
Received: 28 February 2016 Revised: 22 September 2016 Accepted: 26 September 2016

DOI 10.1002/cav.1741

R E S E A R C H A R T I C L E

Novel fluid detail enhancement based on multi-layer depth
regression analysis and FLIP fluid simulation

Yuxing Qiu1 Lipeng Yang1 Shuai Li1 Qing Xia1 Hong Qin2 Aimin Hao1

1State Key Laboratory of Virtual Reality

Technology and Systems, Beihang University,

Beijing, China
2Department of Computer Science, Stony Brook

University, New York, USA

Correspondence
Shuai Li, Aimin Hao, State Key Laboratory of

Virtual Reality Technology and Systems, Beihang

University, Beijing, China.

Email: lishuai@buaa.edu.cn, ham_buaa@163.com

Funding information
National Natural Science Foundation of China,

Grant/Award Number: 61190120, 61190125,

61190124, 61300067, 61672077, 6167214,

61602341 and 61532002

Abstract
In this paper, we propose a novel integrated method for effective modeling and real-
istic enhancement of scale-sensitive fluid simulation details. The core of our method
is the organic of multi-layer depth image regression analysis and fluid implicit par-
ticle fluid simulation of which the regression analysis induces the criterion where
the fluid details should be produced. First, we capture the depth buffer of the fluid
surface dynamically from the top of scene. Second, we employ depth peeling tech-
nique to decompose the target fluid volume into multiple depth layers and conduct
time-space analysis over surface layers. Third, we propose a logistic regression-based
model to rigorously pinpoint the complex interacting regions, wherein multiple
detail-relevant factors are taken into account based on the captured multiple depth
layers. Finally, details are enhanced by animating extra diffuse materials and aug-
menting the air-fluid mixing phenomenon. It is evident that, with depth peeling
technology, we can afford rigorous analysis not only across surface layers at different
fluid depth but along the depth direction as well. After integrating the analysis results
from these two sources, we are capable of performing detail enhancement both on
the fluid surface and inside the fluid to obtain a great visual effect, even when large
occlusion exists. Directly benefiting from the flexibility of image-space-dominant
processing, our unified framework can be entirely implemented on graphics process-
ing units and thus achieves interactive performance. For various fluid phenomena
with different diffuse materials (e.g., spray, foam, and bubble), comprehensive exper-
iments and evaluations have demonstrated its superiority in high-fidelity fluid detail
enhancement and its interaction with surrounding environment.

KEYWORDS

depth peeling, FLIP, fluid detail enhancement, GPU, image space method,
time-space analysis model

1 INTRODUCTION AND MOTIVATION

During the past two decades, physically based fluid simula-
tion has become a rapidly evolving research topic in many vir-
tual reality (VR) applications, wherein various methods have
been developed in response to different motivations, includ-
ing single-phase fluid simulation, multiple fluid interaction,
two-way fluid-solid coupling, and so on. With the grow-
ing demand for physical realism and interactive cross-scale
detail enhancement, such as dealing with small-scale splash,
spray, and other diffuse materials1,2 for large-scale fluid

simulations, the systematic and comprehensive studies of
fluid detail simulation are beginning to regain popularity with
great and revived momentum.

Although accuracy is the key concern in computational
fluid dynamics, visual fidelity and efficiency are more impor-
tant in graphics, animation, and many other VR applications.
For the visual fidelity improvement, the state-of-the-art meth-
ods oftentimes resort to various space-grid refinement or
denser particle sampling schemes in physical simulation. In
addition, from the perspective of pure simulation, other key
ideas to enhance details include handling different materials

Comp Anim Virtual Worlds 2016; 1–18 wileyonlinelibrary.com/journal/cav Copyright © 2016 John Wiley & Sons, Ltd. 1

http://dx.doi.org/10.1002/cav.1741

2 QIU ET AL.

separately (such as air and liquid) and simulating the cru-
cial interaction3–5 in a physically plausible fashion to increase
visual fidelity. Considering the unavoidable improvement of
computational expenses, adaptive sampling methods are more
favorable, such as octree-grid,6 adaptive SPH,7 and so on.
Meanwhile, parallel methods on multi-core CPUs or graph-
ics processing unit (GPU) are also developed in order to
reduce the ever-increasing computational cost8,9 while still
improving visual quality.

Despite the recent success of diffuse material simu-
lation, certain difficulties still prevail and need to be
addressed for high-fidelity region detection for fluid details
in a more efficient way. First, most of the detail detec-
tion criteria depend on the correct identification of accu-
rate fluid surface, which is too time-consuming to be pre-
cisely detected in any physics-driven real-time applications.
Meanwhile, spatially local analysis criteria, such as curva-
ture and velocity variance, are usually combined manually
with many parameters, which are hard to be fine-tuned
for different phenomena. Second, most of the criteria are
hard to pinpoint scale-aware details, wherein the details
are mostly determined by probability-biased parameters and
their ad hoc combination. Third, the state-of-the-art anal-
ysis methods tend to ignore the informative time-domain
knowledge, which is crucial for fluid detail detection
and prediction.

Our rationale is that pure physics-based simulation may
fall short in fluid detail enhancement during interaction,
unless significantly increased computational expenses could
be afforded. Hybrid strategies, which integrate simulation
and analysis, must be explored towards high-fidelity fluid
interaction while not sacrificing computational efficiency
drastically. This paper attempts to offer a viable solution to
tackle the aforementioned technical challenges. We articu-
late a novel integrated analysis-centric approach by rigorously
analyzing the acquired data. In particular, we propose to
utilize multi-level depth buffers captured during simulation
as an indicator of the dynamic fluid status to analyze the
region-variant necessity of detail enhancement. By analyzing
the time–space features in image space, we expect to cor-
rectly identify the fluid-detail regions and then simulate the
diffuse materials to augment the air–fluid interacting phe-
nomena. Through the integration of simulation and analysis,
we are hoping to achieve the competing goals of high-fidelity
fluid detail enhancement and computational efficiency for VR
applications. The salient contributions of this paper can be
summarized as follows:

• We propose a time–space analysis model based on logis-
tic regression to integrate the geometric, physical, and
temporal factors for fluid details detection while avoiding
complex parameter tuning.

• We propose to bridge simulation and analysis via the
utility of dynamically captured depth buffer data, which
are both low cost and versatile for quality-efficiency
trade-off.

• We design a multi-layer surface information extraction
method based on depth peeling to enhance the fluid simu-
lation details over (multi-layered) surface regions.

• We develop a seeding method for diffuse particle genera-
tion, which only relies on the depth buffers and analysis
results, making it applicable for all particle-based simula-
tion methods.

• Without applying depth peeling technique, the involved
data-driven analysis method and diffuse material simula-
tion can be integrated into any grid-based method with very
little extra workload with some specific surface extraction
algorithm for grid-based fluid.

• We design specific GPU-based algorithms to implement
our entire simulation framework in parallel.

2 RELATED WORK

In recent years, there have been many methods developed to
simulate fluids, including smoothed particle hydrodynamics
(SPH) method,10–13 fluid implicit particle (FLIP) method,14,
level set methods,15,16 and so on. Our approach is based on
FLIP method, which combines particle-based representation
with grid-based solver. FLIP method was introduced in com-
puter graphics by Zhu and Bridson,14 and then was extended
to many fields, such as splashing water simulation,17 preser-
vation of fluid sheet,18 fluid–solid coupling applications,19

combining with particle method,20 multi-scale droplet/spray
simulation,21 and so on. Lately, Ando et al.,18 Um et al.,22 and
Cornelis et al.20 respectively proposes methods to improve the
particle distribution of FLIP method.

Closely relevant to the central theme of this paper, we
now briefly review previous works in diffuse material sim-
ulation, data-specific analysis, and depth peeling technology
separately.

2.1 Diffuse material simulation

Diffuse material simulation is crucial in fluid detail simu-
lation and enhancement, especially for the large-scale fluid
phenomenon having complex interaction with air.

Detecting diffuse materials is straightforward for
grid-based methods, because the surface of a liquid can be
easily tracked. Existing works essentially measure geomet-
ric information to generate splash, foam, and bubble using
curvatures,5 markers escaped from surface,2,3,23 and so on.
To exploit the ignored velocity information, Mihalef et al.4

present a Weber number threshold-based filtering method to
avoid the detail loss of the marker level set method by intro-
ducing a physical factor into the criteria. Meanwhile, some
other works regard air as a separate phase fluid and simulate
the interaction between liquid and air directly, includ-
ing volume-of-fluid,24 regional level set,25 multiFLIP,26

two-continua approach,27 and so on. Patkar et al.28 propose
a hybrid method for bubbles, using level set to simulate
large bubbles while employing particle method to represent
small bubbles.

QIU ET AL. 3

As for particle-based methods, analyzing the diffuse mate-
rials is not trivial, because the precise fluid surface is not easy
to be detected and extracted. To simulate the water–air inter-
action, Müller et al., Solenthaler et al., and Threy et al.29–31

achieve detail enhancement based on SPH model. Although
these methods can obtain improved visual results, however,
they still have problems when certain qualifications required
in their papers cannot be guaranteed. To ameliorate, Ihmsen
et al.32 simulate the bubbles and liquids separately by differ-
entiating the regions where air is likely to be trapped with a
velocity-based heuristic criterion. Losasso et al.33 propose a
two-way coupled simulation framework that uses the particle
level set method to model dense liquid volumes and an SPH
model to simulate diffuse regions such as sprays. Bagar et al.34

detect foam particles from regular liquid particles based on
the velocities of particles, which involve no foam simula-
tion. To unify spray, foam, and air bubble, Ihmsen et al.1

propose a post-processing model to generate and advect the
diffuse materials for SPH fluids, wherein the diffuse regions
are detected by analyzing the curvatures and velocities of
SPH particles. Changbo et al.35 propose a similar method
for grid-based simulator. Although having avoided expen-
sive inter-particle computation, such schemes heavily rely on
the proper detection of surface particles and the curvature
calculation over surface particles.

2.2 Data-specific analysis methods

Image-specific analysis methods are commonly used to
enhance image details, which in our method will be employed
to detect the complex interacting regions in depth images.
Most recently, some researchers produce plausible results
in image smoothing and detail enhancement. For instance,
in order to achieve data-specific wavelet, Hammond et al.36

propose a method for the construction of wavelet trans-
forms, according to the functions defined on the vertices of
an arbitrary weighted graph. Narang et al.37 construct the
data-specific wavelet by specifically designing wavelet filters
based on the spectral decomposition of the graph, and then
necessary and sufficient conditions for a two-channel graph
filter bank on bipartite graphs are stated, which can achieve
aliasing-cancelation and perfect reconstruction. In addition,
Xu et al.38 design an optimization framework via L0 gra-
dient minimization, wherein they can sharpen major edges
by increasing the steepness of transition while eliminating a
manageable degree of low-amplitude structures at the same
time. However, the computational costs of these methods are
expensive, and they are not suitable for interactive VR appli-
cations. Guided image filtering is derived from a local linear
model according to the texture pattern of guidance image.
Compared with the widely used bilateral filter,39 guided fil-
ter naturally is a generic linear-time algorithm, which has a
better trade-off between the accuracy and efficiency. Thus,
considering both the structure-preserving effect and the low
computational cost demands, we introduce the guided image
filter40 into our method.

2.3 Depth peeling techniques

According to Everitt,41 depth peeling is a fragment-level
depth-sorting technique described by Mammen using Vir-
tual Pixel Maps42 and by Diefenbach using a dual depth
buffer.43 This technique is widely used in transparent sur-
faces rendering domain, and each unique depth in the scene
is extracted into layers and composite in depth-sorted order,
to produce a correctly blended final image. With depth peel-
ing, the rendering order-dependent problem of non-refractive
transparent surfaces can be solved.41 There exists some appli-
cations and improvements of depth peeling techniques. For
instance, Bernardon et al.44 propose a new hardware-based
ray casting algorithm for the depth peeling of unstructured
meshes consisting of tetrahedral cells. In this way, they can
capture the rays when they re-enter the mesh, without intro-
ducing imaginary cells to fill the intractable space caused
by mesh non-convexities. Depth peeling techniques have
also been extended to texture-based volumetric iso-surfaces
rendering,45 in which the authors originate the term vol-
umetric depth peeling. In this way, the full range of vol-
umetric effects can be achieved. Inspired by this, David
et al.46 utilize volumetric depth peeling for medical image
visualization, which is flexible enough to handle multiple
region occlusion and object’s self-occlusion and requires no
pre-segmentation over the dataset. Based on depth peeling
method, the joint surface occlusion problem has been solved,
which has been successfully used in urology and visual
arthroscopic studies.46 However, the classical depth peeling
algorithm has performance bottleneck for large and complex
scenes; to improve it, Fang et al.47 exploit multiple render tar-
gets as bucket array in pixel-wise way. With the use of bucket
sort and the efficient schemes to reduce collisions in the same
bucket, Fang et al.47 achieve 32 times speedup in depth peel-
ing while guaranteeing faithful visual results, especially for
complex scenes.

To integrate time-domain information into our method,
we refer to time–space analysis, which is commonly uti-
lized in video object tracking. The relevant techniques include
Bayesian model,48,49 logistic regression,50 Gaussian mixture
model,51 and so on. Our detail region detection is similar with
video tracking in the aspects that both time and space infor-
mation are crucial, but our aim is to guarantee the continuous
evolution of enhanced regions. It is appropriate to use the
logistic regression to combine multiple time–space factors in
order to obtain the probability of each pixel in depth buffer,
indicating whether it should be enhanced or not.

3 ALGORITHMIC OVERVIEW

Figure 1 illustrates the entire algorithmic flow of our method.
Each simulation cycle starts with regular FLIP; by way
of analyzing the captured result, we enhance fluid details
via animating diffuse materials. We outline the algorithm
as follows:

4 QIU ET AL.

FIGURE 1 The pipeline of each simulation cycle. FLIP, fluid implicit particle

FLIP update. Compute the density, pressure, and force
for each fluid particle, and then update its velocity and
position.

Depth capture. Capture and store the depth buffer dynam-
ically from the top view point with an orthogonal
virtual camera.

Depth peeling. Peel the multi-layer fluid surfaces accord-
ing to the obtained depth buffer and capture the depth
of each layer for the subsequent analysis.

Space analysis. Analyze the 2D depth buffer spatially
with data-specific guided filter to obtain the geometric
features within each layer of the near-surface.

Time–space analysis. Integrate temporal information and
spatial analysis result into a logistic regression model
to obtain the criteria for detail enhancement along
surface direction.

Level analysis. Conduct similar regression analysis over
multi-layered depth maps to induce the criteria along
depth direction.

Final criteria. Integrate the regression results from the
aforementioned two sources in a weighted way in order
to obtain the final scale-sensitive criteria for detail
enhancement over multi-layered surface regions.

Diffuse particle generation and simulation. Generate
diffuse particles based on the analysis results, then
advect them according to the material-specific rules.

Rendering. Render the scene with POV-Ray software.

3.1 Brief FLIP review

Because our model is based on the adaptive FLIP model,18

we now briefly review the basic idea of fluid simulation, FLIP
model, and its possible improvement. Fluid dynamics are

essentially based on Navier–Stokes equations (N-S equations)
that conserve both mass and momentum:

𝜕𝜌

𝜕t
+ 𝜌∇ · u = 0, (1)

𝜌

(
𝜕u
𝜕t

+ u · ∇u
)
= −∇p + 𝜇∇2u + f. (2)

Here, 𝜌 is the density, u is the velocity, p is the pressure, 𝜇 is
the kinematic viscosity, and f is the external force. ∇ means
the differential operator of vector.

In FLIP model, fluid is discretized as particles, and tradi-
tional Eulerian method is employed to solve the N-S equations
instead. Unlike particle-in-cell (PIC) method, the velocity
changes on grid; rather than computing the velocity on grid
directly from the aforementioned equations, the grid velocity
is interpolated from the surrounding particles. As a result, the
numerical dissipation problem is avoided, making FLIP more
suitable for violent fluid simulation.

To alleviate the noisy-like behaviors of FLIP, similar to
Zhu et al.,14 we linearly blend the PIC and FLIP velocities via

v = avFLIP + (1 − a)vPIC, (3)

where the blending factor a is set to be 0.95 in all of our
experiments.

4 TIME–SPACE ANALYSIS

4.1 Depth image sequence capture

As shown in Figure 2, the depth buffer is captured at the end
of each regular FLIP update cycle. Similar to Van der Laan
et al.52 (but with a downward orthogonal camera at the top
of the scene), we render the particles as spheres, and then

QIU ET AL. 5

FIGURE 2 Time–space analysis results. Warm color indicates high value and vice versa. (a) The captured depth buffer, (b) the space analysis result, (c)

velocity field, and (d) time–space analysis result

capture the depth buffer from frame buffer. The captured
depth buffer is stored as texture first and then is mapped into
GPU memory as 2D array, which is the basis of conducting
analysis. The depth buffer actually forms a 2D projected grid
in simulation domain, which enables us to extract velocity
field and seed diffuse particles. Meanwhile, we also keep a
record of some sequential frame buffers to analyze the tem-
poral information involved in the dynamics of the underlying
fluid surface.

The resolution of captured depth buffer is crucial to the
trade-off of analysis quality and computational cost. An
appropriate resolution could accommodate sharp/fine fea-
tures on the fluid surface while guaranteeing efficiency. We
will discuss our resolution selection strategy and demonstrate
the results of different resolutions in Section 7.

4.2 Guided filter-based space analysis

Geometric features of fluid surface is critical to determin-
ing where the details should be enhanced. By converting the
fluid surface feature detection to a problem of depth image
analysis, it cannot only reduce the scale of computation but
also take advantages of the abundance of techniques devel-
oped in image processing. We employ the content-specific
guided filter40 to perform detail detection. Although some
simple linear translation-invariant filters (such as the mean,
Gaussian, Laplacian, and Sobel filters) have been widely used
in image processing, they are weak in making the smoothed
image preserve original structures and edges. Utilizing guid-
ance image instead of a fixed filter, we can take into account
more data-specific information to make the smoothed image
preserve structures and edges. In our application, we tend
to extract the potential detail features from the differences
of smoothed multi-level depth buffers and original ones.
According to this, the edges of depth buffer need to be

consistently persisted. Some sharp edges, which might rep-
resent the overlaps between different fluid flows and fluid
pools, should not be considered as regions needing significant
enhancement. Unlike bilateral filter, guided filter has good
edge-preserving properties without suffering from gradient
reversal artifacts. Besides, efficiency is also an important fac-
tor for us to choose guided filter, because the filtering output
of guided filter is locally a linear transform of the guidance
image. In sharp contrast, other content-specific filters usually
utilize some optimizations to pursue better quality, and this
oftentimes comes with the price of expensive computational
time. Considering our eager expectation of simplicity and
efficiency, we finally choose the guided filter inour method.

The key idea of guided filter is to develop a filter kernel
that can be applied onto the input image to produce a new
image. In our framework, we apply its smoothing function
to obtain smoothed depth buffers, whose differences could
pinpoint scale-aware detail region with the high-frequency
characteristics.

We assume there is a local linear transformation between
guidance image I and output q in a window wk centered at the
pixel k,

qi = akIi + bk,∀i ∈ wk, (4)

where ak and bk are linear coefficients. To determine ak
and bk, we minimize the difference between q and the input
image p,

E(ak, bk) =
∑

i

(
(akIi + bk − pi)2 + 𝜖a2

k
)
, (5)

where 𝜖 is a regularization parameter, and we define the
same depth buffer as the guidance image I and the input
image p. According to He et al.,40 we set 𝜖 with an empir-
ical value 0.01 in all our experiments, which can produce
satisfactory results.

6 QIU ET AL.

Then ak, bk can be directly solved by linear regression as

ak =
1|w|∑i∈wk

Iipi − 𝜇kp̄k

𝜎2
k + 𝜖

, (6)

bk = p̄k − ak𝜇k, (7)

where 𝜇k and 𝜎2
k are the mean and variance of I in wk, |w| is

the number of pixels in window wk, and p̄k is the mean of p
in wk.

After that, q can be computed using Equation (4). Because
each pixel i belongs to all the windows centered at the sur-
rounding pixels k, we average ak, bk to guarantee consistency.

qi =
1|w| ∑

k∶i∈wk

(akIi + bk) = ākIi + b̄k, (8)

where āk and b̄k are the mean of ak and bk in window wi.
We compute the differences of smoothed multi-level depth
buffers to obtain potential detail features, which reside in
the high-frequency regions of the fluid surface (refer to
Figure 2(b)). The window size wk allows us to identify fea-
tures of different scales (refer to Figure 6 and Video S1).

4.3 Regression-based time–space analysis

Besides the aforementioned geometric features, we further
exploit velocity field as a physical criterion to determine the
detail region. Specifically, we only need the velocities at the
projected grid nodes, which can be extracted by finding the
fluid particles around each node and computing the weighted
sum of the fluid velocities. Figure 2(c) shows the examples of
the extracted velocity field.

Once we obtain the geometric and velocity information of
the depth image, we need to combine them together to form a
criterion, which indicates the regions where diffuse materials
are prone to generate. To complete this task, we explore the
logistic regression model, which is a classic machine-learning
model to estimate the probability of binary response based
on one or more predictor variables. In our method, logistic
regression model takes the geometric and physical informa-
tion as inputs, and generates a probability for each pixel in
depth image, indicating its probability of generating diffuse
material. We define a logistic function to compute the prob-
ability that a depth buffer pixel should fall in a detail region:
h𝜃(x) = 1∕(1 + exp(−

∑n
j=1 𝜃jxj)), where 𝜃j is the corre-

sponding coefficient to be learned and xj represents all the
factors being taken into consideration. In regression-based
time–space analysis of certain surface layer, x1, x2, and x3 are
separately set to be the difference of the depth images, the cur-
vature of the depth images, and the difference of the velocity
fields. As for the regression-based level analysis, which will
be introduced in the following sections, we set x1 and x2 as
the differences and curvatures of the cross-layer depth images,
and set x3 as the velocity gradient in depth direction.

The same as the classic logistic regression model, we use
maximum likelihood estimation to learn the coefficients 𝜃j,
so the cost function in our model is as follows:

Es = − 1
m

m∑
i=1

[
y(i)logh𝜃(x(i)) + (1 − y(i))log(1 − h𝜃(x(i)))

]
+ r||𝜃||2.

(9)
Here, m denotes the number of samples, which is the number
of pixels in the image, y(i) denotes the probability of i-pixel
position that should be enhanced, and r is a user-defined coef-
ficient to prevent 𝜃 from being too large. In our experiments,
we found that 0.01 is a good choice for r, because the decrease
of r does not obviously accelerate the convergence speed any-
more; however, increasing r can slightly contribute to the
visual fidelity improvement. As a result, we finally choose to
set r as 0.01 for all phenomena in this paper. By minimizing
the Es in Equation (9) using gradient descent method, we can
obtain the coefficients 𝜃j.

However, in the temporal aspect, the features of fluid are
changing continuously; we expect the adjacent detected fea-
tures would not differ too much. So we introduce a regular-
ization penalty item to measure the inconsistency between
adjacent frames, Et =

∑m
i=1 (y(i) − yt)2, where yt is the analysis

result of the previous frame.
By integrating the above aspects, the proposed cost function

is formulated as follows:

E = Es + 𝜇Et, (10)

where 𝜇 is a non-negative trade-off parameter to adjust the
weight of the logistic regression cost and inconsistency cost
between adjacent frames. Considering that consistency is
important for the visual fidelity of fluid simulation, we set 𝜇
with a relatively large weight as 5. In fact, it is difficult to
quantitatively evaluate the visual fidelity for the absence of
a specific standard. Thus, we just use the same value for all
scenes to achieve the simplification, and the results are con-
sidered to be satisfactory enough. Considering y and 𝜃 are the
independent variables to be learned from Equation (10), we
employ the gradient descent approach to minimize the cost
function, which can be formulated as follows:

𝜃n+1
j = 𝜃n

j − 𝛼1
𝜕

𝜕𝜃j
E

= 𝜃n − 𝛼1

[
1
m

m∑
i=1

(
h𝜃(x(i)) − y(i)

)
x(i)j + 2r𝜃j

]
,

(11)

yn+1 = yn − 𝛼2
𝜕

𝜕y
E = yn − 𝛼2

(
−

n∑
j=1

𝜃jxj + 2𝜇(yn − yt)

)
.

(12)
In each simulation step, y and 𝜃 are initialized with the result
from the previous step, while at the first step, y is set as 0,
and 𝜃 is 1. As for 𝛼1 and 𝛼2, they represent the step length
of the gradient descent method; we set them according to the

QIU ET AL. 7

empirical values, and the resulted convergence performance
and the time consumption are satisfied. It should be noted
that these values are also kept same for all scenes (𝛼1 is 0.1
and 𝛼2 is 0.01). By iterating 𝜃 and y until they converge, we
obtain y to finally indicate whether a pixel of depth buffer
(i.e., a node on the projected grid) is in the detail regions or
not. The algorithmic details are shown in Algorithm 1 and
Section 6. Figure 2(d) shows our time–space analysis results
as an example.

4.4 Depth peeling method

We have discussed how to induce the criteria for detail
enhancement from depth buffer captured from a downward
orthogonal camera. However, this depth buffer only captures
the information of the fluid surface, which is apparently far
from being useful, because the bubbles may appear under-
water. In order to calculate the full-scale generation criteria
for diffuse particles and equip our model with much stronger
ability to handle more complex cases (e.g., plunging breaker),
we employ depth peeling technology41 to acquire multi-layer
depth buffers inside fluid. That is, we can get n depth layers
deeper from the fluid particles beneath the surface via n-pass
rendering of this scene.

In practice, after capturing the depth image of current sur-
face, we peel the top layer particles according to this depth
image (it is used to locate surface particles), so that we can
expose the subsurface of the fluid. After peeling, the method
detailed in Section 4.1 will be applied again on the new sur-
face to capture the depth buffer. Then the guided filter-based
space analysis (Section 4.2) and regression-based time–space
analysis (Section 4.3) are employed to conduct analysis across
the surface layers, so that we can also obtain the velocity
field, as well as the regression analysis result of this layer.
Figure 3(c–f) illustrate the time–space analysis results of the
different layers obtained from depth peeling over surface
regions. In this scene, two violent water streams on the left
side are injected into a tank from underwater, while another
two are spouted above the water on the right. We choose
to use five layers to conduct analysis as an example; how-
ever, this method does not have a limitation in the number

of depth layers, which is decided by the number of passes
of depth peeling process. If we only take the surface infor-
mation into account, the streams inside the fluid will be
ignored, and no diffuse particles will be generated for them.
As shown in Figure 3(b), it looks unreal and should have
been avoided. It shows that different layer holds unique phys-
ical and geometric information at different fluid depth, which
makes depth peeling step both meaningful and necessary. As
we can see in this figure, the differences among the veloc-
ity fields of different layers are especially remarkable, which
decide the imparities of the time–space analysis results to
a large extent. In Section 7, we will conduct comparisons
between the detail enhancement results with and without
depth peeling.

The trade-off between the computational cost and analy-
sis quality of depth peeling is controlled by two parameters:
the number of peeling passes and the range of height for
one-time peeling, which is represented by a distance thresh-
old 𝜆 from underwater particles to fluid surface. The more
the peeling passes, the deeper we can reach underwater, and
the more computational cost will be needed. On the other
hand, the height range for one-time peeling can influence the
quality of detail enhancement, because the depth and velocity
field extraction results of the current surface are accurate and
make the diffuse particle generation analysis more reliable
only at certain positions. However, the probability of detail
enhancement around the two adjacent layers is calculated via
linearly interpolating the two-layer regression results, which
may be error-prone. Our parameter selection strategy will be
discussed in Section 7.

4.5 Regression-based level analysis

During the several rounds of depth peeling, we can gradually
extract the depth information as well as the velocity field
of deeper layers under the fluid surface, which comprise a
depth buffer sequence and a velocity sequence along the
depth direction. For more thorough analysis, we propose
regression-based level analysis, using the two sequences
documented above to induce the criteria for detail enhance-
ment along the depth direction. It should be noted that the

FIGURE 3 Time-space analysis results and level analysis results aided by depth peeling. Warm color indicates high value and vice versa. Figure 3(c–f) are

analyzed over surface regions while (h–j) are processed along the depth direction. (a) The scene analyzed by the depth peeling technique, (b) scene analyzed

without depth peeling, (c) captured multi-layer depth buffers, (d) space analysis results, (e) velocity fields, (f) time–space analysis results, (g) the final

analysis result used for seeding diffuse particles, (h) space analysis result between neighboring layers, (i) velocity analysis result, and (j) level analysis result

8 QIU ET AL.

analysis introduced in Section 4.3 is executed over
(multi-layered) surfaces only.

By analyzing the curvatures of these sequential depth lay-
ers, we can leverage the variation rate of depth as geometrical
criterion to focus on the locations with high-frequency depth
changes along the depth direction. And we consider that, the
faster the depth changes in vertical direction, the more likely
the fluid is to interact with air. As the diffuse particles have
higher probability to appear at fluid–air mixed positions, the
second-order derivatives of the depth layers should be taken
as one of the indicators to enhance details as Equation (13),
and the computed results are shown in Figure 3(h).

g2d
i = di+1 − 2di + di−1, (13)

where g2d
i means the pixel-wise second-order derivative of

depth layers and di is the depth value of the i-th layer. Consid-
ering the depth gradient (di − di − 1), we can use Equation (13)
to approximate the second-order derivative.

In addition, once we obtain the velocity fields of different
fluid layers, we can calculate the differences of fluid velocity
among adjacent layers, which serve as physical features as

gv
i = vi+1 − vi

2
+ vi − vi−1

2
= vi+1 − vi−1

2
, (14)

where gv
i is the pixel-wise velocity gradient in depth field and

vi is the velocity at this position in the i-th depth layer. In com-
mon sense, the bubbles are more likely to appear around the
locations where the fluid velocities in the neighboring layers
are quite different. The results of velocity analysis in depth
direction can be found in Figure 3(i).

Both the geometric and the physical characteristics cal-
culated above will be used to determine the potential detail
regions. Similar to the method used in Section 4.3, we employ
the logistic regression model to estimate the probability of dif-
fuse particles generation along the depth direction, with the
aforementioned geometric and the physical analysis results
as inputs. And the time–space analysis result along the depth
direction is shown in Figure 3(j), while Figure 3(f) illustrates
the time–space analysis results over surface regions only.

After level analysis, we can obtain the regression results
both over surface regions and along the depth direction, and
thus the final criterion for detail enhancement can be calcu-
lated by y[i] = 𝜔1*y1[i] + 𝜔2*y2[i] for certain depth layer,
wherein y1[i] is the regression result of time–space analysis on
surface, y2[i] represents the result of level analysis in the depth
direction, and i is the layer index. The weighted combination
of y1[i] and y2[i] gives rise to the final regression results, and
the weight coefficients 𝜔1 and 𝜔2 satisfy 𝜔1 + 𝜔2 = 1.0. In
all experiments, 𝜔1 is set to be 0.7 and 𝜔2 is set to be 0.3.
The probability of the diffuse particles generation between
two adjacent depth layers is calculated via linearly interpolat-
ing the criteria over those two layers. Figure 3(g) shows the
final analysis results for seeding diffuse particles at certain
depth layer.

5 DIFFUSE MATERIAL SIMULATION

After determining the detail regions by time–space analy-
sis, we seed diffuse particles correspondingly to augment the
complex air–fluid interaction, and then advect them with the
flow of fluid. This simulation strategy is similar to Ihmsen
et al.,1 but we have modified the method to accommodate
FLIP framework and GPU acceleration.

5.1 Seeding of diffuse particles

To be consistent with the time–space analysis result, we seed
diffuse particles directly around the nodes of grid projected
by depth buffer. For each projected grid node, we calcu-
late the number of diffuse particles to be seeded and their
3D positions in the simulation space, and then seed the dif-
fuse particles randomly in a specific spatial range around
the projected grid node. We utilize the depth image to gen-
erate diffuse particles, rather than relying on the particle
distribution,1 which reduces the computational time.

The newly generated diffuse particles are given an ini-
tial velocity vdp to flow with the surrounding fluid particles.
Meanwhile, we add a small random disturbance to avoid uni-
form movement of the diffuse particles via vdp = vf + vrandom,
where vf denotes velocity of nearby fluid and vrandom is the
disturbing velocity.

Meanwhile, to efficiently model the dissolution of the dif-
fuse materials, we initially set a life time tlif e = ||vf || for each
diffuse particle, which is related to the velocity of surround-
ing fluid particles vf . In each simulation step, we decrease tlif e
when the diffuse particle is classified as a foam particle, and
if tlif e⩽0, we remove the particle. The diffuse particle classifi-
cation will be described in Section 5.2. Although this lifetime
model is simple to implement and can reflect the crack of bub-
bles and foams, it ignores the complex physical factors such
as temperature, size, and material, which still may bring some
artifacts in the simulation.

5.2 Advection of diffuse particles

To advect diffuse particles in a more specific way, we classify
them into spray, foam, and bubble according to their relative
position to the fluid surface. Spray, foam, and bubble particles
corresponding have different advection formulations, which
will be introduced in the following paragraphs. In our exper-
iments, when a diffuse particle is apart from the fluid surface
and flying in the air, it is empirically classified as spray parti-
cle. And the diffuse particles floating around the surface are
classified as foam particle. What is more, the diffuse parti-
cles under the fluid surface are regarded as bubble particles.
The classification task can be accomplished by computing the
liquid particle number in the neighboring volume. Figure 4
illustrates the criterion and the result of our classification
method.

Air bubbles mean that air is trapped inside the liquid, which
are mainly affected by buoyancy force and drag force from

QIU ET AL. 9

FIGURE 4 The classification of diffuse particles (red for spray particles, green for bubble particles, and blue for foam particles) using dam-breaking

simulation as an example

liquid particles. The drag force is determined by the rela-
tive velocities between the bubble particles and the liquid
particles, and the buoyancy force is enforced in the opposite
direction of gravity acceleration g.

fdp = kd(vdp − vf) − kbg, (15)

where kd, kb separately correspond to the coefficients of drag
force and buoyancy force used to advect bubble particles. The
buoyancy force on a submerged body points to the opposite
direction to gravity and is equal to 𝜌Vg, where 𝜌 is the density
of the fluid, V measures the volume of the underwater bub-
bles, and g means the gravity acceleration. Compared with
our proposed formulation, kb is exactly calculated by 𝜌*V .
According to this, kb should be a constant for all scenes men-
tioned in this paper, as we use bubble particles with the same
size, and all diffuse particles are generated for water scenes. If
the fluid property is changed (especially the density of fluid),
the value of kb also needs to be adjusted. And as for kd, we
take it as a constant to control drag effects. And kd is chosen
as 1 in order to make air bubbles immediately dragged into the
fluid flow direction to enhance the visual fidelity according to
Ihmsen et al.,1 which are also kept the same for all scenes. The
subscript dp is always associated with a variable of diffuse
particle. Here, vdp and vf separately represent the velocity of
diffuse particles and fluid particles.

Foam particles represent the foam at the surface of fluid;
they are mainly affected by the drag force kd(vdp − vf) due
to the flowing of liquid. Spray particles indicate the liquid
particles that depart from the liquid volume, and they are only
affected by the gravity force mdpg. Meanwhile, all the diffuse
particles will be affected by a coupling force if they collide
with solids in the scene. At last, the velocity and position can
be updated based on Euler integration.

6 CUDA-BASED IMPLEMENTATION

Since FLIP-based simulations have been implemented on
GPU efficiently,21 in the interest of space, we only detail GPU
implementation for the depth buffer-based analysis and dif-
fuse particle seeding/advection, which collectively guarantee

the interactive performance of our framework. Algorithm 1
documents the pseudocode, and we detail the implementation
challenges and solutions as follows.

6.1 Guided filter-based space analysis

Guided filter method is suitable for GPU parallelization,
mainly because each pixel is only related to its surrounding
pixels. We invoke a CUDA kernel for each pixel, compute
𝜔i,𝜇i according to the surrounding pixels, and then compute
ak, bk and store them in global memory cache. We invoke
another kernel to compute the output image q and compute
the difference simultaneously.

6.2 Regression-based time–space analysis

The key steps of time–space analysis are shown on lines 8–12
of Algorithm 1. We need two kernel functions for lines 10
and 12; both will invoke a kernel thread for each pixel’s par-
allel computation. In the first kernel function, we compute∑m

i=1(h𝜃(x(i)) − y(i)) with the parallel sum reduction, and then
update 𝜃1 and verify whether the convergence condition is sat-
isfied. In the second kernel function, we update y1 for each
pixel in a parallel way. When the computation is completed,
the analysis result y1 is stored in the GPU array to be used in
the following steps.

6.3 Depth peeling and level analysis
We employ a CUDA kernel to compute the coordinates of
fluid surface according to the depth map and invoke another
CUDA kernel to compute the distances from each particle to
the fluid surface, and then decide whether the particle needs
to be peeled or not based on a distance threshold 𝜆.

To conduct level analysis, we first need to calculate the
second-order derivatives of depth maps and the differences
of velocity field in the depth direction; therefore, we invoke
two CUDA kernels at each pixel to compute these two items
separately. As shown on the lines 18–22 of Algorithm 1, we
employ the two kernels mentioned in Section 6.2 to compute
𝜃2 and y2. And a CUDA thread for weighted combination of
y1 and y2 is executed at last.

10 QIU ET AL.

6.4 Diffuse particle seeding
Because diffuse particles are dynamically generated from pro-
jected grid according to the analysis results, we must design
an appropriate data structure management on GPU to improve
the algorithmic efficiency. We not only, first, estimate a max-
imum number of diffuse particles nseed that each projected
grid node may produce but also estimate a maximum number
of the diffuse particles nmax with positive tlif e to be handled
simultaneously in the animation. Then we allocate memory
for nseed*nnode + nmax diffuse particles, where nnode denotes
the number of projected grid nodes.

In each simulation cycle, we invoke a CUDA thread for each
node of the projected grid, in which we produce diffuse par-
ticles around the node, and further set the velocities and life
time, respectively. The generated diffuse particles are dynam-
ically inserted into the data structure proposed above, forming
a sparse array. We then employ the thrust library to partition
the array, moving the particles with positive duration time to
the head of the array. At last, we invoke a thread for each parti-
cle to count the valid diffuse particles nnow, which is required
in advection and rendering steps.

6.5 Diffuse particle advection
For diffuse particle advection, we invoke one thread for each
particle to update the force, velocity, and position. Specifi-
cally, we utilize the fast neighborhood searching algorithm to
find the surrounding fluid particles of diffuse particles, and
then compute the average velocity of the neighboring fluid
particles (by using Equation 15). Meanwhile, we update the
life time of diffuse particle in this thread. If the life time of

a diffuse particle is negative, it will be overwritten after the
partitioning operation, without explicitly deleting it.

7 EXPERIMENTS, EVALUATIONS,
AND DISCUSSIONS

We have implemented our method on a PC with a GeForce
GTX 780 GPU, Intel Core I7 CPU based on C++, CUDA,
and GLSL APIs. In addition, we have re-rendered our experi-
mental result using POV-Ray. Considering that the rendering
algorithm does not truly dominate our subject, we finally
chose the same particle-based rendering method to reduce the
complexity as much as possible, and the resulted visual results
are satisfactory. However, more complex rendering algorithm
is also significant for better visual fidelity; for example, meth-
ods introduced by Van der Laan et al.53 and Bagar54 can be
used to obtain the more faithful visual fidelity. For the issue
of determining the resolution of depth buffer, we find that the
best analysis result is achieved when each pixel of depth buffer
represents almost one particle, which means that the width of
depth buffer can be computed by wdb = wscene/(dp), wherein
wscene denotes the width of scene and dp is the diameter of
fluid particle. From top to bottom, Figure 5 shows the results
of the captured depth buffer, guided filter-based space anal-
ysis, time–space analysis, and simulation. Column (a) shows
that higher-resolution results fail to represent the required
local geometric information, while only reflecting the sphere
shapes of particles in rendering. Meanwhile, the computa-
tional cost is more expensive compared with (b), which is the
best in our experiments. Column (c) shows lower-resolution
results, where the surrounding pixels involve analysis across
a long distance in the simulation space. To handle details of

FIGURE 5 Results corresponding to different resolutions. Warm color indicates high value and vice versa. The resolution in simulation space is 140 × 60,

and the depth buffer resolutions are (a) 700 × 300, (b) 140 × 60, and (c) 70 × 30

QIU ET AL. 11

FIGURE 6 Our scale-aware analysis results. Warm color indicates high value and vice versa

different scales simultaneously, we detect guided filter fea-
tures with different window sizes (|wk | = 52, 112, or 152)
then synthesize the corresponding results together as the final
detected features. As shown in Figure 6, our result reveals
scale-aware features effectively.

Table 1 documents the statistics for the average testing
time (in milliseconds) of each simulation cycle. We record
the number of FLIP particles (#FP) and the maximum num-
ber of diffuse particles (#DPM) for each case. To be clear,
(AN) and (DP) are the time costs for time–space analy-
sis and diffuse particle generation and advection separately,
(GR) means the grid resolution while (DBR) refers to depth
buffer resolution, and (Other) is the time cost for deformable
solid simulation and fluid–solid coupling. In comparison with
the computational time of FLIP simulation (refer to (FLIP)
column), the overhead of our time–space analysis and dif-
fuse material simulation is small, while improving the visual
effects significantly. The depth peeling technique is intro-
duced into the simulation of dam-break scene and pouring
scene. Some parameters and time statistics are shown in the
subsequent columns, wherein (#D) means the passes of depth
peeling (i.e., the number of depth layers) and (𝜆) represents
the distance threshold for one-time peeling. The time cost
of time–space analysis for all layers (AND) is approximately
equal to (#D) the times of the analysis cost for one layer (AN),
that is, the time cost of time-space analysis will increase in
nearly linear way with the number increasing of depth layers.
And level analysis (ANL) costs similar computational time
as (AN), no matter how many depth layers there are. DPP
refers to the time used for diffuse particle generation after
depth peeling. Considering that the diffuse particles gener-
ated for each grid in one frame is limited, there is no definite
multiple relationship between (DP) and (DPP), as shown in
the last column of Table 1. In order to show how signifi-
cantly the computational cost will increase when the layer
number increases, we separately document the time cost of
time–space analysis(AND), level analysis(ANL), and diffuse
particle generation after depth peeling (DPP) in Table 2. And
the time cost change caused by varying the distance threshold
for one-time peeling(𝜆) is also considered in this table. As we
can see from the last line of Table 2, 𝜆 does not significantly
influence the computation cost. And Figure 7 documents the
parameter values used in our experiments.

To further explore how significantly the parameter settings
can influence the final visual results, we conduct some exper-
iments under different parameter settings, and the results are

12 QIU ET AL.

TABLE 1 Time performance (in milliseconds) of our experiments

Scene #FP GR #DPM DBR FLIP AN DP Other #D 𝜆 AND ANL DPP

Dam-break (Figure 4) 248.4k 96 × 48 × 64 288 × 144 108.2k 47.7 20.2 5.3 - 4 3dp 82.8 19.2 9.6

Interaction (Figure 10) 355.3k 96 × 48 × 64 288 × 144 49.6k 54.4 23.2 5.5 0.6 - - - - -

Pouring (Figure 12) 242.1k 96 × 64 × 64 288 × 192 38.7k 41.5 18.4 5.3 - 4 2dp 74.5 18.9 9.7

Waterfall (Figure 11) 212.9k 64 × 64 × 64 192 × 192 40.8k 40.8 16.6 5.2 36.9 - - - - -

TABLE 2 Time performance(in milliseconds) with different parameters in
depth peeling method in pouring scene

#D 𝜆 AN DP AND ANL DPP

1 3dp 21.5 5.6 21.5 0 5.6

2 3dp 20.1 5.8 41.3 17.6 6.2

3 3dp 20.7 5.2 60.8 18.7 8.1

4 3dp 20.2 5.3 82.8 19.2 9.6

5 3dp 21.1 5.5 97.9 21.4 8.9

4 dp 19.9 4.9 79.5 18.9 6.5

4 2dp 20.4 5.1 81.8 19.8 7.6

4 4dp 20.8 5.5 80.7 20.4 9.2

shown in Figure 7. Considering that the visual effects of
detail enhancement are determined by the regression results,
we only record and compare the output of logistic regres-
sion model when it adopts different parameter values, taking
the logistic regression results of the first depth layer of frame
250 in pouring scene as example. Using the parameter listed
in the top right corner of Figure 7 as basic setting, we can
obtain the regression results as Figure 7(a). When setting r as
0.001 and 0.1 and keeping other parameter unchanged, we can
obtain Figure 7(b1) and Figure 7(c1) separately. The differ-
ence between (b1) and (a) is shown in Figure 7(b2); the same
numbering rule is used for other sub-figures. It is remarkable
that only little difference can be observed when we change the
value of parameter r, and the similar thing also happens when
we change other parameter values. This phenomenon can
reflect that our method are insensitive to parameter changes.
Accordingly, to keep simplicity, we use the same parameter
setting in all our experiments, as the basic parameter settings
shown in Figure 7.

Figure 4 shows the simulation results of a dam-breaking
scenario. In this scene, about 10 k diffuse particles are gen-
erated nearby the wave crack, indicating the spray, foam, and
small bubbles. As the fluid moves fiercely, the diffuse parti-
cles move correctly along with the wave. We can observe that
the scale of the generated diffuse particles closely relates to
the height (determining the value of depth buffer at each grid)
and velocity of the fluid.

Our method is also effective for a fluid–solid coupling
scene, as shown in Figure 8. A sphere is moving periodically
on the fluid surface, pushing water aside and forming a small
wave. Diffuse particles are generated according to the analysis
result; these foams represent the trapped air in water, showing
the trail of the sphere’s movement; such details cannot be cap-
tured without diffuse materials (as shown in the second row).

The third row shows the involved different types of diffuse
particles, which mainly represent foams (colored in blue).

Figure 9 shows a waterfall scene. As the water stream falls
down rapidly, the analysis result indicates complex interaction
happens, wherein the diffuse materials are generated due to
the complex interaction with the underlying terrain. Compar-
ing with the result without diffuse particle simulation (refer
to the second row), our method enhances the simulation plau-
sibility by adding spray, bubble, and foam. This scene also
demonstrates the effectiveness of our analysis for large-scale
simulation. In comparison with Lipeng et al.,21 our method
ignores the smoke-like sprays; nonetheless, we are able to
simulate spray, bubble, and foam in a unified framework,
which indicates that our method is more flexible and has a
stronger capability for more complex scenarios.

Figure 10 demonstrates a pouring scene, where two vio-
lent above-water-level streams are spouted into the water tank
on the right and another two streams on the left are injected
from underwater. As the streams pouring down over the water
from the right, numerous spray particles are generated to
enhance the visual details. Furthermore, when streams flow-
ing into the water volume, it is expected that plentiful bubbles
should appear. Comparing with the depth peeling involved
result (illustrated in the first row), we can clearly see that
the simulation results without depth peeling cannot faith-
fully exhibit impetuous torrent of underwater (refer to the
second row), which definitely looks less realistic. The same
things happen in Figure 11, where the sea waves roll over
surfaces again and again. Without depth peeling, we cannot
deal with the details under the overlapping sea waves, and the
bubbles would not appear under the sea surface even if the
undercurrents have great velocities (refer to the first column
of Figure 11).

In order to evaluate how the parameters of depth peel-
ing impact the simulation results, we conduct some exper-
iments with sharp contrast in Figure 12. Considering the
water-pouring scene as an example, the first line of Figure 12
has a varying distance threshold (𝜆 = dp,2dp,3dp,4dp, and
5dp) for each pass of depth peeling. As we can see, when the
number of peeling layer is fixed, particles (after each depth
peeling) with small distance threshold may cause incomplete
diffuse materials below the water level (refer to Figure 12(a)),
while the results would not improve gradually as the dis-
tance threshold value grows constantly, and even over-fitting
phenomena may appear (see Figure 12(e)). If we make the
distance threshold 𝜆 be constant and set the number of depth
layers #D to range from 1 to 5, the second line of Figure 12

QIU ET AL. 13

FIGURE 7 The logistic regression results of the first depth layer of frame 250 in pouring scene with different parameter settings. (a) The regression result

with basic parameter settings; the parameter values are shown in the top right corner, the first and the third columns show the regression results with specific

parameter settings (documented below the corresponding sub-figure), the second and the fourth columns show the difference between sub-figure (in the first

and the third columns) and sub-figure (a). Warm color indicates high value and vice versa. The basic and suggested parameter values used in the experiment

are given in the top right corner

FIGURE 8 The interaction effects between solid and water. The first row shows simulation result with diffuse materials, the second row shows the original

FLIP simulation result, and the third row shows the classification of diffuse materials

can be obtained. As shown in Figure 12(f–g), too few lay-
ers may influence the experimental results; however, too
many layers are meaningless for a certain scene, because

no obvious performance improvement could be recognized
from Figure 12(h–j), while the computational cost increases
significantly.

14 QIU ET AL.

FIGURE 9 Waterfall. Liquid stream is pouring down into a tank of water, with generated spray, bubble, and foam (refer to the first row), and the second row

shows the original simulation result of FLIP method

FIGURE 10 Pouring water into a water tank from the right (above the water level) and injecting water from the left (below the water level). Depth peeling is

used in the first row, while the second row shows the result using the surface information only. The original FLIP simulation result is illustrated in the last row

Figure 13 shows the comparison between our method and
that in Ihmsen et al.1 Comparing with Ihmsen et al.,1 our
method defines completely different criteria to facilitate dif-
fuse material generation and can achieve competitive visual
effects. It may be noted that Ihmsen et al.,1 requires extract-
ing surface particles and computing the local curvature from
the neighboring particles, which is more suitable for densely
sampled fluids. In sharp contrast, our method does not rely
on the particles’ information when computing the fluid sur-
face curvature and other features. Directly benefiting from
our time–space analysis, the results evolve continuously dur-
ing the simulation (please refer to Video S1). Moreover, our
method has a significant improvement in terms of efficiency,
primarily benefiting from our image-space-based GPU algo-
rithmic architecture. However, when the method in Ihmsen
et al.1 is implemented on GPU, its diffuse particle generation
and simulation costs around 30 ms for a scenario involving
100 k fluid particles.

According to Figures 10 and 11, it is easy to observe
that, when fluid occlusion happens, without depth peeling the
depth buffer can only capture the surface information, and
thus cannot generate diffuse materials around the occluded
fluid surface and inside water volume as well. However, after
introducing depth peeling technology, we can obtain the depth
and velocity information as deep as we desire inside the fluid
volume through flexible parameter control, which affords us
a new way for underwater analysis and enables us to handle
more scenes even with fluid occlusion and overlapping phe-
nomena. On the other hand, even though using depth peeling
could improve the visual effect for detail enhancement to a
great extent, it necessarily increases the computational cost
for peeling and analysis.

In order to analyze how the adopted gird size can influ-
ence the visual effect, as shown in Figure 14, we take
frame 350 of the pouring scene as example to show the
experiment results under different grid sizes. Suppose that

QIU ET AL. 15

FIGURE 11 Sea waves are rolling over surfaces again and again in this scene. The first row illustrates the simulation results with depth peeling, but in the

second row no layer has been peeled. In the third row, FLIP method is employed only

FIGURE 12 The first row shows the simulation results corresponding to different distance thresholds (𝜆) for one-time depth peeling, while the second row

shows the simulation results corresponding to different passes of depth peeling (#D) for one-time depth peeling

FIGURE 13 The comparison of the results from our paper (top two rows) and that from Ihmsen et al.1 (bottom two rows)

the total size of this scene is represented as 1.5 × 1 × 1,
and the FLIP grid resolution is calculated using the total
size divide by grid size. As shown in Figure 14, the
grid size can significantly influence the FLIP simulation
results. Considering that our diffuse particle generalization

method is actually based on the FLIP fluid simulation results,
the final visual effects will be affected by the grid size.
However, as shown in Figure 14, no matter what the grid
size is, the fluid details can be enhanced properly with
our model.

16 QIU ET AL.

FIGURE 14 Comparison of the results based on different fluid implicit particle grid sizes. The total size of this scene is supposed as 1.5 × 1 × 1. (a) The

grid size is set as 1/32. (b) The grid size is set as 1/48. (c) The grid size is set as 1/64. (d) The grid size is set as 1/80

8 CONCLUSION AND FUTURE WORK

In this paper, we have detailed a novel integrated frame-
work for diffuse material animation and its visual detail
enhancement by introducing a new analysis-and-simulation
approach. The technical essence of our novel approach is the
unification of time–space analysis in image domain and 3D
physical simulation, built upon a CUDA-centric computa-
tional framework. The key innovation is that the geometry-
and physics-based criteria, together with time–space inte-
grated strategy, can be coupled into a logistic regression
model. Moreover, the depth peeling method could improve
the applicability and reality of visual detail enhancement
beneath fluid surface and help us overcome difficulties when
handling underwater scenes caused by fluid occlusion. Our
method showcases the detail enhancements of complex fluid
interaction phenomena and affords detail-preserving inter-
action while guaranteeing high efficiency even for scenes
with 212.9 k liquid particles and 40.8 k diffuse particles.
The involved data-driven analysis method and diffuse mate-
rial simulation can be integrated into other fluid simulation
grid-based method with very little extra workload, because
our approach only depends on the captured depth buffer
and certain local information during simulation. However,
it is still difficult to apply depth peeling to grid-based
method unless particles are automatically combined with the
grid like FLIP, while generalizing depth peeling scheme to
particle-based fluid algorithm is simple.

Our ongoing efforts include directly extending our
time–space analysis model to process video data recording
real fluid, which should offer more realistic diffuse material
and more detail-informative free surfaces with better visual
effects. Our novel approach is also readily available to be inte-
grated with other available VR techniques to handle other
types of visual data. In addition, the two-way coupling simula-

tion between diffuse materials and liquid also deserves further
investigation.

ACKNOWLEDGMENT

This research is supported by the National Natural Sci-
ence Foundation of China (61190120, 61190125, 61190124,
61300067, 61672077, 6167214, 61602341, and 61532002).
We also thank the anonymous reviewers for their constructive
critiques.

REFERENCES

1. Ihmsen M, Akinci N, Akinci G, Teschner M. Unified spray, foam and air
bubbles for particle-based fluids. Vis Comput. 2012;28(6–8): 669–677.

2. Losasso F, Talton J, Kwatra N, Fedkiw R. Two-way coupled sph and particle
level set fluid simulation. IEEE TVCG. 2008;14(4): 797–804.

3. Kim J, Cha D, Chang B, Koo B, Ihm I. Practical animation of turbulent
splashing water. Proc. of SCA’06, Vienna, Austria; 2006. p. 335–344.

4. Mihalef V, Metaxas D, Sussman M. Simulation of two-phase flow with
sub-scale droplet and bubble effects. Comput Graph Forum. 2009;28(2):
229–238.

5. Takahashi T, Fujii H, Kunimatsu A, Hiwada K, Saito T, Tanaka K, Ueki H.
Realistic animation of fluid with splash and foam. Comput Graph Forum.
2003;22(3): 391–400.

6. Losasso F, Gibou F, Fedkiw R. Simulating water and smoke with an octree
data structure. ACM SIGGRAPH, Los Angeles, California, USA; 2004. p.
457–462.

7. Adams B, Pauly M, Keiser R, Guibas LJ. Adaptively sampled particle fluids.
ACM Trans Graph. 2007;26(3): 481–487.

8. Goswami P, Schlegel P, Solenthaler B, Pajarola R. Interactive SPH simula-
tion and rendering on the GPU. Proc. of SCA’10, Madrid, Spain; 2010. p.
55–64.

9. Krog ØE, Elster AC. Fast GPU-based fluid simulations using SPH. In
Manninen P, Öster P, eds. Applied Parallel and Scientific Computing,
vol. 7134, Springer, Helsinki, Finland; 2012. p. 98–109.

10. Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M. SPH fluids in
computer graphics. Eurographics 2014-State of the Art Reports; 2014. p.
21–42.

QIU ET AL. 17

11. Lipeng Y, Shuai L, Aimin H, Hong Q. Realtime two-way coupling of
meshless fluids and nonlinear FEM. Comput Graph Forum. 2012;31(7):
2037–2046.

12. Monaghan JJ. Smoothed particle hydrodynamics. Annu Rev Astron Astro-
phys. 1992;30(1): 543–574.

13. Müller M, Charypar D, Gross M. Particle-based fluid simulation for inter-
active applications. Proc. ACM SIGGRAPH/Eurographics Symp. Computer
Animation, San Diego, California, USA; 2003. p. 154–159.

14. Zhu Y, Bridson R. Animating sand as a fluid. ACM Trans Graph. 2005;24(3):
965–972.

15. Enright D, Marschner S, Fedkiw R. Animation and rendering of complex
water surfaces. ACM Trans Graph. 2002;21(3): 736–744.

16. Foster N, Fedkiw R. Practical animation of liquids. Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’01; New York, NY, USA; 2001. p. 23–30. ACM.

17. Gerszewski D, Bargteil AW. Physics-based animation of large-scale splash-
ing liquids. ACM Trans Graph. 2013;32(6): 185:1–185:6.

18. Ando R, Thurey N, Tsuruno R. Preserving fluid sheets with adaptively
sampled anisotropic particles. IEEE Trans Vis Comput Graph. 2012;18(8):
1202–1214.

19. Selino A, Jones MD. Large and small eddies matter: Animating trees in
wind using coarse fluid simulation and synthetic turbulence. Comput Graph
Forum. 2013;32(1): 75–84.

20. Cornelis J, Ihmsen M, Peer A, Teschner M. Iisph-flip for incompressible
fluids. Comput Graph Forum. 2014;33(2): 255–262.

21. Lipeng Y, Shuai L, Aimin H, Hong Q. Hybrid particle-grid modeling for
multi-scale droplet/spray simulation. Comput Graph Forum. 2014;33(7):
199–208.

22. Um K, Baek S, Han J. Advanced hybrid particle grid method with subgrid
particle correction. Comput Graph Forum. 2014;33(7): 209–218.

23. Hong J-M, Lee H-Y, Yoon J-C, Kim C-H. Bubbles alive. ACM SIGGRAPH,
Los Angeles, California, USA; 2008. p. 48:1–48:4.

24. Hong J-M, Kim C-H. Animation of bubbles in liquid. Comput Graph Forum.
2003;22(3): 253–262.

25. Zheng W, Yong J-H, Paul J-C. Simulation of bubbles. Proc. of SCA’06,
Vienna, Austria; 2006. p. 325–333.

26. Boyd L, Bridson R. Multiflip for energetic two-phase fluid simulation. ACM
Trans Graph. 2012;31(2): 16:1–16:12.

27. Nielsen MB, Osterby O. A two-continua approach to eulerian simulation of
water spray. ACM Trans Graph. 2013;32(4): 67:1–67:10.

28. Patkar S, Aanjaneya M, Karpman D, Fedkiw R. A hybrid
Lagrangian-Eulerian formulation for bubble generation and dynamics. Proc.
ACM SIGGRAPH/Eurographics Symp. Computer Animation, Anaheim,
California, USA; 2013. p. 105–114.

29. Müller M, Solenthaler B, Keiser R, Gross M. Particle-based fluid-fluid inter-
action. Proc. of SCA’05, Los Angeles, California, USA; 2005. p. 237–244.

30. Solenthaler B, Pajarola R. Density contrast SPH interfaces. Proc. of SCA’06,
Vienna, Austria; 2008. p. 211–218.

31. Threy N, Sadlo F, Schirm S, Mller-Fischer M, Gross M. Real-time sim-
ulations of bubbles and foam within a shallow water framework. ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007;
San Diego, California, USA, August; 2007. p. 191–198.

32. Ihmsen M, Bader J, Akinci G, Teschner M. Animation of air bubbles with
SPH. GRAPP, Vancouver, Canada; 2011. p. 225–234.

33. Losasso F, Talton J, Kwatra N, Fedkiw R. Two-way coupled SPH and par-
ticle level set fluid simulation. IEEE Trans Vis Comput Graph. 2008;14(4):
797–804.

34. Bagar F, Scherzer D, Wimmer M. A layered particle-based fluid model for
real-time rendering of water. Comput Graph Forum. 2010;29(4): 1383–1389.

35. Changbo W, Qiang Z, Fanlong K, Hong Q. Hybrid particle-grid fluid
animation with enhanced details. Vis Comput. 2013;29(9): 937–947.

36. Hammond DK, Vandergheynst P, Gribonval R. Wavelets on graphs via
spectral graph theory. Appl Comput Harmon A. 2011;30: 129–150.

37. Narang SK, Ortega A. Compact support biorthogonal wavelet filterbanks for
arbitrary undirected graphs. IEEE TSP. 2013;61(19): 4673–4685.

38. Xu L, Lu C, Xu Y, Jia J. Image smoothing via l0 gradient minimization. ACM
Trans Graph. 2011;30(6): 174:1–174:12.

39. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. ICCV,
Bombay, India; 1998. p. 839–846.

40. He K, Sun J, Tang X. Guided image filtering. IEEE Trans PAMI. 2013;35(6):
1397–1409.

41. Everitt C. Interactive order-independent transparency. White Paper.
2001;7(7-8): 491–503.

42. Abraham M. Transparency and antialiasing algorithms implemented with the
virtual pixel maps technique. IEEE Comput Graph Appl. 1989;9(4): 43–55.

43. Diefenbach PJ. Pipeline rendering: Interaction and realism through
hardware-based multi-pass rendering; 1996. IRCS Technical Reports.

44. Bernardon FF, Pagot CA, Comba JLD, Silva CT. Gpu-based tiled ray casting
using depth peeling. J Graph Tools. 2006;11(4): 1–16.

45. Nagy Z, Klein R. Depth-peeling for texture-based volume rendering.
Proceedings of the 11th Pacific Conference on Computer Graphics and
Applications, PG ’03; IEEE Computer Society, Washington, DC, USA; 2003.
p. 429–433.

46. Borland D. Volumetric depth peeling for medical image display. Proceed-
ings of SPIE - The International Society for Optical Engineering. 2006;6060:
606004–606004–11.

47. Fang L, Mengcheng H, Xuehui L, Enhua W. Bucket depth peeling. Inter-
national Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 2009, August 3–7, 2009, Talks Proceedings; New Orleans,
Louisiana, USA; 2009. p. 1–1.

48. Cagniart C, Boyer E, Ilic S. Probabilistic deformable surface tracking from
multiple videos. ECCV, Hersonissos, Heraklion, Crete, Greece; 2010. p.
326–339.

49. Khan ZH, Gu I. Y.-H.. Bayesian online learning on Riemannian mani-
folds using a dual model with applications to video object tracking. ICCV
Workshops, Barcelona, Spain; 2011. p. 1402–1409.

50. Ciocca G, Cusano C, Schettini R. Image orientation detection using
LBP-based features and logistic regression[J]. Multimedia Tools and Appli-
cations. 2015;74(9): 1–22.

51. Carmi A, Septier F, Godsill SJ. The Gaussian mixture MCMC par-
ticle algorithm for dynamic cluster tracking. Automatica. 2012;48(10):
2454–2467.

52. Van der Laan WJ, Green S, Sainz M. Screen space fluid rendering with
curvature flow. Proc. of I3D, Boston, USA; 2009. p. 91–98.

53. Van der Laan WJ, Green S, Sainz MA. Screen space fluid rendering with
curvature flow. Proc. of I3D, Boston, USA; 2009. p. 91–98.

54. Bagar F, Scherzer D, Wimmer M. A layered particle-based fluid model for
real-time rendering of water. Comput Graph Forum. 2010;29(4): 1383–1389.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in
the supporting information tab for this article.

How to cite this article: Qiu, Y., Yang, L., Li, S.,
Xia, Q., Qin, H., and Hao, A. (2016), Novel Fluid
Detail Enhancement based on Multi-Layer Depth
Regression Analysis and FLIP Fluid Simulation,
Comp Anim Virtual Worlds, doi:10.1002/cav.1741

http://dx.doi.org/10.1002/cav.1741

18 QIU ET AL.

AUTHORS BIOGRAPHIES

Yuxing Qiu is now a graduate student
at the State Key Laboratory of Virtual
Reality Technology and Systems, Bei-
hang University, China. Her research
interests include computer graphics,
physics-based modeling and simula-
tion, particularly in fluid.

Lipeng Yang received his PhD degree
in Computer Science from at the
State Key Laboratory of Virtual Real-
ity Technology and Systems at Bei-
hang University, China. His research
interests include computer graphics,
physics-based modeling and simula-

tion, fluid simulation, and virtual surgery simulation.

Shuai Li received his PhD degree
in cComputer sScience from Beihang
University. He is currently an assistant
professor at the State Key Laboratory
of Virtual Reality Technology and Sys-
tems, Beihang University. His research
interests include computer graphics,

physics-based modeling and simulation, virtual surgery sim-
ulation, computer vision, and medical image processing.

Qing Xia is now a PhD candidate at
the State Key Laboratory of Virtual
Reality Technology and Systems, Bei-
hang University, China. His research
interests include computer graphics,
physics-based modeling, geometry
modeling, and processing and shape

analysis.

Hong Qin is a full professor of Com-
puter Science in the Department of
Computer Science at Stony Brook Uni-
versity (SUNY). He received his BS
and his MS degrees in Computer Sci-
ence from Peking University, China.
He received his PhD in Computer Sci-

ence from the University of Toronto. Currently, he serves
as an associate editor for The Visual Computer, Graphical
Models, and Journal of Computer Science and Technology.
His research interests include geometric and solid modeling,
graphics, physicsbased modeling and simulation, computer
aided geometric design, human-computer interaction, visual-
ization, and scientific computing.

Aimin Hao is a professor in Com-
puter Science School and the associate
director of State Key Laboratory of Vir-
tual Reality Technology and Systems
at Beihang University. He received his
BS, MS, and PhD degrees in Com-
puter Science at Beihang University.

His research interests are on virtual reality, computer simula-
tion, computer graphics, geometric modeling, image process-
ing, and computer vision.

	Novel fluid detail enhancement based on multi-layer depth regression analysis and FLIP fluid simulation
	Abstract
	INTRODUCTION AND MOTIVATION
	RELATED WORK
	Diffuse material simulation
	Data-specific analysis methods
	Depth peeling techniques

	ALGORITHMIC OVERVIEW
	Brief FLIP review

	TIME–SPACE ANALYSIS
	Depth image sequence capture
	Guided filter-based space analysis
	Regression-based time–space analysis
	Depth peeling method
	Regression-based level analysis

	DIFFUSE MATERIAL SIMULATION
	Seeding ofdiffuse particles
	Advection ofdiffuse particles

	CUDA-BASED IMPLEMENTATION
	Guided filter-based space analysis
	Regression-based time–space analysis
	Depth peeling andlevel analysis
	Diffuse particle seeding
	Diffuse particle advection

	EXPERIMENTS, EVALUATIONS, andDISCUSSIONS
	CONCLUSION AND FUTURE WORK
	References

