (2014)

30. Yang, Y., Wang, Z., Yang, J., Wang, J., Chang, S., Huang, T.S.:
Data clustering by laplacian regularized l1-graph. In: Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
pp. 3148–3149 (2014)

31. You, C., Robinson, D., Vidal, R.: Scalable sparse subspace clus-
tering by orthogonal matching pursuit. In: IEEE Conference on
Computer Vision and Pattern Recognition, vol. 1 (2016)

32. Zhang, Y.M., Huang, K., Hou, X., Liu, C.L.: Learning locality
preserving graph from data. IEEE Trans. Cybern. 44(11), 2088–
2098 (2014)

33. Zhou, G., Lu, Z., Peng, Y.: L1-graph construction using structured
sparsity. Neurocomputing 120, 441–452 (2013)

123

http://arxiv.org/abs/1510.08520

	A greedy algorithm to construct sparse graph by using ranked dictionary
	Abstract
	1 Introduction
	2 Overview
	2.1 Original mathcalL1 graph construction algorithm
	2.2 Curse of dictionary normalization
	2.3 Nonlocal edges
	2.4 Unstable solutions caused by different mathcalL1 solvers

	3 New algorithm
	3.1 Ranked dictionary
	3.2 Greedy mathcalL1 graph
	3.3 Connection to subspace clustering
	3.4 Connection to locally linear embedding
	3.5 Quality as similarity graph for spectral clustering

	4 Related works
	5 Experiments
	5.1 Small size data
	5.1.1 Datasets
	5.1.2 Baselines and parameters setting
	5.1.3 Greedy-mathcalL1 graph versus Gaussian graph
	5.1.4 Greedy-mathcalL1 graph versus mathcalL1 graph
	5.1.5 Euclidean distance ranking versus diffusion ranking
	5.1.6 Running time
	5.1.7 Graph sparsity

	5.2 Large size data and multiple classes data
	5.2.1 Datasets
	5.2.2 Spectral clustering performance
	5.2.3 Graph sparsity
	5.2.4 Running time

	6 Conclusion
	Acknowledgments
	References

