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Abstract
This paper advocates a novel method for modelling physically realistic flow from captured incompressible gas sequence via
modal analysis in frequency-constrained subspace. Our analytical tool is uniquely founded upon empirical mode decomposition
(EMD) and modal reduction for fluids, which are seamlessly integrated towards a powerful, style-controllable flow modelling
approach. We first extend EMD, which is capable of processing 1D time series but has shown inadequacies for 3D graphics
earlier, to fit gas flows in 3D. Next, frequency components from EMD are adopted as candidate vectors for bases of modal
reduction. The prerequisite parameters of the Navier–Stokes equations are then optimized to inversely model the physically
realistic flow in the frequency-constrained subspace. The estimated parameters can be utilized for re-simulation, or be altered
toward fluid editing. Our novel inverse-modelling technique produces real-time gas sequences after precomputation, and is
convenient to couple with other methods for visual enhancement and/or special visual effects. We integrate our new modelling
tool with a state-of-the-art fluid capturing approach, forming a complete pipeline from real-world fluid to flow re-simulation and
editing for various graphics applications.

Keywords: model reduction, EMD, parameter estimation
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1. Introduction

Since early 1990s, various gas/fluid simulation methods for
graphics and animation have been developed, and the majority of
existing techniques are founded upon solving the incompressible
Navier–Stokes equations or their possible variants. Along with
the rapid advancement in graphics, computational fluid dynamics
and relevant engineering disciplines, tremendous fluid-capture
methods have been proposed in recent years, such as particle image
velocimetry (e.g. Tomo-PIV [ESWVO06]), time-resolved Schlieren
system [AIH*08], surface modelling [DLJY11, YJLY12], optical-
flow-based methods [LS08, GKHH12], etc. Strongly inspired by
the most recent works [WLZ*09, LPS*13, GIT*14] attempting to
bridge the gap between simulation and capturing, in this paper, we
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propose to seek novel strategies to further integrate captured data
and generated flow sequences.

Our inverse-modelling technique aims at generating gas se-
quences that best match the existing/captured flows by simulation.
Different from previous works on fluid capturing [GIT*14] and
guiding control [NCZ*09], we fulfil it by infering the prerequisite
parameters of the flows according to the incompressible Navier–
Stokes equations, so the flows can be naturally reproduced and
edited through simulation without any prior knowledge on those
parameters.

A pipeline of our technique can be found in Figure 2. This
pipeline and our work are based on previous works [GKHH12,
GIT*14], and the parameters estimation step is the core of our work,
providing the ability of physical re-simulation and editing. Given
that the effect of viscosity and that of external forces are hard to
differentiate, we model the flows by an optimization process to best
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Figure 1: Results on a simulated ‘ejection’ dataset. (a) The existing flow. (b) Sample empirical mode decomposition (EMD) bases in different
frequency scales for modal reduction (mapped to HSV colour space for visualization). (c) Resimulation of the flow from physical inverse
modelling. (d) Flow edited in subspace by adding a torus boundary. (e) Flow edited in the original space by applying a complex boundary.
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Figure 2: The pipeline from real-world flows to fluid simulation/editing.

fit the formula. The parameters estimation is conducted in subspace
for acceleration. Flows after this step can be physically modified
towards desired behaviours through multiple approaches, for
instance, various driving forces, thickened air, varied boundaries,
etc. More complex modifications, e.g. non-linearities like vorticity
confinement, can be implemented in the original space to combat
the limited degree of freedom in subspace.

Traditionally, the subspace of flow fields is constructed by
principal component analysis (PCA) bases [TLP06], which are far
less meaningful in frequency domain and may have inter-frequency
energy mixing in some circumstances. Instead, we seek new bases
via EMD [HSL*98], which separates flows into frequency bands to
better capture the intrinsic features. The original EMD algorithm is
proposed for 1D time series and 2D signal processing [HS05], and
proves ideal for handling non-stationary and non-linear signals.
However, the usage of EMD in fluid area is far from being adequate,
since previous techniques only serialize the 3D flow field with
space-filling curves [GLRH13, RLL*13]. We leverage thin-plate
spline (TPS) in 3D interpolation and apply TPS-based 3D EMD to
better expose the intrinsic features of fluid flows.

Most fluid capturing methods that provide velocity fields of the
flows, such as optical-flow-based methods, are compatible with
our technique. We integrate our tool with a state-of-the-art fluid
capturing method from Gregson et al. [GKHH12, GIT*14]. The
real-world fluid is captured with stochastic tomography [GKHH12],
then the velocity fields are reconstructed by the fluid tracking
algorithm [GIT*14]. We analyse the velocity fields with our
proposed technique to acquire re-simulated sequences, forming a
complete pipeline from real-world fluid to flow re-simulation and
flow editing for various graphics applications, see Figure 2. These
lead to the main contributions of this paper:

(1) We apply TPS-based 3D EMD algorithm for fluid analysis. The
new algorithm leverages TPS for 3D interpolation, and takes into
account the fluid-dynamical constraints, i.e. zero divergence and
free-slip boundary conditions.

(2) We improve previous PCA-based model reduction on fluid flows
by applying EMD and deliberately choosing modes from mul-
tiple frequency domains, which better exposes the intrinsic fea-
tures through all frequencies.
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(3) We devise an analytical tool based on EMD and modal reduc-
tion, capable of inversely modelling gas sequences and applying
physical editing on existing flows. We further integrate it with a
state-of-the-art fluid capturing method to bond the fluid simula-
tion in graphics with real-world flows.

2. Related Work

Our work is closely relevant to fluid simulation, flow editing, fluid
capturing, modal reduction and empirical mode decomposition
(EMD). We briefly review them in the following categories.

Fluid simulation aims at calculating the flow motion by
solving the incompressible Navier–Stokes equations. The grid-
based fluid solver was first brought into graphics by Foster and
Metaxas [FM96], and continued to retain its popularity with the
unconditionally stable solver [Sta99]. Since then many techniques
have been proposed to eliminate the numerical dissipation and to
enrich the details [FSJ01, ZB05, KLLR05, SFK*08, YKH*09]. So
far, even though simulators can produce astonishing visual results, it
is still challenging to mimic real-world fluid motion merely by sim-
ulation due to the limitations on resolution, boundary condition and
numerical issues. In this paper, we inversely model existing flows
and try to provide sequences by simulation that best match them.

Flow editing on Navier–Stokes-based simulation was first
proposed by Foster and Metaxas [FM97]. Keyframe control was
then introduced on smoke simulation [TMPS03], and boosted by
McNamara et al. [MTPS04]. Fattal and Lischinski [FL04] and Shi
and Yu [SY05] used target shapes to guide smoke, while Rasmussen
et al. [REN*04] applied soft or hard control over liquids by intro-
ducing particles. Thurey et al. [TKPR09] achieved fluid guiding
in smoothed particle hydrodynamics (SPH) and lattice boltzmann
method (LBM). Other techniques apply fluid control to produce
finer results out of a coarse guidance. Nielsen et al. [NCZ*09]
proposed an optimization scheme to ensure the consistency between
a high-resolution smoke simulation and a low-resolution velocity
field. Yuan et al. [YCZ11] yielded high-resolution smoke animation
following the low-resolution version by Lagrangian coherent
structure, and Nielsen et al. [NB11] guided high-resolution liquid
simulation by its low-resolution version. We present a distinct
physics-based editing method in this paper by inversely modelling
the flows and changing their physical parameters.

Fluid capturing has gained abundant attention in graphics
recently. Capture measurements roughly include surface mod-
elling [DLJY11, YJLY12], density estimation [AIH*08, GKHH12]
and velocimetry [ESWVO06, LS08]. Recent researches exhibit
a trend of applying physical constraints or guidance rather than
purely relying on capturing methods. Wang et al. [WLZ*09]
utilized physically based surface optimization to reconstruct water
surface from videos, while Li et al. [LPS*13] acquired water
surface from a single viewpoint through shallow water model. Most
lately, Gregson et al. [GIT*14] presented a proximal optimization
framework that related the captured density data to corresponding
velocity fields. Inspired by their work, we propose a novel method
aiming at inverse modelling from existing velocity fields to the
simulation progress that produces them, which can also be regarded

as an analytical measurement capable of reusing the intrinsic
properties carried by the flow.

Modal reduction has widely been used in graphics, including non-
linear deformation [JF03] and finite element method [BJ05]. Treuille
et al. [TLP06] first introduced model reduction with PCA bases to
fluid simulation and generated real-time flows. Subsequently, Wicke
et al. [WST09] generalized this technique to modular tiles to fit more
complicated scenes. DeWitt et al. [DWLF12] replaced PCA eigen-
vectors with Laplacian eigenfunctions which are suitable for arbi-
trary flows. Kim and Delaney [KD13] proposed cubature approach
to support semi-Lagrangian advection and other non-linearities.
The inverse modelling step in this paper requires huge computation;
hence, we adopt model reduction technique for acceleration.

EMD was first introduced by Huang et al. [HSL*98] for tem-
poral signal processing. Its data-dependent nature is ideal for
analysing non-stationary data. In graphics and image processing
researchers have extended EMD to handle 2D or 3D signals. Lin-
derhed [Lin11] presented a 2D EMD method to compress images.
Wang et al. [WHZQ15] applied EMD for 3D geometry processing.
The difficulty of applying EMD on multi-dimensional data lies in
constructing the envelopes. Wu et al. [WHC11] proposed multi-
dimensional ensemble EMD that partitioned data into 1D slices
for decomposition. To interpolate the exact envelopes, Damerval
et al. [DMP05] used Delaunay triangulation and piecewise cubic
polynomial interpolation, Xu et al. [XLLR06] presented a mesh
fitting method and Linderhed [Lin11, Lin09] made comparisons
on existing solutions and suggested using TPS for smooth result
with continuous second derivative. Rehman and Mandic [RM10]
even extended EMD to process vector values by projections on
hyperspheres. Recently, EMD has been adapted into fluid simula-
tion [GLRH13] and modulation [RLL*13]. Their sifting operations
are achieved by serializing 3D data to 1D with a space-filling curve,
and then using 1D EMD algorithm. However, this method loses con-
nectivity information in 3D, resulting in spurious noises. In this pa-
per, we apply a full 3D EMD variant that can eliminate such deterio-
ration, and hence is much more appropriate for flow field. We further
use the resulting components as candidate bases in model reduction.

3. Empirical Mode Decomposition on Flows

EMD, originally designed for analysing time-varying signals in
1D [HSL*98], needs to be extended to 3D and requires other mod-
ifications for processing flow fields. We briefly review the standard
EMD method in Section 3.1, Section 3.2 explains the strategy to
apply EMD to 3D signals on Eulerian grids and Section 3.3 dis-
cusses the EMD method further extended to process 3D flow fields.
The modified EMD algorithm for 3D flows is listed in Algorithm 1.

3.1. Conventional EMD

The functionality of EMD is to decompose a signal x(t) into a finite
number of intrinsic mode functions (IMFs) ci, i = 1, 2, . . . , q

and a residue rq , which characterize the features of the signal on
different scales:

x(t) =
q∑

i=1

ci + rq . (1)
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Conceptually, the IMFs and the residue can be consid-
ered as the counter-part of ‘frequency components’ in other
decomposition methods. However, in comparison with traditional
Fourier and wavelet analysis, their frequencies are not pre-defined
but data-dependent, and they can offer spatially-varying ‘in-
stantaneous frequencies’. This self-adaptive nature provides the
suitability for handling highly non-stationary and non-linear
signals [HSL*98, WHC11]. The EMD algorithm that extracts IMFs
through ‘sifting’ is documented in [HSL*98]. In each iteration,
an IMF representing features with higher frequency ranges is
extracted, leaving the lower frequency part as residue or input of
the subsequent iterations. Thus, IMFs are arranged spontaneously
in the order of their frequency ranges.

3.2. EMD on 3D data

The original EMD method is powerful to deal with scalar data
defined in 1D space, but needs modifications to fit the velocity fields
of flows, three-component vector signals in 3D space. Although
vector signals can be processed by multi-variate EMD [RM10], the
overhead makes it infeasible since Eulerian grids for gas simulation
usually contain millions of cells. Recall that in traditional fluid
solvers, three components of the velocity fields are often treated
as individual channels and handled respectively. Likewise, we also
carry out the sifting procedure on each scalar component, and
similar solution of applying EMD on vector fields can be found
in [GLRH13] and [RLL*13]. Experiments demonstrate that the
results are still adequate with this simplification.

Now we explain EMD for 3D signals. Since we are only con-
cerned with discrete 3D signals, the extrema points are simply ex-
tracted by comparing the candidate data point with its nearest 26-
connected neighbours. The challenge lies in fitting a space to the 3D
scattered data points representing the extrema points (line 8 in Algo-
rithm 1). In image processing, Linderhed [Lin11, Lin09] compared
existing solutions, including directional EMD, triangle-based cubic
spline interpolation and TPS interpolation, and suggested using TPS
interpolation for smooth result with continuous second derivative.
Conceptually, TPS is the generalization of the natural cubic splines
in 1D. The construction is based on choosing a function f (x) that ex-
actly interpolates the data points and minimizes the bending energy,

E[f ] =
∫

Rn

‖D2f ‖2dx, (2)

where D2f is the matrix of second-order partial derivatives of f

and ‖ · ‖2 is the sum of squares of the matrix entries. The implemen-
tation details of TPS can be found in [Ebe02]. Given that the huge
computational costs prevent previous works from using TPS inter-
polation, we resort to CUDA for acceleration and obtain acceptable
efficiency.

The boundary constraints are more important in 3D than in
1D/2D cases. The extrema points are very sparse and since
the interpolation methods only interpolate between points, the
boundary needs special care. Similar to Linderhed [Lin11], we add
extra data points to the set of extrema points (line 7 in Algorithm 1).
The extra points are placed at the corners and some additional
points at the boundary equally spaced between the corners. We

Figure 3: EMD methods comparison at the 29th frame of the cap-
tured ‘bloom’ dataset. (a) is the original flow field, (b) is the result
from 1D EMD with Hilbert space-filling curve and (c) is the result of
our 3D EMD. For visualization, the 3D vectors are mapped to HSV
colour space, and the central slice of the 3D domain is displayed.
Our 3D EMD succeeds in extracting high-consistency, low-noisy
frequency features, while the original method lacks global topology
and induces spurious noises.

place extra points at large blank spaces which lack control points
as well, since regions without extremum implies monotonicity,
which should be excluded from any IMFs and characterized as
residue. Without these extra points, the spaces not covered by the
interpolation yield bad results in the sifting process.

Algorithm 1: 3D EMD algorithm for flow fields.

1 Init: u(t) is the x-,y- or z-component of the velocity;
2 r0 ← u(t), i ← 1;

3 for the ith IMF ci do
4 h0 ← ri−1, k ← 1;
5 while true do
6 Find local extrema points of hk−1;
7 Insert extra local extrema points;
8 Get upper and lower envelopes of hk−1

Emax,k−1, Emin,k−1 by 3D TPS interpolation;
9 Enforce Emax,k−1 and Emin,k−1 to satisfy the

free-slip boundary condition;

10 Emean,k−1 ← 1
2 (Emax,k−1 +Emin,k−1);

11 hk ← hk−1 −Emean,k−1;
12 if the IMF stopping criterion is satisfied then
13 ci ← hk;
14 break;

15 else
16 k ← k +1;

17 Project ci to its divergence-free component c̄i;
18 ri ← ri−1 − c̄i;
19 i ← i+1;

Our method has the advantage of being fully 3D, which retains
the global topology in the original signal. A comparison between
our method and previous EMD technique on flows [GLRH13,
RLL*13] can be seen in Figure 3. The method we compare against
is implemented by first serializing the 3D signals with Hilbert
space-filling curve and then applying 1D EMD algorithm. We
confine each method to only compute two IMFs and the rest

c© 2016 The Authors
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velocity is directly treated as residue. As shown in the comparison,
our method manages to arrange properties in different frequency
bands to their relevant frequency components, and generate
high-consistency, low-noisy results, which is superior to previous
technique mainly because of the global topology it retains.

3.3. Flow field mode decomposition

Making use of the 3D EMD method, the velocity field u can be
decomposed as

u =
q∑

i=1

ui + ur , (3)

where ui , i = 1, 2, . . . , q are the IMFs carrying flow features from
local to global scales, and ur is the residue after those IMFs have
been extracted.

Nevertheless, to better fit fluid applications, especially the down-
stream modal reduction, we have to make a little bit more modifi-
cation on the EMD pipeline. Treuille et al. [TLP06] specified that
the velocity fields used to generate bases should meet two impor-
tant properties: being free of divergence and satisfying the free-slip
boundary condition. We fulfil these requirements by restricting the
envelopes to the free-slip boundary condition (line 9 in Algorithm 1)
and the pre-sifted IMFs divergence-free (line 17 in Algorithm 1).
The free-slip boundary condition is fulfilled by setting the veloc-
ity of cells outside the boundary so that the normal velocity at the
exact boundary equals zero, while the tangential velocity is left un-
changed, and the divergence-free IMFs are obtained by pressure pro-
jection as the traditional Eulerian fluid solvers do. Since the input ve-
locity fields satisfy these properties, the final residues should also do.

The IMF stopping criterion we adopt is the criterion suggested
in [HSL*98], which sets an upper threshold σmax of the standard
deviation between two consecutive sifting procedures and a
maximum number of iterations kmax. During the EMD step, we do
not repeatedly carry out the algorithm to the very end, because after
several sifting processes, the flow field is already smooth enough
as a total low frequency signal and further decomposition becomes
dispensable. Instead, the number of IMFs q is fixed to a constant,
and the residue signal after q sifting processes is directly saved in
ur . In all experiments of this paper, we set q = 2 unless otherwise
specified, so each velocity field ui will have three frequency
components (ulow

i , umid
i , and uhigh

i ) after EMD step.

4. Physical Inverse Modelling on Flows

The EMD method introduced in Section 3 is a powerful tool
that separates flow fields into various frequency components,
which hereinafter refer to the outcome of EMD including IMFs
and residues. In this section, we propose an inverse-modelling
method based on subspace analysis to re-simulate or generate new
sequences with varying conditions from a known gas flow.

The basic idea is to apply EMD on each frame of the original
flow, reuse the features carried with frequency components by
modal reduction and estimate the parameters implied within the
original gas flow in subspace, see Figure 2. After estimation, the

flow can be re-simulated or modified towards desired behaviors. We
concisely introduce modal reduction for fluid flows in Section 4.1,
followed by the algorithm to estimate flow parameters in the
incompressible Navier–Stokes equations in Section 4.2, and flow
editing schemes are finally discussed in Section 4.3.

4.1. Modal reduction

Modal reduction means representing a high-dimensional vector and
its time evolution in a lower dimensional space. Specifically, a flow
field u ∈ R

n can be represented as r ∈ R
m, where m is independent

of the spatial resolution n and m � n. Usually, the m-dimensional
subspace is linear, so an orthonormal projection matrix B can be
found to connect the two spaces u = Br and r ≈ BT u, with equality
if u lies exactly in the subspace spanned by B. Linear differential
equation u̇ = Mu can also be projected into subspace using Galerkin
projection ṙ = BT MBr, by which the incompressible Navier–
Stokes equations can be solved within subspace. For more infor-
mation about fluid simulation in subspace, please refer to [TLP06].

The process to find bases B is somewhat tricky. Previous
methods [TLP06, KD13] apply PCA to compress a set of example
velocity fields, and the first m eigenvectors are set as columns in B.
However, we have found that this method fails to capture the scale
information conveyed in the flows and produces modes neglecting
their frequencies. Consequently, specific parts in the spectral
domain cannot be represented independently within the subspace.
In our experiments, the kinetic energy induced by abundant
high-frequency behaviors is transferred from fine-to-coarse scales
through the bases in the re-simulation. This inter-frequency energy
mixing can result in an overall falsely enlarged energy in all
frequency bands, see Figure 6.

We solve this problem by taking advantages of EMD, fulfilling
its potential in frequency domain. First, we create a set of example
fields for each frequency component, U freq = {ufreq

i }, where freq
can be low, mid or high. Subsequently, PCA is performed on
each set for compression, and the first several eigenvectors of
each set are selected into the bases B. Finally, the combined
bases B are orthonormalized by Gram–Schmidt process. Note
that after orthonormalization, the basis functions will no longer
be purely low, mid or high frequency, but this is totally fine
since the subspace remains the same. Essentially, the PCA-based
methods select basis functions regardless of their frequency, while
our method ensures that the basis functions are chosen from all
frequency bands; hence, the EMD-based bases are free from the
inter-frequency energy mixing. A comparison between PCA bases
and EMD bases can be seen in Figure 6, where the PCA bases fail
to reproduce the exact dynamics as the EMD bases do, eliminating
the feasibility of accurate physical re-simulation/editing by PCA
bases. The corresponding frequency spectra are presented in
Figure 7, which indicates that our EMD-based method is able to
recover more accurate energy through the frequencies compared
with the PCA-based methods. The composition of bases B from
each frequency band can be adjusted to accomplish style control,
and typically m

3 vectors from each set are used for general purpose.

4.2. Parameters estimation

Having the reduction bases B, now we present the algorithm to
estimate the parameters in fluid equations. The incompressible

c© 2016 The Authors
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Figure 4: Experiments on the captured ‘bloom’ dataset. (a) Existing flow. (b) Re-simulation of the inversely modelled flow with our technique.
(c) Flow edited by doubling the viscosity. (d) Flow edited by adding extra impulse.

Figure 5: Experiments on the captured ‘smoke’ dataset. (a) Existing flow. (b) Re-simulation of the inversely modelled flow. (c) Re-simulation
with PCA bases that contain identical number of columns as our EMD bases. (d) Effect of vorticity confinement, ε = 0.2. (e) Style control by
removing high-frequency bases. (f) Style control by removing middle-frequency bases.

Navier–Stokes equations are as follows:

u̇ = −(u · ∇)u − ν∇2u + ∇p + f, (4)

∇ · u = 0, (5)

where p denotes the pressure, ν the viscosity and f the external
forces. When integrating, the pressure is solved by the Poisson
equation ∇2p = ∇ · u; therefore, only the viscosity and external
forces are left unknown. The purpose of inverse modelling is to
estimate these parameters and recreate a simulated flow sequence
according to Navier–Stokes equations. Given the large size of the
velocity field u and the time-consuming pressure projection step,
the estimation is hard to implement within acceptable time without
modal reduction.

Similar with Treuille et al. [TLP06], we discretize the advection
term using finite difference as u̇ = Auu, and the diffusion term
as u̇ = νDu, where Au is dependent on u but D is not. In
subspace, each vector in the bases has its own advection matrix
Aui

, and the total advection term can be denoted by A = ∑
i riAui

.
The corresponding linear differential equation of Navier–Stokes
equations in subspace is

ṙ = Âr + νD̂r + f̂, (6)

where Â is the contracted advection tensor Â = ∑
i riB

T Aui
B, D̂ is

the diffusion matrix D̂ = BTDB and f̂ is the reduced external force
f̂ = BT f. The pressure term and the divergence constraint vanish in
subspace, because all vectors in the bases are inherently free of di-
vergence. So it is with the boundary condition. The reduced matrices
D̂ and BT Aui

B are supposed to be pre-computed for acceleration.

c© 2016 The Authors
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Figure 6: Comparison about the inter-frequency energy mixing ef-
fect on PCA bases and EMD bases at the 63rd frame of the captured
‘smoke’ dataset. (a) Existing flow. (b) Inversely modelled with EMD
bases. (c) Inversely modelled with PCA bases which have equal
number of columns as our EMD bases. The horizontal red line indi-
cates the flaw caused by inter-frequency energy mixing making that
modelling with PCA bases has falsely enlarged energy.

Suppose an inviscid flow (ν = 0), the external forces can be
easily calculated from Equation (6), and vice versa. However, if
the viscosity and external forces exist at the same time, it is hard to
distinguish. Our solution is to assume that the external forces are
as small as possible throughout all frames, that is, to minimize the
objective function

argmin
ν

∑
i∈F

‖ B(e−�t(Âi+νD̂)ri+1 − ri) ‖2
2, s.t. ν ≥ 0, (7)

for appropriate viscosity, where F denotes the set of frames. This
method essentially maximizes the viscous effect, which is true in
most cases, and yields nice results. Afterwards, the external force
of each frame can be calculated through Equation (6).

For the flows on which we have prior knowledge about their inflow
source, denoted by S, an ameliorant is to exclude the external forces
near S (manually picked with no need to be exact) and minimize the
magnitude of external forces in other regions. In practice, we remove
the rows corresponding to the vicinity of S from bases B. For per-
formance consideration, down-sampling is adopted both spatially
and temporally. The bases B is down-sampled by removing rows
randomly, and we select a random subset from F to apply the opti-
mization. Despite the large size of B, this optimization can be very
fast since only BT B is used, which is rather small and can be pre-
computed. In case of deterioration by down-sampling, this proce-
dure can be repeated several times to average the estimated viscosity.

4.3. Flow editing

Flows after inverse modelling can be reproduced by re-simulation,
and modified towards desired behaviors through multiple ap-
proaches, for instance, various driving forces, thickened air,

Table 1: Default parameters used in our experiments.

Parameter Value

EMD q in Section 3.1 2
σmax in Section 3.3 0.2
kmax in Section 3.3 10

Modal reduction m for the captured datasets 75
m for the ‘ejection’ dataset 90

varied boundaries, etc. Such subspace editing approaches are
detailed in [TLP06, KD13]. More complex modifications, e.g. non-
linearities like vorticity confinement, can be implemented in the
original space to combat the limited degree of freedom in subspace.

It should be noted that the flow editing of our technique differs
from that of [GIT*14]. Although [GIT*14] and our technique can
both produce flows from captured data, flow editing approaches
proposed by [GIT*14], including resolution enhancement, domain
change and guided simulation, could be non-physical since it only
has the velocity fields but lacks the simulation parameters, which
are indispensable for physics-based re-simulation and editing. In
comparison, our inverse modelling technique provides the ability to
apply physical editing following both the Navier–Stokes equations
and the input flows, see Figure 2.

With the frequency-aware property of EMD, style control on
the modelled flows is an interesting application that cannot be
achieved by PCA bases. When inverse modelling, the composition
of bases B can be adjusted by selecting unequal eigenvectors from
different frequency bands. More vectors help capture the intrinsic
features more precisely within a frequency band, and fewer vectors
smooth out the specific effect. Inter-frequency energy mixing
is less conspicuous with EMD-based bases, hence changing the
number of vectors from a certain band will not affect the behaviors
of other frequency bands. As a matter of fact, this method yields
different results by altering the subspace. However, it should be
noted that removing columns from the low-frequency band is
usually not recommended, since the overall flow may well be
altered completely if the subspace is overly shrunk that way.

5. Experimental Results

In this section, we provide numerical evaluations as well as several
applications of our method. We implement our EMD algorithm
with CUDA for acceleration, while the optimization in Equation (7)
is solved with interior point method by calling the MATLAB
Engine API. The experiments run on a PC with Geforce GTX970
GPU and Core i7 CPU, and our results are rendered by POV-Ray.

Several applications of our technique are documented below,
including re-simulating and flow editing within or without sub-
space with convincing effects. The captured flow datasets are
from Gregson et al. [GKHH12], and recovered by fluid tracking
method documented in [GIT*14]. A simulated gas ejection is also
included as ground truth in our experiments. Table 1 shows the
default parameters used in our experiments and Table 2 lists the
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Table 2: Time performance (in seconds) of our experiments.

Scene #(Resolution, Frames) EMD Modal reduction Inverse Modelling Re-simulation

Ejection (Figure 1) (160 × 80 × 80, 120) 816.197 935.108 1.803 0.710 (∼169 fps)
Bloom (Figure 4) (75 × 165 × 75, 60) 1250.441 492.536 0.602 0.213 (∼281 fps)
Smoke (Figure 5) (75 × 165 × 75, 94 ) 3665.044 490.953 1.000 0.334 (∼281 fps)

experimental performance, indicating the high efficiency of the
proposed inverse-modelling and editing technique.

Table 3 verifies the viscosity estimation in Equation (7). We em-
pirically set the inflow source S on the simulated ‘ejection’ dataset,
while on captured datasets, no inflow source is specified. B is ran-
domly down-sampled by a factor of 1

8 , and F by 1
4 . Five results on

each dataset are provided to prove the consistency, and the first one is
adopted to perform the downstream re-simulation and flow editing.

Figure 1 displays the results on a simulated ‘ejection’ flow. The
flow in Figure 1(a) is inversely modelled using our technique,
and re-simulated as seen in Figure 1(c). The flow is generally
well recovered, except some slight disagreement lying in the
high-frequency area between the existing flow and the re-simulated
one, caused by the discrepancy of their numerical integration
methods. The existing flow is simulated by semi-Lagrangian
method, while in subspace, the differential equation has analytical
solution. Kim and Delaney [KD13] reported that the distinction of
the integration methods may cause clashes on the high-frequency
modes. Nonetheless, this flaw is weakened if we apply our
technique on captured datasets, where there is no discrepancy of
integration methods; hence, no disagreement is found in those
experiments. An additional torus barrier is placed in the domain as
shown in Figure 1(d) to test the ability of our subspace technique
to handle editing on boundary, and the flow interacts correctly with
the barrier. To handle complex boundary editing, the subspace lacks
the degree of freedom, but it is still convenient to recover the flow
in its original space and apply the changes, as shown in Figure 1(e).

Figure 4 presents the results on a captured ‘bloom’ flow, which
involves dye being poured into still water. The flow is rich of
turbulence in the top half of the domain, but becomes stable in
the bottom half since the buoyancy and the diffusion effect of the
surrounding fluid dampen those details. The re-simulation result
is exhibited in Figure 4(b), which is basically the same as the
original flow without noticeable distinction. We edit this captured
flow by doubling its viscosity and adding an extra downward

Table 3: Viscosity estimation.

Ejection Bloom Smoke

Real visocity 10.000 – –
Estimated visocity #1 10.200 3.674 1.927
Estimated visocity #2 10.210 3.665 1.913
Estimated visocity #3 10.415 3.678 1.901
Estimated visocity #4 10.308 3.641 1.927
Estimated visocity #5 10.231 3.674 1.912

impulse in subspace, and the results are shown in the bottom
row. In Figure 4(c), the surrounding fluid becomes more viscous;
consequently, the flow loses its turbulence quickly as soon as it
enters the domain. In contrast, the flow in Figure 4(d) turns more
energetic and presents more details throughout the entire domain.

Figure 5 shows the results on a captured ‘smoke’ flow, which
has abundant high-frequency energy caused by buoyancy. The
subspace re-simulation result demonstrated in Figure 5(b) is in
good correspondence with the existing flow. To incorporate more
complex methods of flow editing, we re-simulate the flow in its
original space, and further apply editing by adding vorticity con-
finement [FSJ01] with ε = 0.2 to produce more turbulent results, as
seen in Figure 5(d). To stress the ability of EMD, we make compar-
isons of our proposed EMD-based technique against the traditional
PCA-based model reduction using this dataset, so the entire pipeline
is reproduced with the EMD bases substituted by PCA bases, which
have the same number of columns as our EMD bases, and the result
is presented in Figure 5(c). In this case, PCA bases fail to correctly
capture the flow due to the effect of inter-frequency energy mixing.
Large amount of kinetic energy is introduced in high-frequency
modes, leading the energy transferred to low frequencies through
PCA bases, which are rather meaningless in frequency domain. On
the contrary, EMD bases are constructed by the extracted intrinsic
features within each frequency bands, hence are powerful handling
this situation and avoiding inter-frequency energy mixing, since
information conveyed in different frequency bands are extracted
independently in EMD bases. A more obvious view is in Figure 6,
where a single frame of the original flow, the modelling using EMD
bases and the modelling using PCA bases are put together. It is
obvious that the result from PCA bases has larger velocity than the
original flow and the result from EMD bases. The frequency spectra
are provided in Figure 7, where the energy of the modelling result
with PCA bases is higher than normal in all frequency bands, while
the result from EMD bases is closer to the existing flow through
the frequencies. Nevertheless, the PCA method generally has less
distinction between the subspace simulation and the original flow
since it guarantees minimizing the error, especially when fewer
bases are used [TLP06, KD13]. Hence, our EMD-based method
can be treated as a common technique regardless of the energy
distribution, and becomes more adequate for inverse modelling if
the energy is unevenly distributed through the frequency domain
and the number of bases is large enough to neglect the error by
model reduction, which is not a critical requirement considering the
efficiency of subspace calculation. To exhibit the style controllable
capability of the EMD bases, we conduct the re-simulation
experiments on EMD bases with the high-frequency vectors and
middle-frequency vectors removed, respectively, and the results are
shown in Figures 5(e) and (f). The bases without high-frequency
vectors produce much smoother results, and the bases without
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Figure 7: Frequency spectra of the resulting sequences on the ‘smoke’ dataset. The inter-frequency energy mixing effect makes the energy
of the modelling with PCA bases higher than the existing flow in all frequency bands, while our EMD bases can better capture the intrinsic
features in each frequency. The style control method also effectively influences the spectra as expected.

Figure 8: Comparison of the boundary modification on the captured ‘smoke’ dataset. (a) Result of [GIT*14]. (b) Our result.

middle-frequency vectors generate less energetic results, where the
dominant trend of the flow is preserved. Their frequency spectra
are available in Figure 7. Note that the frequency in EMD is not
pre-defined but data-dependent and some frames’ high-frequency
bases may lie in the low-frequency domain in other frames, so the
energy spectrum for ‘style control by removing middle-frequency
bases’ does not represent any lower in the middle frequencies
than the other plots. We also provide the results by changing the
parameter q of Equation (3) in Figure 9. The numbers of bases m

in these experiments are set as 25 × q, and 25 vectors are selected
from each frequency band to form the bases. When increasing q

(essentially this is introducing more high-frequency bases), the
shape of the flow holds while the high-frequency details become a
little bit more prominent, and all these results faithfully reproduce
the captured flow.

Our method can be seen as a follow-up of [GIT*14], but we still
provide a comparison with their method in the ‘domain change’
application using the captured ‘smoke’ dataset, as demonstrated in
Figure 8, where a metal ball is placed in the domain blocking the
smoke from rising. Noticeable difference can be found in the results
although the same settings are used to implement both methods.
The main cause is that our method achieves physical simulation and
editing with the estimated flow parameters, while theirs can only
convey the density passively. Their method advects the flow up to
a desired time frame, after which it switches to a dynamic setting
considering the new boundary, which is non-physical to be rigorous.

Figure 9: Re-simulation results on the captured ‘smoke’ dataset
by changing q in Equation 3. (a)–(d) Results using q = 1, 2, 3, 4,
respectively.

All other stylistic modifications that [GIT*14] brings about, such as
resolution enhancement and guided simulation, even though beyond
the topic of this paper, can be accomplished with our method in a
more rigorous manner that strictly follows the governing equations.

6. Conclusion and Discussion

Our main goal in this paper is to make new attempts to remove the
perceived barrier between fluid capturing and pure fluid simulation

c© 2016 The Authors
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in graphics applications via a powerful analytical tool. This paper
has detailed a data-driven approach for fluid analysis based on
EMD and modal reduction, capable of inversely modelling existing
gas flows to discover the simulation parameters and editing them
towards desired behaviors, hence uniting fluid capturing and fluid
simulation through tight and seamless coupling. Our extensive
experiments have illustrated that our extended EMD for fluid
flows, accelerated by CUDA, is much more adequate for fluid
decomposition compared with the previous space-filling curve
approach. Making use of this EMD algorithm, we have decomposed
the 3D gas flows into frequency components representing the
intrinsic features, which are also candidate basis vectors for modal
reduction. In subspace, we have devised a functional optimization
method to isolate the effect of viscosity and external forces, aiming
at performing parameters estimation and modifying the gas flow
by reusing the existing characteristics extracted from the original
flow. We have demonstrated that our EMD bases are superior to the
traditional PCA bases in avoiding inter-frequency energy mixing,
as well as bringing the flexibility of style control on the modelled
flow. With the inverse-modelling technique, physical editing on
the existing flows is achievable. Finally, we have integrated our
technique with a state-of-the-art fluid capturing method, building
a pipeline to bond the fluid simulation in graphics with real-world
flows.

Our present work still has several limitations. The re-simulation
scheme and flow editing approach, which depend on modal reduc-
tion, is unable to handle a new domain with an enlarged boundary
yet, since the data we can reuse are confined within the domain
of the existing flow. To enlarge the simulated domain, extra efforts
must be made to modify the subspace and provide extra information.
The proposed EMD algorithm, although proved suitable for gas
flows, guarantees no temporal coherence either. A possible solution
for remedy is to use some additional temporal constraints during the
EMD process simultaneously considering the results from multiple
adjacent frames. The fitting of TPS needs to solve a dense matrix. To
accelerate the solution, we could use biharmonic B-spline [FW12]
instead of TPS, whose basis functions are localized.

The approach we have proposed indeed offers the possibilities
to bridge the gap between fluid capturing and simulation, and
we believe more applications beyond what we have discussed in
this paper shall be explored in order to do a full justice for this
method. Future topics may include investigating more advanced
fluid-capture systems to construct larger database from various
categories of fluids, which are readily available towards flow
synthesizing. In addition, we are considering possible investigation
of guided simulation in an expanded domain to handle more
complex scenarios with proper boundary conditions.
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[TKPR09] THÜREY N., KEISER R., PAULY M., RÜDE U.: Detail-
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Keyframe control of smoke simulations. ACM Transactions on
Graphics 22, 3 (2003), 716–723.

[WHC11] WU Z., HUANG N. E., CHEN X.: The multi-dimensional
ensemble empirical mode decomposition method. Advances in
Adaptive Data Analysis 1, 3 (2011), 339–372.

[WHZQ15] WANG X., HU J., ZHANG D., QIN H.: Efficient emd and
Hilbert spectra computation for 3d geometry processing and anal-
ysis via space-filling curve. The Visual Computer 31, 6 (2015),
1135–1141.

[WLZ*09] WANG H., LIAO M., ZHANG Q., YANG R., TURK G.: Phys-
ically guided liquid surface modeling from videos. ACM Trans-
actions on Graphics (TOG) 28, 3 (2009), 90.

[WST09] WICKE M., STANTON M., TREUILLE A.: Modular bases for
fluid dynamics. ACM Transactions on Graphics 28, 3 (2009),
341–352.

[XLLR06] XU Y., LIU B., LIU J., RIEMENSCHNEIDER S.: Two-
dimensional empirical mode decomposition by finite elements.
Proceedings of the Royal Society A Mathematical Physical and
Engineering Sciences 462, 2074 (2006), 3081–3096.

[YCZ11] YUAN Z., CHEN F., ZHAO Y.: Pattern-guided smoke anima-
tion with lagrangian coherent structure. ACM Transactions on
Graphics 30, 6 (2011), 136.

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



12 X. Zhai et al. / Inverse Modeling of Incompressible Gas Flow in Subspace

[YJLY12] YE J., JI Y., LI F., YU J.: Angular domain reconstruction
of dynamic 3d fluid surfaces. In Proceedings Of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR)
(2012), IEEE, pp. 310–317.

[YKH*09] YOON J.-C., KAM H. R., HONG J.-M., KANG S. J., KIM C.-
H.: Procedural synthesis using vortex particle method for fluid
simulation. Computer Graphics Forum 28, ffi7 (2009), 1853–
1859.

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM Trans-
actions on Graphics 24 (2005), 965–972.

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Video SI

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.




