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ABSTRACT

This paper advocates a method for real-time physical deformation and arbitrary cutting simulation of heterogeneous objects
with multi-material distribution, whose originality centers on the tight coupling of domain-specific finite element method
(FEM) and material distance-aware meshless approach in a CUDA-centric parallel simulation framework. We employ
hierarchical hexahedron serving as basic building blocks for accurate material-aware FEM simulation. Meanwhile, local
meshless systems are designed to support cross-FEM-domain coupling and material-sensitive propagation while respecting
the regularity of finite elements. Directly benefiting from the structural regularity and uniformity of finite elements, our
hybrid solution enables the local stiffness matrix pre-computation and dynamic assembling, adaptive topological updating
and precise cutting reconstruction. Moreover, our mathematically-rigorous solver guarantees unconditional stableness.
Experiments demonstrate the superiorities of our system. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The physical deformation/cutting simulation has been
gaining research interests in recent years. Despite the
growing success, certain difficulties still prevail for high-
fidelity simulation of heterogeneous objects. Key technical
challenges include material-sensitive physical modeling,
cross-material coupling, adaptive material-structure updat-
ing, and sophisticated computational schemes, which are
summarized as follows.

First, most of the popular finite element method (FEM)
methods discretize objects’ physical domain using homo-
geneous elements. However, it is extremely difficult to
model multi-scale heterogeneous object with a single FEM
system supporting the same type/scale of finite elements
because of complex handling of cross-material regions.
Meanwhile, the dynamic updates of material-aware struc-
tures during cutting simulation together with the dynamic
stiffness matrix assembly unavoidably give rise to heavy
computational costs.

Second, even though meshless methods have natural
advantages in accommodating topological changes, when

confronting arbitrary cutting simulation of heterogeneous
materials, its computational cost will drastically increase
because of time-consuming update of global material dis-
tance field. Thus, there remains a large gap between the
meshless flexibility and high FEM accuracy supporting
heterogeneous materials.

Third, when focusing on the efficiency and stableness
of numerical solvers, explicit GPU-based solvers indeed
offer efficiency at the cost of being only conditionally
stable. However, it may be too sensitive to the element
structure, which is not suitable for material-aware strain
kinematic formulations. Therefore, to accommodate stable
material-aware simulation, CUDA-based domain-parallel
implicit solvers are urgently needed.

As illustrated in Figure 1, we present a novel
method to tackle the aforementioned challenges. Specif-
ically, the salient contributions of this paper include the
following:

� We systematically articulate a hybrid framework to
interlink local material-specific FEMs with mesh-
less blending systems. It facilitates the local stiffness
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Figure 1. The flowchart of our method.

matrix pre-computation, dynamic topological updat-
ing and cutting surface reconstruction, and it can
globally propagate the physical behaviors of local
heterogeneous materials during deformation and arbi-
trary cutting simulation.

� We develop a dynamic material distance computing
method for the domain-interlinking regions, which
facilitates both the anisotropic meshless kernel func-
tion calculation and the cross-domain displacement
field smoothing.

� We design a structure-free algorithm based on CUDA
and devise a domain-parallel implicit solver for
numerical integration, which can achieve real-time
performance and stable physical simulation even for
heterogeneous objects.

2. RELATED WORK

Finite element methods. The central idea of finite
element methods is to discretize the physical domain
using tetrahedral [1,2] or hexahedral [3] elements. Most
of real-time FEM approaches are based on linear for-
mulations. For example, Dick et al. [4] proposed a
hexahedra-based FEM method by introducing a multi-grid
solver on GPU. To enable nonlinear large deformation,
Dick [5] extended the co-rotated strain formulation to han-
dle hexahedral elements and achieved linear time complex-
ity. Meanwhile, the Total Lagrangian explicit dynamics
method proposed by Miller et al. rigorously formulates the
non-linear constitutive law [6] and is further extended to
handle anisotropic viscoelastic deformation [7]; however,
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it is conditionally stable. As for FEM-based cutting simula-
tion, it remains challenging in dynamic topological update
and realistic cutting surface reconstruction [8]. Finite ele-
ment subdivision-based method [9] is usually employed
to handle topological update, but it can create severely
ill-conditioned simulation elements. Although Wicked
et al. [10] improved it by using arbitrarily-convex finite ele-
ments, it is even more involved in numerical integration.
Most recently, adaptive regular hexahedron approximation
is used to cutting simulations [4]; however, it can only
handle homogeneous objects.

Meanwhile, FEM model is often solved by employ-
ing either explicit method [7,11] or implicit integration
scheme [4]. To improve this, Chaos et al. [12] proposed
a combination of a geometric material model with a
fully variational geometric integrator, and Fieri et al. [13]
showed how to identify ill-shaped elements hindering
stable numerical time integration. Moreover, based on
element-wise stability considerations, a hybrid method-
ology combining explicit and implicit linear integration
approaches is also proposed in [14].
Meshless methods. In sharp contrast to FEM, meshless
approaches do not require any explicit topological struc-
tures [15,16], wherein physical behaviors are evaluated
with material distance-based radial functions. Taking frac-
ture for example, the material distance within the object
should be dynamically updated in local regions [17], and
Steinmann, Toady, and Gross [18] incorporate the con-
nectivity information into particle-based meshless simula-
tion. Although such methods can offer great flexibility in
adaptive re-sampling, the advantage of meshless methods
usually depends on the complex definitions of the shape
functions. Thus, sparse frame-based models are introduced
by Grilles [19], and then Fauve et al. [16] show that it is
possible to simulate complex heterogeneous objects with
material-aware shape functions-based sparse sampling.
Coupling methods. The idea of coupling Element-free
Gherkin (EFT) and FE methods opens up a new venue
to explore. Bellyache et al. [20] proposed a method to
blend the EFT domain and FE domain by adding a layer
of interface elements. And Rack et al. [21] gave a gen-
eral overview of the coupling of meshless methods with
finite elements.

Besides, multi-domain subspace techniques provide a
flexible solution to reduce the physical model by par-
titioning the deformable object into multiple domains.
Kim and James [22] proposed to couple the domains
using penalty forces for character skinning. However, this
method requires pre-determined motions of local frames
for each domain. Another multi-domain subspace defor-
mation method in [23] relies on shape matching and mass
lumping at the boundary interfaces to handle the cou-
pling issue. Most recently, Yang et al. [24] propose a
boundary-aware mode construction method to character-
ize the deformation subspace of each domain, and Busman
et al. [25] enable mechanical coupling and propagation
of boundary conditions among domains by simulating

the interface with six-degrees of freedoms (Doffs)
mechanical points.

3. METHOD OVERVIEW

As shown in Figure 1, we first focus on the method
overview and its functionalities, which integrate het-
erogeneous material handling and dynamic topologi-
cal change into a new framework by tightly coupling
domain-decomposed FEM and Meshless method.
Material-aware domain decomposition and inter-
link. We conduct material distribution analysis and
decompose the already-labeled volume into independent
homogeneous sub-domains (Figure 2(a)), and construct
octroi-based domain-specific FEM structure (Figure 2(b
and c)). Then we build the material-aware Overlapping
Meshless Domain using the boundary element of the Local
Finite Element Domains (Figure 3). In Figure 3, local
finite element domain (cyan and red lattices) are modeled
by FEM; two distinct colors represent different materials.
Overlapping meshless domain (crosshatch) is modeled by
Element-free Gherkin method (EFGM) composing of dif-
ferent material elements. The vertices of elements simulta-
neously serve as the octroi vertices in finite element system
and the sampling points in meshless system. By forcing the
boundary element to be in the finest level, the Overlapping
Meshless Domain is built by the unified Material-aware
background grid.
Domain-specific FEM modeling. For each homoge-
neous FEM domain, we element-wisely compute local
matrix for Lagrangian equation with the material-specific
element parameters. Benefitting from the structural regu-
larity and uniformity of finite elements, we can pre-store
the local stiffness matrix on GPU and look them up by
domain ID in runtime.
Material-aware EFGM modeling. For each meshless
domain, we generate assistant background grid and cal-
culate the interlinking relationship of the sampling point
set. Because the meshless domain is composed of differ-
ent material elements, we compute the distance field of
sampling point in its influence domain one by one [26].
Figure 2(d) is the construction procedure of material-aware
distance field illustrated in 2D example. Figure 2(e) illus-
trates the accompanying material-aware kernel function.
The aforementioned operation are all executed in parallel
on the GPU for speed up. For example, Figure 4 shows
the simulation comparison of the homogeneous bar and
heterogenous bar (material ratio 6:1:3).
Cross-material domain coupling. During each sim-
ulation loop, each local finite element system is solved
independently. According to the solution, we can obtain
the displacement field of each boundary element. Then
from that, the EFT system in overlapping domain can gen-
erate the material-aware displacement correction result.
Thus, we could predict the correct acceleration of each
local domain that would be applied to the implicit
integration scheme.
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(a) (b)

(c)

(d)

(e)

Figure 2. Octroi-based structure construction.

Figure 3. Meshless domain construction.
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(a) (b)

Figure 4. Deformation of heterogeneous bar.

(a) (b)

(c) (d)

Figure 5. Illustration of cutting modeling.

Cutting simulation. For geometrical structure updating,
we employ element clone method to handle cutting
action (Figure 5). When cutting, we refine the element
intersecting with cutting blade (the cyan elements in
Figure 5(b)), and clone the elements in red to form

the new yellow elements. For meshless system updat-
ing that arises from material distance change, we renew
topological information of cloned element (Figure 5(d))
and generate new distance field, which will be detailed
in Section 4.4.
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4. PHYSICAL SIMULATION

The dynamic behavior of a deformable object could be
described by the Lagrangian equation:

M RuC C PuC Ku D f (1)

where M, C, and K, respectively, denote the mass, damp-
ing, and stiffness matrix of specific domain. The stiffness
matrix and mass matrix of each element can be obtained by

ke D

Z
�e

BT CBd� (2)

me D

Z
�e

�NT Nd� (3)

C is a constant matrix related to material properties,
while B and N, respectively, represent strain matrix and
shape function matrix. Thus, the nodal force vector can
be obtained through fe D

R
�e

NT fd� . With the commonly
adopted Rayleigh damping assumption, we can further
define the damping matrix as C D ˛MCˇK, where ˛ and
ˇ are weighting coefficients.

For FEM-based sub-domains, we divide them into hexa-
hedra. The displacement vector field u within each element
can be approximated via shape functions comprising hex-
ahedral vertex coordinates .x, y, z/, and please refer to [27]
for more detailed discussions.

4.1. Material-Aware Kernel Function

As for overlapping meshless domains, we take the hexa-
hedral element as the assistant background grid to facil-
itate numerical integration. And the displacement u.x/
in the EFT-based domain � is interpolated via moving
least squares (MLS) approximations with circle supporting
region uh.x/ D

P
i w.rx/ui (the purple part of Figure 1).

And the kernel function w.rx/ is defined based on the
material distance rx between the sample point and the inte-
gration point x. Here, we employ a cubic spline function
(Equation (4)) to serve as the basis function of MLS.

w.r/ D

8<
:

2=3 � 4r2 C 4r3 r � 1=2
4=3 � 4rC 4r2 � 4r3=3 1=2 < r � 1
0 r > 1

(4)

Inspired by Dionne and de Lasa [26], we reform
the distance function between two adjoined elements
(Equation (5)) to support multi-material case.

Dmaterial D

�
m0C m1

2

�
� Deuclid (5)

where m0 and m1 are material parameters. By resorting to
the Dijkstra’s algorithm in Equation (5), we could generate
the material-aware distance field and subsequently obtain
the material-aware kernel function for EFGM (Figure 6).
Figure 6 intuitively show our material-aware kernel func-
tion corresponding to different material distribution ratios.

(a) 3 Materials Distribution
Map

(b) Material Distribution
Ratios 1:1:1

(c) Material Distribution
Ratios 2:1:2

(d) Material Distribution
Ratios 2:1:1

(e) 3D example

Figure 6. Material-aware kernel functions.
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4.2. Cross-Material Domain Coupling

To model the cross-material domain coupling, we develop
a material-aware displacement correction method. As is
mentioned previously, we firstly solve each local domain
independently and obtain the displacement ufe

e for each
boundary element, which serves as the boundary condition
applied to the meshless system in Equation (6).

uefg D ˆe
T Neufe

e (6)

Here, Ne is the FEM shape function matrix, and ˆe is
the corresponding EFGM shape function matrix. By solv-
ing the EFT system, we can obtain the material-aware
correction displacement field. And then we compute the
correction acceleration and attach it to corresponding
sub-domains. Once again, we solve each sub-domain inde-
pendently as the final solution(see the real-time simulation
part of Figure 1).

4.3. Modal Warping

In this paper, we adopt the most commonly used Cauchy
strain tensor. However, because the linear Cauchy tensor
tends to diverge from the correct solution under the large
deformation, we build our simulation framework upon the
co-rotational formulation. Figure 7 shows a comparison
between linear strain and linear co-rational strain. In prac-
tice, we employ the warped stiffness approach [28] to
explicitly compute and warp the local rotations of each
element. Therefore, our approach can efficiently handle
non-linear large-scale deformation.

P8
jD1 RKijRT uj D fi �

P8
jD1 RKij

�
RT p0

j � p0
j

�
,

i D 1, : : : , 8
(7)

For the sake of parallel computation, we calculate the
element’s local rotation via the polar decomposition of the
elements average deformation gradient. In each simulation
cycle, we first compute the element’s local rotation accord-
ing to Equation (8). And we further construct the warp
stiffness matrix using Equation (7) when assembling the
system equations. Here, p0

j denotes the vertex position in
the reference configuration.

Ri D

8<
:

I3 C
1
4

P8
i uold

i

�
˙ 1

r ,˙ 1
r ,˙ 1

r

�
, i D 0

1
2

�
Ri�1 C

�
R�1

i�1

�T�
, i > 0

(8)

4.4. Cutting Simulation

To accommodate dynamic topological changes and accom-
panying update of the system equations, we detect the
coarser-level elements that intersect with the cutting blade
in each cutting simulation cycle. Next, they are adap-
tively refined to guarantee that there are only the finest
level elements along the blade traveling trajectory. This
procedure will create new elements, and the number of
newly-increased elements is proportional to the surface
area being cut. And then we perform element cloning to
represent the physical structure changes.

As shown in Figure 5(b), we first divide the element
vertices into two sets. The vertices in each set are all on
the same side of the cutting blade. And then, we clone

(a) (b)

Figure 7. Linear strain VS co-rational strain.
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the two sets to form ghost vertex sets. The ghost vertices
not only inherit the Doffs from the original sets but also
have newly-redistributed Doffs. Therefore, we can obtain
the new elements set by combining the original and ghost
sets together.

Considering a cross-domain cutting situation, the ele-
ment that have both FEM and EFGM properties is
cut and cloned, the material-specific FEM property can
be inherited as an invariant, while the EFGM property
will be recomputed because of the update of material
distance field arising from changing topological struc-
ture. And the updating operation is similar with the
initialization operation.

5. CUDA-BASED IMPLEMENTATION

In implementation, we need to re-assemble the system
equations in each simulation cycle because of modal warp-
ing and cutting operation (Algorithm 1). In order to accel-
erate system matrix assemble, we propose a matrix-free
sparse data structure and design a CUDA-based Precondi-
tioned Conjugate Gradient method on that basis.

Algorithm 1: CUDA based simulation.
Input: velocity vi and acceleration ai of local domains at
timestep i
Output: displacement ui for each local domain Di

1. Domain-parallel solving
for each local domain Di,
1: update fi with acceleration ai,
2: apply boundary condition to local system Si,
3: solve ui,
end for

2. Material-aware domain coupling
for each overlap domain Oi

5: assemble internal displacement ue
i ,

6: solve corrective displacement ui,
end for

3. Compute corrective acceleration and force

4. Solve final solution
for each local domain Di

7: update fi with corrective force,
8: apply boundary condition to local system,
9: solve final displacement ui,
10: update acceleration aiC1 and velocity viC1
end for

5.1. Matrix-Free Sparse Data Structure

In our method, system matrix is just a logical symbol,
which is not physically stored on GPU memory and need
not be assembled during the simulation loop. We employ

an element-centric store structure (Figure 8). In this struc-
ture, each element has its own stiffness matrix, mass
matrix, and Doffs, which is executed and updated in paral-
lel to GPU independently. Figure 8 shows three elements
of GPU memory layout. Benefiting from the structural
regularity and uniformity of hexahedral element, each ele-
ment only stores the common data index such as the local
stiffness matrix ID.

5.2. System Assembling and Solving

To facilitate CUDA-based implementation, we propose
an efficient sparse matrix-free structure-based storage
strategy for the time-consuming assembling and itera-
tive solving, which extends the standard Compressed
Sparse Row mode and stores multiple nodes in the same
column (Figure 9). Because each global coefficient in
Lagrangian motion equations is the linear accumulation
of the local coefficients, benefitting from the storage
strategy, we can accumulate them using Equation (10)
during solving process while not in the assembling
procedure:

s.p,k/ D
X

C2F,Qk k

SM ŒC.sId�
�
C.dofs

�
Qk
		

(9)

where s.p,k/ is the value of our global logical matrix at
.p, k/, cell set F includes the cells that share the current
specific degree of free, SM is a local matrix List containing
the Local Stiffness Matrix in Figure 9, and Qk  k repre-
sents the transformation from the global Doffs to the local
matrix index.

s.p,k/ D
X

C2F,Qk k

SM ŒC.sId�
�
C.dofs

�
Qk
		

(10)

where s.p,k/ is the value of our global logical matrix at
.p, k/, cell set F includes the cells that share the current
specific degree of free, SM is a local matrix List containing
the Local Stiffness Matrix in Figure 9, and Qk  k repre-
sents the transformation from the global Doffs to the local
matrix index.

Then, we employ Preconditioned Conjugate Gradient
method to solve the final linear system y D Ax, where A is
the coefficient matrix derived from our simulation frame-
work. Furthermore, we break up y D Ax into separate
equations. In our strategy, each row of A represents an inde-
pendent degree of freedom (DoF). Therefore, we assign
one CUDA thread to each DoF to conduct the parallel solv-
ing of y D Ax, wherein the boundary conditions can also
be flexibly added to the system.

As for the changes of the linear system y D Ax
due to cutting, we can easily handle this by just cloning
the physical quantities of the relevant Doffs, because
the cutting operation only gives rise to the increase
of Doffs.
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Figure 8. CUDA-based data structures.

Figure 9. Dynamic assembling procedure.

6. EXPERIMENTAL RESULTS

We have implemented a prototype system using C++ and
CUDA. All the experiments are run on a desktop PC with
NVIDIA GeForce GTX 465 GPU, Intel Core i5 2.67 GHz
CPU, and 2G RAM.

To validate the accuracy, efficiency, and applicability
of our approach, we conduct experiments over different

models. In order to show the coupling process of our
approach, Figure 10 shows a pipeline of coupling two
beams that have heterogenous materials. Figure 10(a)
to Figure 10(d), respectively, show the material-specific
FEM domains, the overlapping meshless domain, the
results of step.1 in Algorithm 1, and the coupling
results of the displacement fields in overlapping domain.
Figure 10(e) shows the final simulation result, and
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(a) Material-specific
FEM Domains

(b) Overlapping Meshless
Domain

(c) Result of step.1

(f) Stress Distribution(e) Final Simulation Result(d) Coupling Result

Figure 10. Couple simulation with two beams.

(a) Steak Model (b) Simulation Result

(c) Topological Change (d) Stress Distribution

Figure 11. Cutting simulation over heterogeneous steak.
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(a) Material Distribution (b) Cutting Operation
in Single Domain

(c) Stress Distribution

Figure 12. Single-domain cutting simulation over heterogeneous armadillo.

(a) Material Distribution (b) Cross-domain
Cutting Operation

(c) Stress Distribution

Figure 13. Cross-domains Cutting simulation over heterogeneous armadillo.

Figure 10(f) demonstrates the Von-Mises stress distri-
bution corresponding to the final result. In this exper-
iment, we respectively set the Young modulus of two
FEM domains with 800,000,000 and 600,000,000, and
the poisson ratios of the two domains are both set
to be 0.33. Experiment indicates that our method is
real-time, easy to operate, and has level-of-detail physical
accuracy.

In order to verify the ability of our approach in han-
dling the heterogenous object cutting, Figure 11(a) shows
a steak model, which comprised several materials. With-
out loss of generality, we model the bone and the mus-
cle as two material-specific FEM domains, wherein the
(Young modulus,poisson ratio) are, respectively, set to be
(900,000,000, 0.333) and (30,000,000, 0.333). Besides,
we set those of the fat and soft tissue around the
bone as (30,000,000, 0.333). Figure 11(b) shows the
simulation result, Figure 11(c) shows the corresponding
topological changes of the mesh arising from cutting
operation, and Figure 11(d) demonstrates the Von-Mises
stress distribution corresponding to Figure 11(b). It can
be observed that our results can well conform with the
realistic case.

Besides, to verify the generality of our approach, we
conduct cutting simulation over the Stanford Armadillo
model. Figure 12(a) illustrates the distribution of three
materials in model. Figure 12(b) shows the result of a
large-scale cutting operation in a single FEM domain.
Figure 12(c) shows the stress distribution correspond-
ing to Figure 12(b). Meanwhile, Figure 13(b) shows a
cross-domain cutting operation, wherein an arc-shaped cut-
ting path crosses two FEM domains and the overlap couple
domain. Figure 13(a and c), respectively, shows the initial
material distribution and the accompanying stress distri-
bution. It demonstrates the universality and stableness of
our method.

7. CONCLUSION AND DISCUSSION

We have detailed a CUDA-accelerated hybrid method to
address a suite of research challenges in real-time and
realistic deformation and arbitrary cutting simulation of
heterogeneous objects. The originality of our approach is
to model the physical system with the material-aware local
FEMs and model the domain-interlinking with meshless
EFT. Because each homogeneous sub-domain is relatively
independent, local topological changes and domain-level
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parallel numerical calculation can be efficiently accommo-
dated. Our immediate efforts are geared towards incorpo-
rating blooding and suturing simulation into our current
prototype system.
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