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FLIP Fluid Interaction
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Abstract

This paper advocates a novel integrated method to tightly couple
simulation with analysis for the effective modeling and enhance-
ment of scale-aware fluid details. It brings forth a suite of
innovations in a unified framework, including depth-image-based
space analysis for multi-scale detail detection, time-space analysis
based on the logistic regression model that integrates both geometry
and physics criteria, and depth-image-based sampling for quality-
efficiency tradeoff. Our method contains an intertwined two-level
processing architecture at its core. At the analysis level, we
propose a rigorous time-space analysis model to pinpoint complex
interacting regions, which can take into account multiple detail-
relevant factors based on the depth-image sequence captured from
FLIP-driven simulation sequence. At the simulation level, details
are enhanced by animating extra diffuse materials, and augment-
ing the air-fluid mixing phenomenon. Directly benefitting from
the flexibility of image-space-dominant processing, our unified
framework can be entirely implemented on GPU, hence interactive
performance could be guaranteed. Comprehensive experiments
and evaluations on various diffuse phenomena (e.g., spray, foam,
and bubble) have demonstrated its superiority in high-fidelity
detail enhancement during fluid simulation and its interaction with
surrounding environment for VR applications.

CR Categories: I.3.5 [Computational Geometry and Object
Modeling]: Physically based modeling—;

Keywords: Fluid Detail Enhancement, Time-space Analysis
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1 Introduction and Motivation

During the past two decades, physically-based fluid simulation has
become a rapidly-evolving research topic in many virtual reality
(VR) applications, wherein various methods have been developed
in response to different motivations, including single phase fluid
simulation, multiple fluid interaction, two-way fluid-solid coupling,
etc. With the growing demand for physical realism and interactive
cross-scale detail enhancement, such as splash, spray, and other
diffuse materials [Losasso et al. 2008; Ihmsen et al. 2012], the
systematic and comprehensive studies of fluid detail simulation are
beginning to regain popularity with great and revived momentum.

Although accuracy is the key concern in computational fluid
dynamics, visual fidelity and efficiency are more important in
graphics, animation and many other VR applications. For the
visual fidelity improvement, the state-of-the-art methods oftentimes
resort to various space-grid refinement or denser particle sampling

∗e-mail:lishuai@buaa.edu.cn, State Key Laboratory of Virtual Reality
Technology and Systems, Beihang University.

schemes in physical simulation. Considering the unavoidable
increase of computational expenses, adaptive sampling methods are
more favorable, such as octree-grid [Losasso et al. 2004], adaptive
SPH [Adams et al. 2007], etc. Meanwhile, parallel methods on
multi-core CPUs or GPU are also developed in order to reduce
the ever-increasing computational cost [Goswami et al. 2010; Krog
and Elster 2012], while still improving visual quality. From the
perspective of pure simulation, other key ideas to enhance details
include handling different materials separately (such as air and
liquid) and simulating the crucial interaction [Takahashi et al. 2003;
Kim et al. 2006; Mihalef et al. 2009] in a physically-plausible
fashion.

Despite the recent success of diffuse material simulation, certain
difficulties still prevail and need to be addressed for high-fidelity
region detection for fluid details in a more efficient way. First, most
of the detail detection criteria depend on the correct identification of
accurate fluid surface, which is too time-consuming to be precisely
detected in any physics-driven real-time applications. Meanwhile,
spatially-local analysis criteria, such as curvature and velocity
variance, are usually combined manually with many parameters,
which are hard to be fine tuned for different phenomena. Second,
most of the criteria are hard to pinpoint scale-aware details, wherein
the details are mostly determined by probability-biased parameters
and their ad hoc combination. Third, the state-of-the-art analysis
methods tend to ignore the informative time-domain knowledge,
which is crucial for fluid detail detection and prediction.

Our rationale is that, pure physics-based simulation may fall short
in fluid detail enhancement during interaction, unless significantly
increased computational expenses could be afforded. Hybrid
strategies, which integrate simulation and analysis, must be ex-
plored towards high-fidelity fluid interaction while not sacrificing
computational efficiency drastically. This paper attempts to offer a
viable solution to tackle the aforementioned technical challenges.
We articulate a novel integrated analysis-centric approach by
rigorously analyzing the acquired data. In particular, we are
proposing to utilize a depth buffer sequence captured during
simulation as an indicator of fluid surface. By analyzing the time-
space features in image space, we expect to correctly identify
the fluid-detail regions and then simulate the diffuse materials
to augment the air-fluid interacting phenomena. Through the
integration of simulation and analysis, we are hoping to achieve
the competing goals of high-fidelity fluid detail enhancement
and computational efficiency for VR applications. The salient
contributions of this paper can be summarized as follows:

• We propose a time-space analysis model based on logistic
regression to integrate the geometric, physical and temporal
factors for fluid details detection while avoiding complex
parameter tuning.

• We propose to bridge simulation and analysis via the utility
of dynamically-captured depth buffer data, which is both low-
cost and versatile for quality-efficiency tradeoff.

• We develop a seeding method for diffuse particle generation,
which only relies on the depth buffer and analysis results,
making it applicable to both particle and grid based simulation
methods.

• We design specific GPU-based algorithms to implement our
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entire simulation framework in parallel.

2 Related Work

In recent years, there have been many methods developed to sim-
ulate fluids, including Smoothed Particle Hydrodynamics (SPH)
method [Monaghan 1992; Müller et al. 2003; Ihmsen et al. 2014],
Fluid Implicit Particle (FLIP) method [Zhu and Bridson 2005], and
Level Set methods [Enright et al. 2002; Foster and Fedkiw 2001],
etc. Our approach is based on FLIP method, which combines
particle-based representation with grid-based solver. FLIP method
was introduced in computer graphics by [Zhu and Bridson 2005],
and then was extended to simulate splashing water [Gerszewski
and Bargteil 2013], preserve fluid sheet [Ando et al. 2012],
conduct fluid-solid coupling [Selino and Jones 2013], combine
with particle method [Cornelis et al. 2014], model multi-scale
droplet/spray [Yang et al. 2014], etc. Lately, [Ando et al. 2012] and
[Cornelis et al. 2014] respectively proposes methods to improve the
particle distribution of FLIP method.

Closely relevant to the central theme of this paper, we now briefly
review previous works in diffuse material simulation and data-
specific analysis.

Diffuse Material Simulation. Diffuse material simulation is
crucial in fluid detail simulation and enhancement, especially for
the large-scale fluid phenomenon having complex interaction with
air.

Detecting diffuse materials is straightforward for grid-based meth-
ods, since the surface of liquid can be easily tracked. Existing
works essentially measure geometric information to generate s-
plash, foam, and bubble using curvatures [Takahashi et al. 2003],
markers escaped from surface [Kim et al. 2006; Losasso et al.
2008; Hong et al. 2008], etc. To exploit the ignored velocity
information, [Mihalef et al. 2009] presents a Weber number
threshold based filtering method to avoid the detail loss of the
marker level set method by introducing a physical factor into the
criteria. Meanwhile, some other works regard air as a separate
phase fluid and simulate the interaction between liquid and air
directly, including volume-of-fluid [Hong and Kim 2003], regional
level set [Zheng et al. 2006], MultiFLIP [Boyd and Bridson 2012],
two-continua approach [Nielsen and Osterby 2013], etc. [Patkar
et al. 2013] proposes a hybrid method for bubbles, using level set
method to simulate large bubbles while employing particle method
to represent small bubbles.

As for particle-based methods, analyzing the diffuse materials is
not trivial, because the precise fluid surface is not easy to be
detected and extracted. To simulate the water-air interaction,
[Müller et al. 2005; Solenthaler and Pajarola 2008] dynamically
generate air particles by analyzing the geometric properties of
liquid surface, and propose a two-phase SPH model. Although
being capable of obtaining improved visual results, their methods
still have problems when the density ratio between air and liquid is
large. To ameliorate, [Ihmsen et al. 2011] simulates the bubbles and
liquids separately by differentiating the regions where air is likely
trapped with a velocity-based heuristic criterion. [Bagar et al. 2010]
detects foam particles from regular liquid particles based on the
velocities of particles, which involves no foam simulation. To unify
spray, foam, and air bubble, [Ihmsen et al. 2012] proposes a post-
processing model to generate and advect the diffuse materials for
SPH fluids, wherein the diffuse regions are detected by analyzing
the curvatures and velocities of SPH particles. Although such
scheme avoids expensive inter-particle computation, it heavily
relies on the proper detection of surface particles and the curvature
calculation over surface particles.
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Figure 1: The pipeline of each simulation cycle.

Data-Specific Analysis Methods. Image-specific analysis meth-
ods are commonly used to enhance image details, which in
our method will be employed to detect the complex interacting
regions in depth-images. Most recently, some researchers produced
plausible results in image smoothing and detail enhancement, such
as data-specific wavelet [Hammond et al. 2011; Narang and Ortega
2013], L0 gradient minimization based smoothing [Xu et al. 2011],
etc. However, the computational costs of these methods are
expensive and not suitable for interactive VR applications. Guided
image filtering is an optimization-based image filtering method
proposed in [He et al. 2013], which can be exactly and efficiently
computed. Compared with the widely used bilateral filter [Tomasi
and Manduchi 1998], guided filter is more generic and has a better
trade-off on accuracy and efficiency.

To integrate time-domain information into our method, we refer
to time-space analysis, which is commonly utilized in video
object tracking. The relevant techniques include Bayesian mod-
el [Cagniart et al. 2010; Khan and Gu 2011], logistic regres-
sion [Ciocca et al. 2013], Gaussian mixture model [Carmi et al.
2012], etc. Our detail region detection is similar with video tracking
in the aspects that both time and space information are crucial,
but our aim is to guarantee the continuous evolution of enhanced
regions. It is appropriate to use the logistic regression to combine
multiple time-space factors in order to obtain the probability of each
pixel in depth buffer, indicating whether it should be enhanced.

3 Algorithmic Overview

Fig. 1 illustrates the entire algorithmic flow of our method. Each
simulation cycle starts with regular FLIP, by way of analyzing
the captured result we enhance fluid details via animating diffuse
materials. We outline the algorithm as follows:

FLIP Update. Compute the density, pressure, force for each fluid
particle, and then update its velocity and position.

Depth Capture. Capture and store the depth buffer dynamically
from the top view point with an orthogonal virtual camera.

Space Analysis. Analyze the 2D depth buffer spatially with data-
specific guided filter to obtain the geometric features.

Time-Space Analysis. Integrate temporal information and spatial
analysis result into a logistic regression model to obtain the scale-
aware criteria for detail enhancement.

Diffuse Particle Generation and Simulation. Generate diffuse
particles based on the analysis results, then advect them according
to the material-specific rules.

Rendering. Render the scene with POV-Ray software.
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3.1 Brief FLIP Review

Since our model is based on the adaptive FLIP model [Ando et al.
2012], we now briefly review the basic idea of fluid simulation,
FLIP model, and its possible improvement. Fluid dynamics are
essentially based on Navier-Stokes equations (N-S equations) that
conserve both mass and momentum:

∂ρ

∂t
+ ρ∇ · u = 0, (1)

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ µ∇2u + f , (2)

where ρ is the density, u is the velocity, p is the pressure, and f is
the external force.

In FLIP model, fluid is discretized as particles, and traditional
Eulerian method is employed to solve the N-S equations instead.
Unlike Particle-in-Cell (PIC) method, the velocity changes on
grid, rather than computing the velocity on grid directly from
the aforementioned equations, the grid velocity is interpolated
from surrounding particles. As a result, the numerical dissipation
problem is avoided, making FLIP more suitable for violent fluid
simulation.

To alleviate the noisy-like behaviors of FLIP, similar to [Zhu and
Bridson 2005], we linearly blend the PIC and FLIP velocities via

v = avFLIP + (1− a)vPIC , (3)

where the blending factor a is set to be 0.95 in all of our
experiments.

Besides, the original FLIP method suffers from the uneven distribu-
tion of particles, which is often solved by re-sampling. To improve,
[Ando et al. 2012] proposes a position correcting step, which is
similar to the pressure step in SPH. Since re-sampling is avoided
in [Ando et al. 2012], the particle number is kept unchanged in
the simulation. Thus it can easily make the FLIP method retain
SPH-like mass-conserving features. It should be noted that, the
mass conservation is critical to our hybrid model together with
the stability of the FLIP method for accommodating varying-scale
particles.

4 Time-space Analysis

4.1 Depth Image Sequence Capture

As shown in Fig. 1, the depth buffer is captured at the end of each
regular FLIP update cycle. Similar to [Van der Laan et al. 2009]
(but with a downward orthogonal camera at the top of the scene),
we render the particles as spheres, and then capture the depth buffer
from frame buffer. The captured depth buffer is stored as texture
first, and then is mapped into GPU memory as 2D array, which is
the basis of conducting analysis. The depth buffer actually forms
a 2D projected grid in simulation domain, which enables us to
extract velocity field and seed diffuse particles. Meanwhile, we
also keep a record of some sequential frame buffers to analyze the
temporal information involved in the dynamics of the underlying
fluid surface.

The resolution of captured depth buffer is crucial to the tradeoff
of the analysis quality and computational cost. An appropriate
resolution could accommodate sharp/fine features on the fluid
surface while guaranteeing efficiency. We will discuss our res-
olution selection strategy and demonstrate the results of different
resolutions in Section 7.

4.2 Guided Filter based Space Analysis

Geometric features of fluid surface is critical to determining where
the details should be enhanced. By converting the fluid surface
feature detection to a problem of depth image analysis, it can not
only reduce the scale of computation but also take advantages of
the abundance of techniques developed in image processing. We
employ the content-specific guided filter [He et al. 2013] to perform
detail detection. The key idea of guided filter is to develop a filter
kernel that can be applied onto the input image to produce a new
image. In our framework, we apply its smoothing function to obtain
smoothed depth buffers, whose differences could pinpoint scale-
aware detail region with the high-frequency characteristics.

We assume there is a local linear transformation between guidance
image I and output q in a window wk centered at the pixel k,

qi = akIi + bk, ∀i ∈ wk, (4)

where ak and bk are linear coefficients. To determine ak and bk,
we minimize the difference between q and the input image p,

E(ak, bk) =
∑
i

((akIi + bk − pi)2 + εa2k), (5)

where ε is a regularization parameter, and we define the guidance
image I and the input image p with the same depth buffer.

Then ak, bk can be directly solved by linear regression as

ak =

1
|w|

∑
i∈wk

Iipi − µkp̄k
σ2
k + ε

, (6)

bk = p̄k − akµk, (7)

where µk and σ2
k are the mean and variance of I in wk, |wk| is the

number of pixels in window wk, and p̄k is the mean of p in wk.

After that, q can be computed using Eq. 4. Since each pixel i
belongs to all the windows centered at the surrounding pixels k,
we average ak, bk to guarantee consistency.

qi =
1

|w|
∑

k:i∈wk

(akIi + bk) = ākIi + b̄k, (8)

where āk and b̄k are the mean of ak and bk in window wi. We
compute the differences of smoothed multi-scale depth buffers to
obtain potential detail features, which reside in the high-frequency
regions of the fluid surface (refer to Fig. 2(b)). The window sizewk
allows us to identify features of different scales (refer to Fig. 7 and
our supplementary video).

4.3 Regression-based Time-space Analysis

Besides the aforementioned geometric features, we further exploit
velocity field as a physical criterion to determine the detail region.
Specifically, we only need the velocities at the projected grid nodes,
which can be extracted by finding the fluid particles around each
node and computing the weighted sum of the fluid velocities.
Fig. 2(c) shows the examples of the extracted velocity field.

Once we obtain the geometric and velocity information of depth
image, we need to combine them together to form a criterion,
which indicates the regions where diffuse materials are prone to
generate. To complete this task, we explore the logistic regression
model, which is a classic machine learning model to estimate the
probability of binary response based on one or more predictor
variables. In our method, logistic regression model takes the

105



(a) (b)

(c) (d)

Figure 2: Time-space analysis results. (a) The captured depth
buffer, (b) The space analysis result, (c) Velocity field, (d) Time-
space analysis result.

geometric and physical information as inputs, and generates a
probability for each pixel in depth image, indicating its probability
of generating diffuse material. We define a logistic function to
compute the probability that a depth buffer pixel should fall in a
detail region: hθ(x) = 1/(1 + exp(−

∑n
j=1 θjxj)), where xj

represents all the factors (including velocity field v, which could be
obtained from the spatial analysis result) taken into consideration,
and θj is the corresponding coefficient to be learned.

The same as the classic logistic regression model, we use maximum
likelihood estimation to learn the coefficients θj , so the cost
function in our model is as follows,

Es =− 1

m

m∑
i=1

[y(i) log hθ(x
(i)) + (1−

y(i)) log(1− hθ(x(i)))] + r||θ||2.

(9)

Here m denotes the number of samples, which is the number of
pixels in the image, y(i) denotes the probability of i-pixel position
that should be enhanced, and r is a user-defined coefficient to
prevent θ from being too large. By minimizing the Es in Eq. 9
using gradient descent method, we can obtain the coefficients θj .

However, in the temporal aspect, the features of fluid are changing
continuously, we expect the adjacent detected features would not
differ too much. So we introduce a regularization penalty item
to measure the inconsistency between adjacent frames, Et =∑m
i=1(y(i) − yt)2, where yt is the analysis result of the previous

frame.

By integrating the above aspects, the proposed cost function is
formulated as follows:

E = Es + µEt, (10)

where µ is a non-negative trade-off parameter. Considering y and θ
are the independent variables to be learned from Eq. 10, we employ
the gradient descent approach to minimize the cost function, which
can be formulated as follows:

θn+1
j = θnj − α1

∂

∂θj
E = θn − α1[

1

m
m∑
i=1

(hθ(x
(i))− y(i))x(i)j + 2rθj ],

(11)

`

Figure 3: Diffuse particle seeding.

yn+1 = yn − α2
∂

∂y
E = yn−

α2(−
n∑
j=1

θjxj + 2µ(yn − yt)).
(12)

In each simulation step, y and θ are initialized with the result from
the previous step, while at the first step, y is set as 0, and θ is 1. In
all experiments, r is 0.01, µ is 5.0, α1 is 0.1, and α2 is 0.01. By
iterating θ and y until they converge, we obtain y to finally indicate
whether a pixel of depth buffer (i.e., a node on the projected grid)
is in the detail regions or not. The algorithmic details are shown in
Algorithm 1 and Section 6. Fig. 2(d) shows our time-space analysis
results as an example.

5 Diffuse Material Simulation

After determining the detail regions by time-space analysis, we
seed diffuse particles correspondingly to augment the complex air-
fluid interaction, and then advect them with the flow of fluid. This
simulation strategy is similar to [Ihmsen et al. 2012], but we have
modified the method to accommodate FLIP framework and GPU
acceleration.

5.1 Seeding of Diffuse Particles

To be consistent with the time-space analysis result, we seed diffuse
particles directly around the nodes of grid projected by depth buffer.
For each projected grid node, we calculate the number of diffuse
particles to be seeded and their 3D positions in the simulation space,
and then seed the diffuse particles randomly around the projected
grid node. Fig. 3 illustrates this process, the red point represents
a pixel in depth buffer (i.e., a node on the projected grid), the
square with dotted line shows the spatial range of seeding, and
the dark points denote the generated diffuse particles. We utilize
the depth image to generate diffuse particles, rather than relying
on the particle distribution [Ihmsen et al. 2012], which reduces the
computational time.

The newly generated diffuse particles are given an initial velocity
vdp to flow with the surrounding fluid particles. Meanwhile, we
add a small random disturbance to avoid uniform movement of
the diffuse particles via vdp = vf + vrandom, where vf denotes
velocity of nearby fluid, vrandom is the disturbing velocity.

Meanwhile, to efficiently model the dissolution of the diffuse
materials, we initially set a life time tlife = ||vf || for each
diffuse particle, which is related to the velocity of surrounding fluid
particles vf . In each simulation step, we decrease tlife when the
diffuse particle is classified as a foam particle, and if tlife ≤ 0,
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bubble spray foam

Figure 4: The classification of diffuse particles (red for spray
particles, green for bubble particles, and blue for foam particles).
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Figure 5: The data structure to store the dynamic array of diffuse
particles.

we remove the particle. The diffuse particle classification will be
described in Section 5.2. Although this lifetime model is simple to
be implemented and can reflect the crack of bubbles and foams, but
it ignores the complex physical factors such as temperature, size
and material, which still may bring some artifacts in the simulation.

5.2 Advection of Diffuse Particles

To advect diffuse particles, we classify them into spray, foam, and
bubble, which correspond to different advection formulations. This
can be realized by computing the liquid particle number in the
neighboring volume. In our experiments, when a diffuse particle
is apart from the fluid surface and flying in the air, it is empirically
classified as spray particle. When the particle is floating around the
surface, it is classified as foam particle. While the particle is under
the fluid surface, it is regarded as bubble particle. Fig. 4 illustrates
a result of this classification method.

Air bubbles mean that air is trapped inside the liquid, which are
mainly affected by buoyancy force and drag force from liquid
particles. The drag force is determined by the relative velocities
between the bubble particles and the liquid particles, the buoyancy
force is enforced in the opposite direction of gravity acceleration g.

fdp = kd(vdp − vf )− kbg, (13)

where kdp, kb correspond to the coefficients of drag force and
buoyancy force, the subscript dp is always associated with a
variable of diffuse particle.

Foam particles represent the foam at the surface of fluid, they are
mainly affected by the drag force kd(vdp − vf ) due to the flowing
of liquid. Spray particles indicate the liquid particles that depart
from the liquid volume, and they are only affected by the gravity
force mdpg. Meanwhile, all the diffuse particles will be affected
by a coupling force if they collide with solids in the scene. At last,
the velocity and position can be updated based on Euler Integration.

6 CUDA-based Implementation

Since FLIP based simulations have been implemented on GPU
efficiently [Yang et al. 2014], in the interest of space we only
detail GPU implementation for the depth buffer based analysis and
diffuse particle seeding/advection, which collectively guarantee the
interactive performance of our framework. Algorithm 1 documents

the pseudocode, and we detail the implementation challenges and
solutions as follows.

Algorithm 1: Analysis-based Detail Enhancement

1 capture the depth buffer d directly from scene.
2 smooth d with guided filter method.
3 compute the difference dif .
4 compute the velocity field v.
5 initialize y, θ;
6 while not converged do
7 while not converged do
8 update θ with Eq. 11

9 while not converged do
10 update y with Eq. 12

11 seed diffuse particles at the projected grid node according to d and
y.

12 partition the array by thrust library.
13 advect all the diffuse particles with positive tlife.

Guided Filter based Space Analysis. Guided filter method is
suitable for GPU parallelization, mainly because each pixel is only
related to its surrounding pixels. We invoke a CUDA kernel for
each pixel, compute ωi, µi according to the surrounding pixels, and
then compute ak, bk and store them in global memory cache. We
invoke another kernel to compute the output image q and compute
the difference simultaneously.

Regression-based Time-space Analysis. The key steps of time-
space analysis are shown on line 5-10 of Algorithm 1. We need
two kernel functions for line 8 and line 10, both of them will
invoke a kernel thread for each pixel’s parallel computation. In the
first kernel function, we compute

∑m
i=1(hθ(x

(i)) − y(i)) with the
parallel sum reduction, and then update θ and verify whether the
convergence condition is satisfied. In the second kernel function,
we update y for each pixel in a parallel way. When the computation
is completed, the analysis result y is stored in the GPU array to be
used in the following steps.

Diffuse Particle Seeding. Since diffuse particles are dynamically
generated from projected grid according to the analysis results, we
must design an appropriate data structure management on GPU to
improve the algorithmic efficiency. We first estimate a maximum
number of diffuse particles nseed that each projected grid node
may produce, and also estimate a maximum number of the diffuse
particles nmax with positive tlife to be handled simultaneously in
the animation. Then we allocate memory for nseed ∗nnode+nmax
diffuse particles as shown in Fig. 5, where nnode denotes the
number of projected grid nodes.

In each simulation cycle, we invoke a CUDA thread for each node
of the projected grid, in which we produce diffuse particles around
the node (refer to Fig. 3), and further set the velocities and life
time respectively. The generated diffuse particles are dynamically
inserted into the data structure as shown in Fig. 5, forming a sparse
array. We then employ the thrust library to partition the array,
moving the particles with positive duration time to the head of the
array. At last, we invoke a thread for each particle to count the valid
diffuse particles nnow, which is required in advection and rendering
steps.

Diffuse Particle Advection. For diffuse particle advection, we
invoke one thread for each particle to update the force, velocity, and
position. Specifically, we utilize the fast neighborhood searching
algorithm to find the surrounding fluid particles of diffuse particles,
and then compute the average velocity of the neighboring fluid
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(a) (b) (c)

Figure 6: Results corresponding to different resolutions. The
resolution in simulation space is 140×60, and the depth buffer
resolutions are: (a) 700×300, (b) 140×60, (c) 70×30.
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Figure 7: Our scale-aware analysis results.

particles (by using Eq.13). Meanwhile, we update the life time of
diffuse particle in this thread. If the life time of a diffuse particle
is negative, it will be overwritten after the partitioning operation,
without explicitly deleting it.

7 Experiments and Evaluations

We have implemented our method on a PC with a Geforce GTX 780
GPU, Intel Core I7 CPU based on C++, CUDA, and GLSL APIs.
For the issue of determining the resolution of depth buffer, we find
the best analysis result is achieved when each pixel of depth buffer
represents almost one particle, which means the width of depth
buffer can be computed by wdb = wscene/(dp), wherein wscene
denotes the width of scene and dp is the diameter of fluid particle.
From top to bottom, Fig. 6 shows the results of the captured depth
buffer, guided filter based space analysis, time-space analysis, and
simulation. Column (a) shows that higher-resolution results fail
to represent the required local geometric information, while only
reflecting the sphere shapes of particles in rendering. Meanwhile,
the computational cost is more expensive compared with (b), which
is the best in our experiments. Column (c) shows lower-resolution
results, where the surrounding pixels involve analysis across a long
distance in the simulation space. To handle details of different
scales simultaneously, we detect guided filter features with different
window sizes (|wk| = 52, 112, or 152), then synthesize the
corresponding results together as the final detected features. As
shown in Fig. 7, our result reveals scale-aware features effectively.

Table 1 lists the statistics for the average testing time (in mil-
liseconds) of each simulation cycle. We document the number of

Table 2: Parameter values used in our experiments.

Parameters Values
ε (Eq.5) 0.01
µ (Eq.10) 5.0
r (Eq.9) 0.01
α1 (Eq.11) 0.1
α2 (Eq.12) 0.01
kd (Eq.13) 1.0
kb (Eq.13) 5.0

FLIP particles (#FP) and the maximum number of diffuse particles
(#DP MAX) for each case. To be clear, (DP) is the time spent
on diffuse particle generation and advection, (DB resolution) refers
to depth buffer resolution, and (Other) is the time for deformable
solid simulation and fluid-solid coupling. In comparison with
the computational time of FLIP simulation, the overhead of our
time-space analysis and diffuse material simulation is small, while
improving the visual effects significantly. Table 2 documents the
parameter values used in our experiments.

Fig. 8 shows the simulation results of a dam-breaking scenario. In
this scene, about 10k diffuse particles are generated nearby the
wave crack, indicating the spray, foam, and small bubbles. As
the fluid moves fiercely, the diffuse particles move correctly along
with the wave. We can observe the scale of the generated diffuse
particles closely relates to the height (determining the value of
depth buffer at each grid) and velocity of the fluid.

Our method is also effective for a fluid-solid coupling scene, as
shown in Fig. 9. A sphere is moving periodically on the fluid
surface, pushing water aside and forming a small wave. Diffuse
particles are generated according to the analysis result, these
foams represent the trapped air in water, showing the trail of the
sphere’s movement, such details can not be captured without diffuse
materials (as shown in the second row). The third row shows the
involved different types of diffuse particles, which mainly represent
foams (colored in blue).

Fig. 10 demonstrates a pouring scene, where four violent streams
are spouted into the water tank. As the streams move, numerous
spray particles are generated to enhance the visual details.

Fig. 11 shows a waterfall scene. As the water stream falls down
rapidly, the analysis result indicates complex interaction happens,
wherein the diffuse materials are generated due to the complex
interaction with the underlying terrain. Comparing with the result
without diffuse particle simulation (refer to the second row),
our method enhances the simulation plausibility by adding spray,
bubble, and foam. This scene also demonstrates the effectiveness
of our analysis for large-scale simulation. In comparison with
[Yang et al. 2014], our method ignores the smoke-like sprays,
nonetheless, we are able to simulate spray, bubble, and foam in
a unified framework, and our method is more efficient.

Fig. 12 shows the comparison between our method and that
in [Ihmsen et al. 2012]. Comparing with [Ihmsen et al. 2012],
our method defines completely different criteria to facilitate diffuse
material generation, and can achieve competitive visual effects.
It may be noted that, [Ihmsen et al. 2012] requires extracting
surface particles and computing the local curvature from the
neighboring particles, which is more suitable for densely sampled
fluids. In sharp contrast, our method does not rely on the particles’
information when computing the fluid surface curvature and other
features. Directly benefitting from our time-space analysis, the
results evolve continuously during the simulation (please refer to
our supplementary video). Moreover, our method has a significant

108



Table 1: Time performance (in milliseconds) of our experiments.

Scene #FP Grid resolution (FLIP) #DP MAX DB resolution FLIP Analysis DP Other
Dam-break (Fig. 8) 248.4k 96×48×64 288×144 108.2k 47.7 20.2 5.3 -
Interaction (Fig. 9) 355.3k 96×48×64 288×144 49.6k 54.4 23.2 5.5 0.6
Pouring (Fig. 10) 242.1k 96×64×64 288×192 38.7k 41.5 18.4 5.3 -

Waterfall (Fig. 11) 212.9k 64×64×64 192×192 40.8k 40.8 16.6 5.2 36.9

Figure 8: Dam-breaking simulation. The first row shows the diffuse material simulation result, while the second row shows the classification
of diffuse particles.

Figure 9: The interaction effects between solid and water. The first row shows simulation result with diffuse materials, the second row shows
the original FLIP simulation result, and the third row shows the classification of diffuse materials.
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Figure 10: Pouring water into a water tank.

Figure 11: Waterfall. Liquid stream is pouring down into a tank of water, with generated spray, bubble, and foam (refer to the first row), and
the second row shows the original simulation result of FLIP method.
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Figure 12: The comparison of the results from our paper (top two
rows) and that from [Ihmsen et al. 2012] (bottom two rows).

improvement in terms of efficiency, primarily benefitting from our
image-space-based GPU algorithmic architecture. However, when
the method in [Ihmsen et al. 2012] is implemented on GPU, its
diffuse particle generation and simulation costs around 30ms for a
scenario involving 100k fluid particles.

The main limitation of our method is that we use a 2D depth buffer
to estimate the 3D fluid surface information, when fluid occlusion
happens, the depth buffer is not accurate, and thus our model cannot
generate diffuse materials around the occluded fluid surface.

8 Conclusion and Future Work

In this paper, we have detailed a novel integrated framework
for diffuse material animation and its detail enhancement by
introducing a new analysis-and-simulation approach. The technical
essence of our novel approach is the unification of time-space
analysis in image domain and 3D physical simulation, built upon
a CUDA-centric computational framework. The key innovation is
that, the geometry and physics based criteria, together with time-
space integrated strategy, can be tightly coupled into a logistic
regression model. Our method showcases the detail enhance-
ments of complex fluid interaction phenomena, and affords detail-
preserving interaction while guaranteeing the high efficiency even
for scenes with 212.9k liquid particles and 40.8k diffuse particles.
The involved data-driven analysis method and diffuse material
simulation can be integrated into any grid-based method with
very little extra workload, because our approach only depends
on the captured depth buffer and certain local information during
simulation.

Our ongoing efforts include directly extending our time-space
analysis model to process video data recording real fluid, which
should offer more realistic diffuse material and more detail-
informative free surfaces with better visual effects. Our novel
approach is also readily available to be integrated with other
available VR techniques to handle other types of visual data.
In addition, the two-way coupling simulation between diffuse
materials and liquid also deserves our further investigation.
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