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ABSTRACT
Coherent X-ray scattering is an emerging technique for mea-
suring structure at the nanoscale. Data management and
analysis is becoming a bottleneck in this technique. We
present an unsupervised method which can sort and clus-
ter the scattering snapshots, uncovering patterns inherent in
the data. Our algorithm operates without resorting to tem-
plates, specific noise models, or user-directed learning. We
test our methods using scattering images of two-dimensional
nanoparticle assemblies. The experimental results show the
effectiveness of our algorithm on real world scientific data.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
I.4.9 [Image Processing and Computer Vision]: Appli-
cations; I.5.4 [Pattern Recognition]: Computer Vision

General Terms
Algorithms and Experimentation

Keywords
Nanoparticle Assemblies, AHK, EMD

1. INTRODUCTION
X-ray scattering is a collection of experimental techniques

that can quantify structural order at the atomic, molecular,
and nano-scale. These techniques consist of directing a high-
intensity, collimated beam of X-rays at a sample of interest,
and measuring the intensity of scattered X-rays as a func-
tion of angle; typically through the use of two-dimensional
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detectors. These scattering “images” non-trivially encode
the details of structural order. Coherent X-ray scattering is
a variant wherein a small coherence beam is scanned over
a sample surface; the coherent scattering image encodes the
local ordering illuminated by the beam. As X-ray technolo-
gy improves, modern instruments are able to generate data
at an ever-increasing pace.

Manually clustering/discovering new patterns through the
large sets of snapshots is extremely time-consuming; in many
cases the wealth and diversity in datasets makes it impossi-
ble for a human experimenter to rigorously analyze. There-
fore it is necessary to have an unsupervised and robust clus-
tering algorithm to automatically solve the pattern discov-
ery problem across these datasets. The clustering algorithm
needs to solve the following challenges when applying usu-
al statistical techniques to X-ray scattering snapshots: 1)
it remains unknown what kind of particular features are
informative for the clustering task; 2) under X-ray illumi-
nation, assembly projection may rotate, therefore the snap-
shots may provide different slices through three-dimensional
spaces; and 3) the snapshots may be corrupted by detectors
artifacts, such as image saturation and background burst.

In this paper, we propose an unsupervised, effective and
stable algorithm for clustering the scattering snapshots, with
the following contributions:

1. Our approach is based on spectral clustering (Section
2) [10] [9], which captures nonlinear correlations within
a dataset to cluster the scattering snapshots.

2. We explore the Earth Mover’s Distance (EMD) [13]
which has desired properties in revealing snapshot dis-
tance, and integrate it into our clustering algorithm.
We combine EMD with Gaussian kernel, called Earth
Mover’s Similarity (EMS, Section 3), which allows for
partial matching that is highly effective to deal with
2D snapshot occlusions and clutters.

3. Particularly, we apply an advanced spectral clustering,
called Aggregated Heat Kernel (AHK, Section 4) [6],
which can maximize the intra-cluster similarity while
avoiding the influence from noise and artifacts.

4. Our novel algorithms for 2D scattering pattern anal-
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ysis combines AHK and EMD in a systematic frame-
work (Section 5).

5. The proposed framework does not rely on any tem-
plate, specific noise model, or user-directed learning.

6. Experimental results (Section 6) show that our algo-
rithm can effectively sort and cluster the scattering
snapshots from nanoparticle assembly.

2. SPECTRAL CLUSTERING

Algorithm 1: SpectralClustering(X, c)

Input: X ∈ Rn×m where n is the
#instances(snapshots), m is #attributes, and c
is #clusters.

Output: Cluster assignments of n instances.
1 Construct the affinity matrix W ∈ Rn×n using

W(GAU)(i, j) = exp(−||x(i)− x(j)||/2σ2) ;

2 Compute the diagonal matrix D ∈ Rn×n where
D(i, i) =

∑n
j=1W (i, j) and D(i, j) = 0 if i 6= j ;

3 Compute the graph Laplacian L with Lnn = D −W ,

Lrw = I −D−1W or Lsym = I −D−1/2WD−1/2 ;
4 Compute the first c nontrivial eigenvectors ψ of L,
ψ = {ψ1, ψ2, . . . , ψc} ;

5 Re-normalize the rows of ψ ∈ Rn×c into

Yi(j) = ψi(j)/(
∑
l ψi(l)

2)1/2 ;

6 Run k-means with c and Y ∈ Rn×c.

Among a variety of clustering algorithms, we focus on
spectral clustering (Algorithm 1), which gained popularity
in the last decade in the data mining community because of
its ability to discover embedded data structures. Spectral
clustering has a strong connection with graph cut, i.e., it
uses eigenspace to solve the relaxed forms of the balanced
graph partitioning problem [10]. Another advantage is that
it can capture the nonlinear manifold structure, which is
difficult for many other cluster algorithms, such as k-means
[5] and the other linear methods.

In 2011, Yoon et.al applied spectral clustering on single-
particle X-ray diffraction snapshots [16]. Each of the snap-
shots/instances in spectral clustering is represented by a fea-
ture vector x(i) ∈ R1×m. The final vectors Y represent
the global manifold structure of the entire snapshot dataset.
Here spectral clustering exploits similarity between snap-
shots to discover the embedded dimensions. Therefore, the
embedded structure captured in Step 5 (normalized eigen-
vectors) is highly dependent on the affinity matrix construct-
ed in Step 1 and Step 2, and the normalization in Step 3.

However, there are three challenges with similarity mea-
surement on the 2D nanoparticle assembly snapshots:

1. It is not easy to find the informative features to eval-
uate similarity between two different snapshots;

2. Those snapshots containing noise and artifacts, and
the selection of scaling parameter σ in Gaussian kernel
(Step 1 in Algorithm 1) could affect clustering results
radically because of their influence on the neighbor-
hood information in the affinity matrix;

3. The sampling density of each type of nanoparticle as-
sembly could be different, which could incur negative
effects across clusters during clustering.

In our research, we explore the use of two advanced tech-
niques to solve these challenges: Earth Mover’s Distance (to
solve challenge 1), and Aggregated Heat Kernel (to solve
challenge 2 and 3).

3. EARTH MOVER’S SIMILARITY
Earth mover’s distance (EMD) [13] was introduced in com-

puter vision and applied in many other fields as a high-
ly adaptable distance measurement that can be tweaked to
closely match human perception [1]. It interprets a feature
vector as a distribution of earth which needs to be trans-
formed (or moved) to another distribution of earth (i.e. fea-
ture vector). The reported distance between two feature
vectors is derived from the minimum mapping of one vector
to the other, where each mapping is measured in terms of
the amount of transported earth multiplied by the unit cost
of moving from its source to its destination [1].

In other words, EMD considers not only feature difference
in those matching dimensions - as many other distance met-
rics such as Euclidean distance would do - but also the dif-
ference between non-matching dimensions. This gives EMD
an advantage as EMD allows for partial matching in a very
natural way, which is of importance in dealing with the
occlusions and clutter that occur in scattering snapshots.
Therefore, by using EMD we can measure variance between
the snapshots of nanoparticle assembly, without manually
extracting specific features.

Computing EMD can be formalized as a linear program-
ming problem [13]: denote the first snapshot with m rows
as P = (p1, wp1), ..., (pm, wpm), where pi is the row repre-
sentation and wpi is the weight of the row; the second snap-
shot Q = (q1, wq1), ..., (qn, wqn) is denoted in the same way.
D = [d(i, j)] is the ground distance matrix where d(i, j) is
the ground distance between rows pi and qj . In our im-
plementation we apply 2-norm distance as ground distance.
EMD needs to find a flow F = [f(i, j)], with f(i, j) the flow
variable between pi and qj that minimizes the overall cost:

WORK(P,Q,F) =

m∑
i=1

n∑
j=1

f(i, j)d(i, j) ,

which subjects to the following constraints:

f(i, j) ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n
n∑
j=1

f(i, j) ≤ wpi , 1 ≤ i ≤ m

m∑
i=1

f(i, j) ≤ wqj , 1 ≤ j ≤ n

m∑
i=1

n∑
j=1

f(i, j) = min(

m∑
i=1

wpi ,

n∑
j=1

wqj ) .

According to the analysis in [13], the first constraint allows
moving “supplies” from P to Q and not vice versa. The next
two constraints limit the amount of supplies sent by the rows
in P to be less than their weights wpi , and allow no more
supplies received by the rows in Q than their weights wqi .
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The last constraint forces to move the maximum amount of
supplies possible. This amount is called “total flow”. Once
the transportation problem is solved with the solution of the
optimal flow F, the EMD can be subsequently defined as the
total cost normalized by the total flow:

E(P,Q) =

∑m
i=1

∑n
j=1 f(i, j)d(i, j)∑m

i=1

∑n
j=1 f(i, j)

, (1)

where the normalization factor in the denominator is intro-
duced in order to obtain stable results.

However, we need to use similarity instead of distance
measurement in spectral clustering. Therefore we combine
EMD into the normal Gaussian kernel, and derive a new
kernel, which we call Earth Mover’s Similarity (EMS):

W(EMS)(P,Q) = exp(
−E(P,Q)

2σ2
) . (2)

Although EMS matches the human perception (i.e. per-
ceptual similarity) of images better than other similarity
measurements, we still need a more “manifold-aware” and
“density-aware” approach to assemble the snapshots with
similar nanoparticle assembly structures, but with different
rotation angles. In the next section, we introduce Aggregat-
ed Heat Kernel [6] to achieve these goals.

4. AGGREGATED HEAT KERNEL
In this section, we integrate Green’s function and Laplace-

Beltrami Normalization into our framework to achieve better
manifold-aware and density-aware properties, especially for
the snapshots with similar nanoparticle assembly structure
but different rotation angles. Specifically we apply Aggre-
gated Heat Kernel (AHK) [6] in the research.

4.1 Green’s Function
Green’s function[3] [15] is an infinite time scale analysis.

It can be derived from heat kernel through applying infi-
nite integral along the entire time dimensions. Huang et al.
proposed AHK [6] that is built upon Green’s function, and
applied it to design a more robust spectral clustering. The
kernel function used in [6] is defined as:

W(AHK)(i, j) =
∑
k

[
1

λk + γ
ψk(i)ψk(j)

]
, (3)

where ψ and λ are the eigenvectors and eigenvalues extracted
from the graph Laplacian L = ψ′λψ which derived from
the (normalized) affinity matrix W , and γ is a smoothing
factor. The most significant benefit of Equation 3 is that
it takes all possible paths with the entire time dimensions
into consideration [6]. Specifically it has great potential to
connect the snapshots with similar nanoparticle assembly
structure together.

4.2 Laplace-Beltrami Normalization
It is important to find the best way of graph Laplacian

for AHK. It is shown in [8] that if we assume uniform sam-
pling of data points from a sub-manifold M, the eigenvec-
tors of Lrw with σ → 0 and n → ∞ tend to approximate
the Laplace-Beltrami operator on M and guarantee to re-
construct the manifold structure. However, in reality, data
samples are inclined to be non-uniform and show skewed
density distributions, resulting in a poor manifold recon-
struction in AHK. To mitigate the distribution sensitivity

of random walk (RW) normalization, the following two ad-
ditional normalizations are considered:

W (α) = D−αWD−α, (4)

L(α) = I −D(α)−1
W (α), (5)

where α is a normalization factor and D(α) is a diagonal
matrix with the sum of row weight of W (α).

• If α = 0, L(0) = Lrw (random walk normalization).

• If α = 1/2, then it is Fokker-Planck (FP) diffusion.

• If α = 1, it is Laplace-Beltrami normalization (LBN).

The relations among these three normalizations are well de-
scribed in [4]. Depending on α, LBN can also be reduced
to RW or FP diffusion. In particular, we focus on LBN
because it removes the influence of dataset density and re-
covers manifold structures onM with the condition of both
σ → 0 and n → ∞ [4]. In other words, the additional
re-normalization of W enables us to reconstruct manifold
structures even under non-uniform density distribution. As
a result, our clustering results can also be less sensitive to
noise, artifacts, and scaling parameter such as σ.

4.3 Properties of AHK
It is worth to notice that AHK has the following contri-

butions: 1) It is more robust and less sensitive to noise or
artifacts than other regular kernels. 2) To mitigate the bi-
ased contribution of the denominator from some extremely
small eigenvalues λ, AHK introduces a smoothing term γ
in Equation 3 to make the computation more stable. 3) To
relieve the non-uniform density distribution effect, AHK em-
ploys Laplace-Beltrami normalization (LBN) [6] which can
remove the influence of dataset density and recover the Rie-
mannian manifold under skewed density distribution. In
other words, AHK enables better and more stable mani-
fold reconstruction, especially under noise, parameter dis-
turbance, and non-uniform density distribution. Therefore
in theory it guarantees the strong adjacency (similarity) be-
tween snapshots with similar nanoparticle assemblies.
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Figure 1: Comparison of the 50 nearest neighbor re-
trieval (in red) of the green cross point using Gaus-
sian kernel (1(a)) and AHK (1(b)). Obviously AHK
shows better manifold-aware property.

Figure 1 shows a side-by-side comparison of 50 nearest
neighbor retrieval of the green cross point with Gaussian k-
ernel (Step 1 in Algorithm 1) and AHK (Equation 3). We
can observe that AHK performs better in capturing the un-
observed manifold structure of Gaussian kernel. This results
come from not only the well reconstructed manifold by E-
quation 3, but also the relaxation of non-uniform density
distribution with the proper LBN.
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5. EMS-AHK CLUSTERING ALGORITHM

Algorithm 2: EMS-AHK(X, c)

Input: X is a collection of n snapshots and c is
#clusters.

Output: Cluster assignments of n snapshots.
1 Construct the affinity matrix W(EMS) ∈ Rn×n using

Equation 2 ;
2 Perform Laplace-Beltrami normalization LLBN on
W(EMS);

3 Compute generalized eigenvectors ψi and the
corresponding eigenvalues λi, i = 1, 2, ..., n ;

4 Construct W(AHK) matrix with ψi and λi using
Equation 3 with γ = 0.001 ;

5 Compute the first nontrivial c eigenvectors Ψ of
W(AHK), Ψ = {Ψ1,Ψ2, . . . ,Ψc};

6 Run k-means with c and Ψ ∈ Rn×c.

We describe our algorithm framework in Algorithm 2.
First of all, it computes the similarity between each snapshot
pair by using EMS (Step 1). Second, it undergoes a data
warping process by using LBN and AHK (Step 2-4). Then
we perform eigen-decomposition (Step 5) and construct the
embedding projection (Step 6). K-means algorithm is used
in the last step (Step 7) for final clustering results.

We select three typical snapshots of nanoparticle assem-
bly, and rotate each of them with 10 different angles. Figure
2(a), 2(b) and 2(c) show some of the three types of snap-
shots with different angles. Figure 2(d) shows different ways
of embedding reconstruction. The projection derived from
NJW [10] using Gaussian kernel (Figure 2(d1), Gau-NJW)
apparently organizes the snapshots with the same pattern
within a circular shape. Comparably, Gaussian kernel with
subsequent AHK (Figure 2(d2), Gau-AHK) provides more
compact embedding structure w.r.t. Gau-NJW. However, it
is hard to separate the red and green clusters of snapshot.
EMS is aware of the difference between the circular-shaped
red and green cluster. Hence in Figure 2(d3) (EMS-NJW),
the three clusters have clear separation between each oth-
er. Nonetheless, EMS incorrectly amplifies the differences of
snapshots generated from the same pattern but with differ-
ent rotation angles, and breaks one class into two separated
classes. AHK statistically depicts the traces of all random
walk, and thereby has an intrinsic potential to assemble all
the similar snapshots with angles that continuously change.
Therefore it is shown in Figure 2(d4) that, EMS-AHK is
the best choice for clustering coherent X-ray scattering s-
napshots, which maximizes the intra-cluster similarity while
minimizing the inter-cluster similarity.

6. EXPERIMENTAL ANALYSIS

6.1 Data Set Generation and Preprocessing
The soft X-ray scattering measurements were performed

at the Canadian Light Source scanning transmission X-ray
microscope (STXM) [7]. The 700 eV photon energy with
monochromaticity of 5, 000 resolving power was chosen as
the best compromise between flux delivered to sample, high
efficiency of focusing optics Fresnel zone plate (FZP) with
45 nm outermost zone width, negligible parasitic scatter-
ing through optical sorting aperture and desired sample-to-

optics distance. The spot size at the sample position was
increased to 200 nm (so that several nanoparticles were il-
luminated at once). The sample cell consisted of thin Si3N4

windows (50 nm thickness, and frame size of 250 µm) coated
with dried nanoparticle dispersion. This cell was set perpen-
dicular to the beam at a short distance behind the zone plate
focus. An in-vacuum back-illuminated CCD camera (Andor
DX) was placed 40 mm behind the sample, covering an an-
gular range up to a reciprocal vector of 1 nm−1. To extend
the camera dynamic range exposures with short (10 ms) and
long (200 ms) dwell times were stitched to provide a single
scattering image with appreciable scattering intensity ex-
tending to a reciprocal vector of 0.4 nm−1. The sample was
raster-scanned through the X-ray spot with 100 nm steps so
that illuminated areas of adjacent acquisition positions are
overlapped. A typical scan covers a 2× 2 µm portion of the
samples. Several representative regions were measured.

The dataset analyzed consisted of 3, 778 scattering snap-
shots. Our aim is to cluster these snapshots and discover
useful patterns of nanoparticle assembly. Prior to analysis,
we have three steps of preprocessing: 1) normalize snapshot-
s by dividing each pixel with the maximum intensity of the
snapshot; 2) enhance snapshot contrast by transforming the
values of intensity, so that the histogram of the output snap-
shot approximately matches a specified (default) histogram;
3) downsample snapshots to 200× 200 pixels (still sufficient
so that each individual speckle in the image covers several
pixels) in order to keep computational time reasonable while
computing EMD.

6.2 Experiment Details
Even though in our implementation we adopted a fast ver-

sion of EMD [12], the computation is still time-consuming.
To make the algorithm more efficient, we only compute EMD
within k nearest neighbor (k-nn) with k = 20 in a Euclidean
space. In other word, for each snapshot we only compute
the EMS to the 20 nearest snapshots in Euclidean space.
The k-nn affinity construction then creates 36, 663 edges.

EMS (Equation 2) was used to construct the affinity ma-
trix. To control the scaling parameter adaptively and at the
same time preserve local density information, we compute
the average EMD between each snapshot to its q-nearest
neighbors, and use this average EMD (noted as σq) to set
the scaling parameter σ in Equation 2. In our experiments
we set q = 10.

After LBN and AHK construction, we plot the first three
nontrivial eigenvectors as shown in Figure 3. According to
the projected space distribution, we set the number of clus-
ters/patterns to be 8. To partition data into discrete clus-
ters, k-means clustering was applied and each cluster was
labeled with different color. Of the total 3, 778 snapshot-
s, black cluster has 1109 snapshots, yellow cluster has 679
snapshots, purple cluster has 493 snapshots, brown cluster
has 458 snapshots, light blue has 356 snapshots, dark blue
has 257 snapshots, red cluster has 218 snapshots, while green
cluster has 208 snapshots.

6.3 Evaluation Metric
In order to evaluate the reliability of the clustering results,

we manually labeled 200 randomly selected snapshots. Each
snapshot has only one label according to their visual simi-
larity to the 8 patterns we found in Figure 3. We use these
labels as ground truth for our result evaluation.
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(a) Type 1 (b) Type 2 (c) Type 3 (d) Four different Embedding Projections

Figure 2: Three typical snapshots of nanoparticle assembly, marked as red (2(a)), green (2(b)) and blue (2(c))
respectively. Four different ways of embedding projection are shown in 2(d1) (by Gau-NJW), 2(d2) (by Gau-
AHK), 2(d3) (by EMS-NJW), and 2(d4) (by EMS-AHK). Obviously EMS-AHK provides more cluster-aware
embedding structure.

Since now we have the ground truth labels for the 200 s-
napshot, we compare our clustered results with these labels.
We use several widely used evaluation metrics in our exper-
iment (e.g., purity, normalized mutual information (NMI)).
Due to space limitation, NMI is used as our only evaluation
metric listed in this paper because most of the clustering al-
gorithm papers make use of NMI as their primary evaluation
metric. The definition of NMI can be referred to [14].

6.4 Results and Analysis
We compare our algorithm (EMS-AHK) to three compet-

itive algorithms: 1) NJW [10] with Gaussian kernel using
Euclidean distance (Gau-NJW [16]); 2) AHK [6] with Gaus-
sian kernel using Euclidean distance (Gau-AHK); 3) NJW
with EMS kernel (EMS-NJW). Table 1 summarizes the NMI
score comparisons, which once again, confirms our observa-
tion in the previous experiments in Figure 2:

1. The difference between Gau-NJW and Gau-AHK shows
that AHK raises the clustering performance 17%. It
substantiates that in this application, AHK maximizes
the intra-cluster similarity while minimizing the nega-
tive influence from noise and artifacts of snapshots.

2. The comparison between Gau-NJW and EMS-NJW
demonstrates that EMS improves the clustering per-
formance 122%, which means that EMS has desired
properties in revealing the intrinsic similarity of co-
herent X-ray scattering snapshots, without manually
selecting informative features.

3. The combination of AHK and EMS, boosts the cluster-
ing performance 150%. Thereby our novel algorithm
can effectively sort and cluster scattering snapshots,
uncovering patterns inherent in the data.

The computational cost of the algorithm is determined
primarily by EMD and eigen-decomposition. The fast im-
plementation of EMD has O(m2logm) time complexity [12],
where m is the number of bins in a single snapshot. In
our implementation, the k-nn approach produces sparse ma-
trices, and the subsequent steps requires less CPU time

for computing EMD and performing eigen-decomposition.
There are many iterative methods to conduct eigenvalue de-
composition (e.g., power iteration [2]), but in general solving
the eigen-decomposition can be reduced to matrix multipli-
cation by computing a symbolic determinant, which has a
running time of O(n3+n2log2n) [11], where n is the number
of snapshots.

7. CONCLUSION
We have presented an unbiased, stable, practical and effec-

tive algorithm for clustering/discovering new patterns through
the experimental 2D snapshots, which are produced by a fo-
cused X-ray beam to probe the local coordination of particles
within the nanoparticle assembly. Our proposed algorithm
is unsupervised without resorting to user-directed learning,
specific noise models, or templates. Therefore it is an es-
sential step in realizing the full potential of the possibility
demonstrated by recent results on nanoparticles. Immediate
future work will be concentrated on improving the efficiency
and accuracy, and constructing local and global coordinates
with the goal of learning the embedding structure of the
snapshot dataset.
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