
Surface Mesh to Volumetric Spline Conversion
with Generalized Polycubes
Bo Li, Xin Li, Member, IEEE, Kexiang Wang, and Hong Qin

Abstract—This paper develops a novel volumetric parameterization and spline construction framework, which is an effective modeling

tool for converting surface meshes to volumetric splines. Our new splines are defined upon a novel parametric domain called

generalized polycubes (GPCs). A GPC comprises a set of regular cube domains topologically glued together. Compared with

conventional polycubes (CPCs), the GPC is much more powerful and flexible and has improved numerical accuracy and computational

efficiency when serving as a parametric domain. We design an automatic algorithm to construct the GPC domain while also permitting

the user to improve shape abstraction via interactive intervention. We then parameterize the input model on the GPC domain. Finally,

we devise a new volumetric spline scheme based on this seamless volumetric parameterization. With a hierarchical fitting scheme, the

proposed splines can fit data accurately using reduced number of superfluous control points. Our volumetric modeling scheme has

great potential in shape modeling, engineering analysis, and reverse engineering applications.

Index Terms—Volumetric spline, generalized polycube, volumetric parameterization

Ç

1 INTRODUCTION AND MOTIVATION

THE rapid advances in 3D scanning and acquisition
techniques have given rise to the explosive increase of

volumetric digital models in CAD environments in recent
years. The engineering design industry frequently pursues
data transformation from discrete 3D data to spline
formulations because of their compactness and continuous
representation. Compared with the commonly-used “sur-
face model to surface spline” paradigm, volumetric splines
can represent both boundary geometry and real volumetric
and physical/material attributes. This property makes
volumetric representation highly preferable in many
physically based applications including mechanical analy-
sis [1], shape deformation and editing, virtual surgery
training, and so on. However, converting arbitrary meshes
to volumetric splines is very challenging due to many
unique requirements in parametric domain construction.
These requirements, however, have not been thoroughly
discussed and enforced in existing parameterization and
spline construction techniques:

1. Structural regularity. Tensor-product splines (e.g.,
NURBS) are defined over regular “cube-like” do-
mains. Compared with the unstructured domain
(e.g., polygonal regions covered by tetrahedral
meshes), regular domain supports more efficient
evaluation and refinement, and GPU acceleration

can also be applied directly to spline representation
with regular structure. Also, spline-based physical
analysis (e.g., isogeometric analysis [1]) has a
preference for “cube-shaped” domain.

2. Singularity free. Singularity here means an inability to
produce a locally consistent parameterization in the
neighborhood. Specially in trivariate splines, a global
volumetric model is locally parameterized onto
several tensor-product charts. Like Figs. 1a and 1b, a
singular point locates where local charts merge, if its
valence number along one isoparametric plane is
larger than four (note that from this definition,
singularity in volumetric domain is of difference
from surface geometry). Handling singularity with
tensor-product splines is very challenging. Therefore,
it is desirable to have a global one-piece spline defined
on a globally connected singularity-free domain.

3. Controllable Ill points. In a volumetric parameteriza-
tion over the polycube domain, we call the corner
point in a concave corner of the polycube an ill point.
On such a point, the basis function spans across
nearby cubes through outside space (see Figs. 1c and
1d). Figs. 1e, 1f, 1g, and 1h illustrate all possible
types of ill points in red (note that they are not
singularities in volumetric parameterization but
singularities in surface parameterization). Being
harmless to usual parameterization-related applica-
tions, ill points, however, have an undesirable side
effect on spline construction and subsequent tasks
like physical analysis, boundary confinement, and
partition-of-unity control (see [2], [3] for more
details). Therefore, it is desirable to control the
number and types of ill points. In practice, we hope
to restrict ill points to “Type-1” only, as shown in
Fig. 1e, since it is the easiest type and we can simply
modify and restrict its “boundary” basis function [3].

4. Shape awareness. Each spline patch should abstract
the shape in a geometrically meaningful way, reveal

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 9, SEPTEMBER 2013 1539

. B. Li, K. Wang, and H. Qin are with the Department of Computer Science,
Stony Brook University, Stony Brook, NY 11794.
E-mail: {bli, kwang, qin}@cs.stonybrook.edu.

. X. Li is with School of Electrical Engineering & Computer Science and
Center for Computation and Technology, Louisiana State University,
Baton Rouge, LA 70803. E-mail: xinli@cct.lsu.edu.

Manuscript received 9 Nov. 2011; revised 31 May 2012; accepted 10 Aug.
2012; published online 24 Aug. 2012.
Recommended for acceptance by W. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2011-11-0279.
Digital Object Identifier no. 10.1109/TVCG.2012.177.

1077-2626/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

the shape’s key perceptual parts and topological
structures (e.g., skeleton-like representation). Most
importantly, spline construction on large volume
data heavily depends on spline gluing in practice.
Therefore, one desirable parameterization scheme
should try to reduce patch number to cut off spline
gluing processing.

Existing volumetric spline techniques generally follow
two different trends: 1) Many recent methods [4], [5], [6]
convert each part into splines defined on a cylinder/tube
domain (e.g., Fig. 1b), because they can intuitively use the
shape skeleton to produce a tube domain and reveal
the global structure and topology. A severe limitation of
such approaches is that points on the tube centerline are all
singular. 2) In contrast, poly-cube splines [7], [8] are defined
on domains assembled by multiple cubes, which avoid the
central line singularity problem. Such splines are flexible to
resemble the shape of the given mesh and are capable of
capturing the large scale features with low-distortion
mapping. However, gluing of many cubes may produce
many uncontrollable ill points. Limitations from both
categories of splines have inspired us to develop a new
method that is superior to both types of splines.

The main contributions of this work are as follows:
1) We propose a novel concept of Generalized polycube (GPC)
to serve as the parametric domain for spline construction.
Particularly, GPC combines advantages of existing primi-
tives to support splines: (a) GPC is powerful and flexible
for representing complex models; (b) GPC provides a
simple and regular domain with no singularity and
controllable ill-point numbers/types, yet very spline-
friendly domain structure. 2) We develop an effective
GPC construction and parameterization framework to
achieve all the above goals, while still respecting both the
global structure and the geometric features. 3) We present a
global “one-piece” volumetric spline scheme without
stitching/trimming for general volumetric models. Unlike
conventional spline schemes, our conversion does not
require global coordinates everywhere, and piecewise local
coordinates suffice. GPC, therefore, becomes an ideal

parametric domain. We also design an efficient volumetric
hierarchical spline fitting algorithm to support recursive
refinement with improved accuracy and reduced number
of control points.

2 OVERVIEW AND BACKGROUND

Our algorithmic pipeline mainly includes three steps: shape
decomposition and abstraction (Section 4), volumetric
parameterization (Section 5), and spline approximation
(Section 6). In this section, we briefly review relevant
background and existing techniques.

2.1 Shape Decomposition and Abstraction

As a thorough discussion, we refer readers to Shamir’s great
survey [9] on general segmentation research. To achieve
part-aware decomposition, many methods have attempted
to design appropriate part-aware metrics to align with
human visual perception toward algorithm development,
including shape diameter function [10], visual region
difference [11], intrinsic symmetry [12], and so on. How-
ever, these algorithms are not appropriate for downstream
spline construction without considering issues like patch
numbers, singularity, and ill points.

A popular shape abstraction method is to use polycube
[13]. In [13], the domain construction and mapping are
computed through simple projection. Wang et al. [7]
introduced an intrinsic approach that first maps the model
and the polycube to a common canonical domain to
guarantee bijectivity. Several methods have been devel-
oped to improve user control. Wang et al. [14] presented a
technique to adjust locations and the number of corners of
the polycube map. Xia et al. [15] allowed users to sketch
curve constraints to control the polycube map. Automatic
polycube construction is always very difficult. Lin et al.
[16] used the Reeb graph to segment the surface and
construct polycube map. However, their segmentation
method may not work for shapes with complicated
topology and geometry and does not guarantee bijectivity.
He et al. [8] proposed a divide-and-conquer algorithm by
slicing the model along an axis direction. Slicing along an
axis produces very complex domain structure so Gregson
et al. [17] proposed a deformation-based method, which is
less prone to oversegmentation. These methods work best
for axis-aligned geometric models without any twist,
bend, and spiral.

2.2 Volumetric Parameterization

Shape parameterization is widely studied and we refer
readers to comprehensive survey reports of [18], [19], and
[20] for various surface parameterization techniques. More
closely related to our work, volumetric parameterization
has gained great interest in recent years. A few related
techniques have been developed toward various applica-
tions such as shape registration [21], [22], volume deforma-
tion [23], [24], [25], and spline construction [5]. Wang et al.
[21] parameterized solid shapes over a solid sphere by a
variational finite element algorithm. This technique is
utilized for constructing a shell mesh of the poly-cube
domain [26]. However, this work only focuses on sphere-
like solid shapes such as human brain. Ju et al. [23]

1540 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 9, SEPTEMBER 2013

Fig. 1. Singularity and ill-point distribution in the volumetric domain is
very critical to spline construction. (a-b) show two cases of singular
points. (c) highlights one ill point. (d)This shows that the basis function
around the ill point has influence outside the cube boundary. (e-h) show
different types of ill-points: “Type-1” to “Type-4,” which are the concave
points in the domain.

generalized the mean value coordinates [27] from surface

to volume for a smooth volumetric interpolation. Joshi

et al. [24] presented harmonic coordinates for volumetric

interpolation and deformation purposes. Their method

guarantees the nonnegative weights and therefore leads to

a more pleasing interpolation result in concave regions

compared with that in [23]. Martin et al. [5] computed the

precise ðu; v; wÞ coordinates for genus-zero tetrahedral

meshes, and the target domain is a cylinder. Li et al. [22]

used the fundamental solution method to map solid shape

onto a general target domain. Xia et al. [28] used harmonic

field to map the solid shape onto a polycube domain.

Nieser et al. [29] proposed the technique to generate

volumetric mapping and hexahedral mesh, which are

guided by a frame field.

2.3 Volumetric Splines

Instead of transforming a surface model to a surface spline

[7], we seek for converting the whole volume space into a

volumetric spline. Compared with simplex splines (e.g.,

[30], [31]), splines defined on regular tensor-product

domain are more popular and widely used because of

simple and regular structures. Song et al. [32] employed

volumetric splines with nonuniform weights to model free-

form deformation. A modeling technique [33] was devel-

oped to model skeletal muscle with anisotropic attributes

and conduct FEM analysis directly on NURBS solid [1]. One

challenge is to convert complex geometry models into

regular volumetric splines. Zhang et al. [6] proposed a

method to handle long branches. Their algorithm divides

possible bifurcations of a vascular system into different

cases to solve. Martin and Cohen [4] used a “mid-surface”

in conjunction with harmonic functions to decompose the

object. Yet, these methods cannot eliminate singularities.
Another challenge for volumetric B-splines is the huge

number of control points for accurate geometry fitting. T-

splines were introduced by Sederberg et al. [34] as a

generalization of the traditional nonuniform B-spline

surfaces. They also developed an algorithm to convert

NURBS surfaces into T-splines while eliminating super-

fluous control points [35]. Zheng et al. [36] developed a

technique for adaptively fitting T-splines to functional data.

3 GENERALIZED POLYCUBES (GPCs)

Conventional polycube (CPC) is a shape composed of axis-
aligned unit cubes that abut with each other. Cubes are glued
and realized in a global 3D world coordinate system. CPC
usually uses unit cubes as the building block. All cubes are
glued together and embedded in the 3D space; any point in a
cube is associated with a unique global coordinate. Fig. 2b
shows an example of CPC constructed for a wrench model in
Fig. 2a. Constructing effective (good approximation, coher-
ent topology) CPC for volumetric models with relatively
complicated geometry and topology usually requires ex-
tensive user involvement. Such a parametric domain is
inadequate. A less tedious domain construction with
reduced number of ill points is highly desirable.

GPC is composed of a set of cuboids glued together
topologically. We allow any pair of two distinct cuboid
faces to be glued together if these faces have the same size.
Figs. 2c, 2d, and 2e show a GPC constructed for the wrench
model (Fig. 2a).

From above definitions, GPC is less restrictive from CPC
to be a better spline-friendly domain. First, GPC cuboid is
not just a unit box. It can be a general cuboid with
rectangular faces. Each cuboid has its local coordinate
system; a cuboid is not axis-aligned but can deform (bend
or twist) to glue with each other to form a global topological
structure. Second, cuboids in GPC can be glued together
through arbitrary two faces, and it is even possible that they
are from the same cuboid. The topology of GPC can be
represented using a topological graph, which we denote as
a GPC-graph (each node represents a cuboid). Fig. 2c
illustrates a GPC graph of Fig. 2d. To represent each
cuboid, we project the 12 cuboid edges onto the model to
visualize different faces (see Figs. 2d and 2e).

A less restrictive GPC has several advantages over CPC,
which are very critical to trivariate spline construction:
Controlled ill points, easier domain to simplify spline
merging and more general shape modeling.

Ill-point controllability. First, the topological gluing can
significantly reduce the number of ill points (due to the
usage of fewer cuboids and simple gluing rules). In a simple
shape like Figs. 3a and 3b, a torus’ CPC generates 4 ill-points
(in red circles) while a torus’ GPC (see the kitten model,
Fig. 14) has none. Second, our GPC construction algorithm

LI ET AL.: SURFACE MESH TO VOLUMETRIC SPLINE CONVERSION WITH GENERALIZED POLYCUBES 1541

Fig. 2. GPCs: (a) The wrench model; (b) The CPC; (c) The GPC as a topological graph; (d-e) The cuboid edges are overlaid onto the model to
visualize the GPC global structure.

will only generate Type-1 (Fig. 1e) ill points. We can handle
them much easier than other types of ill points [3].

Easier and better domain construction. Because of its
topological simplicity and elegance, the construction of
GPC is usually easier than that of CPC. Automatic GPC
construction can be developed naturally following the part-
aware decomposition of the model. From a spline practi-
tioner’s view, CPC requires many redundant cubes (to
assemble topological handles in an axis-aligned way, like
Fig. 3d). Cuboids in GPC are similar to the “generalized
cylinder” so encodes the shape with less cuboids, which can
significantly save the cost of spline merging.

When we consider parameterization distortion, less
cuboids in GPC may lead to less distortion than CPC, because
GPC is less restrictive (not axis aligned) and better mimics
shape. For example, a CPC (Fig. 3d) can merely mimic the
genus-3 model (with a narrow top and wide bottom region)
in an axis-aligned domain. Consequently, two red-colored
parts are parameterized onto the equally sized domain,
introducing large distortion. A GPC (Fig. 5c) can fit the
shape better and significantly improve the parameterization
quality, benefitting the final spline construction.

Highly-twisted and high-genus shape. GPC can serve as the
parametric domain for a more general category of solid
shapes like the twisted or highly curved model, such as the
twirl (Fig. 4a) and möbius band (Fig. 4d). Unlike axis-aligned
CPC, GPC can twist them and glue adjacent cuboids in a
topological way so that twisted global shape features can still
be modeled as the cuboid edges (Figs. 4b and 4e), with a very
small number of cuboids (Figs. 4 and 4f). For example, we can
hardly construct a useful CPC domain for möbius band; But
with GPC, only one cuboid is enough (Fig. 4f). Another
category of models includes models with complex topology
especially when handle loops/voids are relatively small,
such as in the solid bucky model (Fig. 4g). For CPC, not only
the above restrictive axis-aligned problem, small handles/
voids also make the resulting CPC “overcomplex”. A less
restrictive GPC allows us to model the domain through a
correct topological decomposition to small cuboids (Fig. 4h).
The pattern of the bucky’s GPC-graph around one handle can
be decomposed as shown in (Fig. 4i).

The following three sections discuss the algorithmic
pipeline to construct GPC and splines (also illustrated in
Fig. 5). The input model is first decomposed into a few T-
shapes. The final output is a global one-piece spline
representation.

4 MODEL PARTITIONING

Suppose a solid region is bounded by a triangle-meshed
surface @M (note that @M can be of high genus, but as the

boundary of a solid object M, @M is a closed surface), this
section focuses the computation of a group of curves fcg on
@M. These curves segment @M into subpatches @Mi,
bounding subsolid regions Ms

i to be parameterized upon
GPC cuboids. We denote these traced curves on @M as
polyedges, as they will be mapped to edges of GPC cuboids.
Our segmentation includes two main steps:

. Partitioning into T-shapes: we decompose the entire
model into a group of T-shaped patches.

. T-to-cube decomposition: we generate polyedges on
each T-shape and decompose it into four connected
cube-like subpatches.

T-shapes are used as the basic primitive in our framework
to decompose more complicated solid models. A T-shape,
which represents the very simple 3-branched volume shape,
has trivial topology and only contains Type-1 ill points.

4.1 T-Shape Segmentation

We use @Ti to represent a T-shape surface and Ti for its
bounded volume. Our idea is to partition a given model M
into several T-shaped subregions fTig. We achieve this
segmentation through tracing curves on the boundary
surface @M and partition it to subpatches @Ti or many
simpler patches. This pipeline is illustrated in Fig. 6. The
algorithm has following steps. Note that the challenge is
how to ensure the segmented patch is geometrically similar
to a “T” in 3D space, not just topologically.

Step 1. We first partition the input @M into several initial
part-aware patches with nonintersecting cutting curves.

1542 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 9, SEPTEMBER 2013

Fig. 3. (a) The torus model. (b) Its CPC uses at least eight cubes and
generates four ill points. (c) The genus-3 model with narrow top and
wide bottom regions. (d) Its CPC maps two regions onto the equal-sized
parameterization domain, leading to large distortion.

Fig. 4. GPC can handle more generalized models. Row 1: (a) The highly
twisted swirl model, (b) Its GPC, and (c) Its topological graph. Row 2: (d)
The non-axis-aligned möbius model, and (e,f) Its GPC and topological
graph. Row 3: (g) The bucky model with complex topology, (h) It is
decomposed into small “T-shapes” with four cuboids. (i) A subset of the
GPC graph around the hole.

Any closed surface (the boundary of a solid model) can be

partitioned in this way [37]. Different geometric criteria can

be integrated in this unified partitioning framework. We

choose volume-aware shape descriptors such as the shape

diameter functions [10] to guide our cutting curve tracing.
Step 2. Upon a complete decomposition, we construct an

abstraction graph: A node represents a patch, an edge

connecting two nodes indicates their patch adjacency, and

an edge connecting a node to itself indicates a handle loop.

Fig. 6a shows a 4-torus with colored part-aware segmenta-

tion and the resulting abstraction graph.
Step 3. We modify each partitioned patch to a standard

shape. It means that we split the abstraction graph’s nodes

with high valance until all nodes have � 3 incident edges

(a graph node with d ¼ 3 represents a 3-branch patch, i.e.,

T-shape, and d ¼ 1 or d ¼ 2 indicates the patch that bounds
a tube). We partition every patch through analyzing all
connected edges:

(3.1) Handle loop (see Fig. 6b, Row 1). We generate the
shortest handle loop by [38] and then cut along it. In the
abstraction graph, this partitioning cuts the loop into two
edges.

(3.2) High Valence (d > 3) branch (see Fig. 6b, Row 2). We
partition it to two connected nodes n1 (valence-d� 1) and n2

(valence-3). Then, we repeat the split until all newly
generated nodes are valence-3. To achieve this idea, we
first choose two boundaries (a pair with the closest
distance). Then, we utilize the technique in [37] to generate
a cutting curve that covers two boundaries and avoids any
intersection. This curve segments the patch into two
patches, one with three boundaries (i.e., a T-shape) and
another one with d� 1 boundaries. We again execute the
same partitioning method on the second patch until only
three boundary patches exist. Row 2 shows an example of
the cutting loop.

After repeating the above operations on every node, we
can get a decomposition result where every node has its
valence equivalent to 3 or less, as shown in Fig. 6c.
Compared with existing partition techniques, our segmen-
tation method is uniquely spline friendly: No prior
segmentation result considers the critical issues in splines
like singularities and ill points. Without addressing these
issues, a segmentation is less suitable for spline conversion.
Our T-shape-based segmentation, however, is completely
singularity-free and ill-point controllable.

Cutting curve loops should be prevented from intersect-
ing each other in our system. This can be ensured by not

LI ET AL.: SURFACE MESH TO VOLUMETRIC SPLINE CONVERSION WITH GENERALIZED POLYCUBES 1543

Fig. 5. GPC and spline construction pipeline. (a) The input genus-3 model is first decomposed into some “T-shape” patches. (b) Each “T-shape” is
further decomposed into four cuboids. (c-d) Overlay all cuboid edges onto the model to visualize the global structure. (e) All cuboids comprise a
topological GPC. (f-g) Construct the parametric mapping between the input model and its GPC. (h) Transform the model into a volumetric spline
representation.

Fig. 6. Model segmentation into “T-shape” patches. (a) The part-aware
segmentation and its abstraction graph. The nodes in the graph have
different cases for edge connection (red and blue regions). (b) For each
case, we have corresponding operations on the graph and input model.
(c) Our operation guarantees that the resulting nodes in the graph are all
degree d ¼ 3, and the model is segmented into T-shapes.

allowing a newly traced curve hitting (vertices of) existing
loops. When two loops are very near and the triangle mesh
is very sparse, triangles around this region will be
subdivided to ensure the topologically correct tracing
without intersection (for mesh refinement to ensure reliable
curve tracing, please see [37] for details).

4.2 T-to-Cube Segmentation

We process a set of T-shapes @Ti or tube-shaped (cylinder)
patches, one-by-one in an arbitrary order. @Ti is first
partitioned into four subpatches @Mij, then we generate
corners and polyedges on each @Mij (recall that polyedges
are the traced curves that will be mapped to the edges of
cuboid domains), as shown in Fig. 7. Meanwhile, for any
simple tube-shaped patch, we can generate its corners and
polyedges directly by the Step 2, the first pass, i.e., Fig. 7b.
Finally, each resulting patch has eight corners and 12
polyedges like a cuboid. To guarantee corner alignment,
when we determine one T-shape’s result, we transfer its
corners on the boundaries to the adjacent T-shapes if they
are not processed yet.

Step 1. We generate three cutting lines W1, W2, and W3

(See Fig. 7a). We first find four corners on one boundary.
We denote this boundary as “left” while arbitrarily
denoting other two as “right” and “bottom.” Positions of
four corners are determined by its previously processed
adjacent T-patch (except for the first processed T-shape, on
which we manually set these four corners). To generate
three cutting lines, we detect three branches of @Ti by
extracting associated skeleton [39], with three resulting
cutting lines.

Step 2. We generate all polyedges and corners on a T-
shape @Ti, separately in three passes (Figs. 7b, 7c, and 7d).
Each time we trace polyedges between two boundaries with
three substeps.

(2.1) We first remove the third long branches by cutting
along its cutting lines (e.g., W3 in Fig. 7b). After filling the
cutting hole [40], the resulting surface is a 2-boundary tube-
shaped patch @P.

(2.2) We map the tube shape to a cylinder domain ½u;v�
following the approach of [5]. We shall briefly describe this
algorithm: First, set u ¼ 0 for vertices on one boundary and
u ¼ 1 for the other boundary, solve �u ¼ 0 by mean value
coordinates [27]. Second, trace an iso-v curve along ru from
an arbitrary seed vertex on the boundary u ¼ 0 to the other
boundary u ¼ 1 and slice along this isocurve and get two
duplicated boundary paths, then set v ¼ 0 and v ¼ 1 on
them, respectively, and solve �v ¼ 0. The @P is, therefore,
parameterized onto a cylinder domain.

(2.3) We generate polyedges between possible node pairs
based on the cylinder-parameterized patch. For the first
pass, we trace four edges from all corners on the left
boundary to the right. For the second pass, we find two
corners on the left boundary with shortest Dijkstra distance
to the bottom (c1; c2) as shown in Fig. 7c and trace two
edges from them to the bottom. For the third pass, we
choose pairing corners of c1 and c2 on the right boundary
(c5; c6) and trace two edges to the bottom (the possible node
pairing/polyedge tracing algorithm is described below).

Step 3. We generate polyedges and corners for the
central cuboid cutting. With four intersection corners
(between the bottom cutting line and the traced paths)
generated in the second and the third pass, now we trace
polyedges between two intersection corners in each pass
(c13; c14 and c15; c16).

Tracing polyedges. The above algorithm involves tracing
edge ½c1; c2� on a cylinder parameterized patch ½u;v�.
According to the processing queue, c2’s location is either
already determined by other precedent patches or is not yet
known. For an unknown c2, we trace the polyedge from the
starting corner (c1) along the gradient direction ru to
another boundary at a new point c2. For a determined c2, we
map both c1 and c2 to the cylinder domain ½u;v� and trace
the straight line on the domain between them, then project
this parametric straight line back to the patch and get the
resulting polyedge. Note that none of polyedge is restricted
to mesh edges. We allow them to cross and split the mesh
triangles. This strategy enables more smooth path lines.

1544 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 9, SEPTEMBER 2013

Fig. 7. Illustration of T-to-cube segmentation.

Node pairing. When we trace polyedges, it is very possible
that all corners’ locations on two boundaries are predeter-
mined by other precedent patches. In such scenario, we
desire to pair two boundaries’ corners before tracing edges
between unpaired corners. Intuitively, the traced path
should be least deviated from the gradient of the harmonic
field. Suppose, we are tracing paths between boundary b1

and b2. If corners on both b1 and b2 are predetermined, we
trace the gradient line from b1’s corners and get ending
nodes on b2. Then, we compute and find the pairing
between ending nodes and corners on b2, satisfying that the
sum of total distance between each pair is minimized. In
this way, we can get the pairing between corners on b1 and
b2; If corners on b2 are not predetermined yet, we directly
use the ending nodes as the new determined corners and,
thus, get the pairing. In practice, we can merge edge tracing
in the second/third pass (Figs. 7c and 7d) together: we
determine the four node pairing together to avoid possible
intersected polyedges generated between two passes.

Feature-preserving segmentation. Although the above auto-
matic algorithm can handle most of models very well,
sometimes users still expect to use several sharp features as
the polyedges. For example, this choice is specially natural
and meaningful on the strong symmetric man-made models
with sharp features (e.g., CAD models in Figs. 4b, 4c, 4d, and
4e). Specifically, a scaling factor is applied to edges on feature
curves, so they are considered shorter in the Dijkstra path
tracing. Therefore, features will be on the traced curves and
polyedges if we compute the shortest path between corners.
Figs. 4a, 4d, 4e, and 2d show the results with feature-
preserving polyedges. In practice, this method can only pick
a few major feature lines (like in the twirl model, the
polyedges are sharp features we pick). It is still difficult to
handle more complex features. Instead, we can preserve the
extra sharp features through the following spline fitting step.

5 PARAMETERIZATION

After the input model M is decomposed into subpatches
f@Mijg, bounding topological solid cuboids fMijg, we now
perform cuboid parameterization of fMijg. We first map the
patch boundary to the cuboid domain surface. Then, we use
this mapping as boundary condition and compute the
interior volumetric parameterization.

5.1 Surface Parameterization

The subpatch @Mij computed previously has eight corners
and 12 polyedges (see Fig. 8a), we partition @Mij into six
topological rectangles, then solve three harmonic mappings
�u ¼ 0, �v ¼ 0, �w ¼ 0 on all rectangles. Each time we
pick two opposite rectangles as two isoplane domains on
one direction (e.g., u ¼ 0 and u ¼ 1). Then, we compute the
parameters of this direction (u) on all other four rectangles.
For example, to solve �u ¼ 0, we select eight polyedges on
two opposite rectangles (see Fig. 8b). Four red polyedges

bound an iso-u rectangle (u ¼ 0) and the four blue
polyedges bound another iso-u plane (u ¼ 1). Then, we
compute the approximated discrete harmonic map �u ¼ 0
[27] on other regions. Fig. 8c illustrates the computed u.
Similarly, we can compute the harmonic scalar fields of v
and w with �v ¼ 0 and �w ¼ 0, respectively. After solving
three harmonic mappings, each vertex on the surface patch
is mapped to a coordinate ðu0; v0; w0Þ on the cube surface.
The surface parameterization is illustrated in Fig. 8d.

5.2 Volumetric Parameterization

We compute the volumetric parameterization of Mij on a
set of n0 � n1 � n2 grid points. These grid points correspond
to the uniformly sampled coordinates in the parametric
space ðu; v; wÞ. This volumetric parameterization can be
considered as finding the locations of these nodes within
Mij. Similarly, as we discussed in surface parameterization,
we need to find the point locations that minimize the
equations �u ¼ 0;�v ¼ 0, and �w ¼ 0 in 3D space.

The n0 � n1 � n2 grid points include two categories: the
surface grid points and interior points. We determine their
positions as follows:

1. If the parameter of a grid point n falls on the domain
surface, we can always find its location on @M by
the parameter of n, where n’s parameter always falls
into a triangle ½v1; v2; v3� of @M on the parametric
domain with corresponding Barycentric coordinates
�1; �2; �3, then its spatial location is interpolated asPi¼3

i¼1 �iPðviÞ, where PðvÞ denotes the 3D position of
vertex v.

2. Keeping the surface points fixed, we compute the
interior point position by minimizing 3D Laplacian
(1), where nijk and N �

ijk represent the node and its
neighbor’s spatial positions in ðx; y; zÞ and w� is the
point weight. In practice, each node is moved to the

LI ET AL.: SURFACE MESH TO VOLUMETRIC SPLINE CONVERSION WITH GENERALIZED POLYCUBES 1545

Fig. 8. Illustration of surface parameterization.

weighted mean center of their six neighbors. Here,
the choice of weight w� has been studied in [21], [23].
In our implementation, we simply use the uniform
weight w� ¼ 1=6 as suggested in [40] and [41], as
illustrated in Fig. 9:

EðnijkÞ ¼
X
�

w� � kðnijk �N �
ijkÞk; � 2 NbðnijkÞ: ð1Þ

We move grid points iteratively. The update converges
when changes of all node positions are smaller than a
threshold during one iteration. Figs. 10a, 10b, and 10c show
the computation results of the femur model after 20, 60, and
80 iterations.

Refinement across cutting boundary. Before merging, the
parameterization of two adjacent subpatches are already
computed separately. Along the cutting interface, only C0

continuity is guaranteed and the cutting boundary is not
smooth. We perform a refinement to improve this smooth-
ness. To reduce computation time, we only extract a small
region from each patch. For example, we pick a region
from one patch within the parameter ð1� �; 1Þ � ð0; 1Þ �
ð0; 1Þ, and ð0; �Þ � ð0; 1Þ � ð0; 1Þ from another patch if two
patches are connected along ru direction (� is a small
scalar value). Gluing two extracted region together, the
new patch also has eight new corners and 12 new
polyedges (recall that polyedges between two adjacent
patches are aligned along the boundary), thus we can
recompute the surface mapping and volumetric mapping
on the new patch. Meanwhile, this recomputing is subject
to an extra constraint, on regions that connect to an extra
third cuboid. We keep these region’s parameter unchanged
during recomputing, to avoid our modification destroying
global parameter consistency.

6 GPC-SPLINES

Two challenging issues must be addressed when designing
the mesh-to-spline transformation over GPC. First, allowing

adaptive refinement without significantly increasing control

points is highly desirable since volumetric spline fitting

usually requires a large number of control points when we

seek high approximation accuracy. Second, unlike conven-

tional B-splines that each control point and its knots are

associated with global coordinates, GPC provides only

locally defined parameters in each cuboid domain. This is

because a global realization of GPC parametric domain in

3D euclidean space is oftentimes impossible on highly

twisted/high genus models. Thus, we design a unique

GPC-spline algorithm using a point-based scheme.
In principle, a volumetric cubic spline can be viewed as a

point-based spline (PB-spline): Each control point Ci
(located in parametric cube Dj with local coordinate cji) is

associated with three knot vectors along three principal axes:

r ¼ ½r1; r2; r3; r4; r5�, s ¼ ½s1; s2; s3; s4; s5�, t ¼ ½t1; t2; t3; t4; t5�,
where cij ¼ ðr3; s3; t3Þ. All knots can be determined using a

ray-tracing strategy [34]. For any sample point with ðu; v; wÞ
as its local parameter, the blending function is

Biðu; v; wÞ ¼ NrðuÞ �NsðvÞ �NtðwÞ; ð2Þ

where Nr, Ns, and Nt are cubic B-spline basis functions

associated with the knot vector r, s, and t, respectively. The

formulation for PB-splines is

P ðu; v; wÞ ¼
Pn

0 CiBiðu; v; wÞPn
0 Biðu; v; wÞ

: ð3Þ

We modify the above equation to construct GPC splines.

The GPC domain comprises a collection of coordinate

charts locally defined in individual cuboid. Adjacent local

parametric coordinates are transformed coherently by

transition functions, which can be encoded in a GPC-graph

structure. Consequently, the global PB-splines are piece-

wise rational polynomials defined on GPC, whose transi-

tion functions between adjacent cuboids are compositions

of simple cuboid translations and rotations of n�=2, where

n is an integer.
In a cuboid Dj, given an arbitrary parameter h, also

denoted as hj, the spline approximation can be carried out

as follows:

1. Find all the neighboring cubes fDig that support h
(i.e., it contains control pointsCk that may support h);

2. The spline function is:

P ðhÞ ¼
Pn

k¼0 C
i
kBkð�ijðhjÞÞPn

k¼0 Bkð�ijðhjÞÞ
; ð4Þ

where hj is the local parametric coordinate of point h in the

cube domain Dj, �ij is the transition function from cube

domain Dj to Di, and Ci
k denotes the control point k in the

cube domain Di.

1546 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 9, SEPTEMBER 2013

Fig. 9. Volumetric mapping. We extract sample points as a hexahedral
model. Each node has six neighbors for solving 3D Laplacian in (1).

Fig. 10. Results of the cut-out view of the interior femur model by solving
(1) after 20, 60, and 80 iterations.

In theory, a transition function �ij from cube domains Dj

to Di is a composition of translations and rotations
following the shortest path from cube Dj to cube Di in
the GPC-graph. Suppose gDiDj :¼ D1ð¼ DiÞ ! D2 . . . !
Dnð¼ DjÞ, and the transition function �ði;iþ1Þ (derived by
way of cube gluing) from Diþ1 to Di is already known, then
�ij is formulated by

hi ¼ �ijðhjÞ ¼ �1;2ð�2;3ð. . . �n�1;nðhjÞÞÞ:

In practice, because most control points only influence a
very small local region and do not cut across nonadjacent
cubes, we observed that only using a neighboring cube
transition function is usually enough.

Along any merging region, two connected cubes share
the same domain size along the merging face (i.e., we
forbidden partial gluing between a large and small cubes).
Therefore, when we merge two cuboids’ control grid (with
the same resolution), all the control points and intervals
along the merging faces will merge coherently, without any
T-junction before hierarchical fitting.

6.1 Hierarchical Fitting

Following above GPC-spline definitions, we develop a
hierarchical fitting scheme to approximate volumetric
models. For a sample point fðhiÞ in the model whose
parametric coordinate is hi (defined by the volumetric
parameterization computed in previous sections), P ðhiÞ is
our GPC-spline representation. We minimize the follow-
ing equation:

Edist ¼
Xn
i¼0

kP ðhiÞ � vik2; ð5Þ

which can be rewritten in matrix format

1

2
CTBTBCT �VTBC; ð6Þ

where C is the vector of control points, V ¼ vi is the vector
of sample points, and B ¼ BiðhiÞ is the matrix of basis
functions. This least square problem is not difficult to solve
numerically. Given a sample parametric point h in GPC, to
decide if we need to refine the approximation, we measure
the root-mean-square error (RMS) �ðhÞ between its spatial
position fðhÞ and its spline approximation P ðhÞ. Algorithm
1 documents the main steps. The input includes all sample
points and an initial control grid with control points. The
initial control grid mimics the structure of GPC: Each cube
corresponds to a local regular control grid. All local grids
are topologically glued coherently following the GPC-
graph, generating a one-piece global control grid. The

function KnotVectors collects three direction knots for
each control point. We use the same “ray-tracing” strategy
in [34]. InfluencedSamples returns all sample points in
the influenced region of a control point. Transition

transports a local parameter from one cube to another cube.
AssembleMatrix assembles the matrix for (6) and
SolvingEquation solves it and determines the control
point positions. FittingError returns the worst fitting
result in a small grid. Subdivision divides a grid
uniformly into eight smaller subgrids. Fig. 11 illustrates
our hierarchical fitting results.

Algorithm 1. Hierarchical spline fitting.

Input: Initial control grid Lg,
List of sample points Ls,
List of control points Lc,
Fitting error threshold �

Output: all control points positions.

loop

//Update control point knot vectors

for all Lc do

c ¼ Lc .next()
c .knots = KnotVectorsðc;LgÞ
L0s ¼ InfluencedSamples ðc;LsÞ
for all L0s do

s ¼ L0s .next()
s .ctrlist.push_backðcÞ

end for

end for

//Compute basis functions for samples

for all Ls do

s ¼ Ls .next() Btotal ¼ 0

L0c ¼ s .ctrlist LB ¼ fg
for all L0c do

c ¼ L0c .next()
param=Transition ðs.cube#, c .cube#,

c.param)

B= BasisFunction (param,c.knots)

LB.puch_back(B) Btotal ¼ Btotal þB
end for

AssembleMatrix ðLB;Btotal; sÞ
end for

//Fitting and evaluation

SolvingEquation()

for all Lg do

g ¼ Lg.next()
if FittingErrorðgÞ > � then

L0g ¼ SubdivisionðgÞ
Lg.deleteðgÞ Lg .insertðL0gÞ

end if

end for

Stop if no updated grid

end loop

7 IMPLEMENTATION AND DISCUSSION

Our experimental results are implemented on a 3 GHz

Pentium-IV PC with 4 Giga RAM. To demonstrate the

versatility of our approach (therefore, the flexibility of our

LI ET AL.: SURFACE MESH TO VOLUMETRIC SPLINE CONVERSION WITH GENERALIZED POLYCUBES 1547

Fig. 11. Hierarchical spline fitting results at levels 0, 1, and 2,
respectively.

computational framework), we construct GPC splines for
many models. Our experiments include models with
twisted shape: twirl (Fig. 4, Row 1), möbius solids (Fig. 4,
Row 2); and with complex topology: bucky (genus 31, Fig. 4,
Row 3), genus-3 (Fig. 5), 4-sphere (genus 4, Fig. 12); and
with complex conceptual parts: wrench (Fig. 2), dancer
(Fig. 13), and greek and david (Fig. 15). Table 1 summarizes
the statistics of the GPC construction, including every
model’s properties (genus, twisted/not twisted), the num-
ber of T-shapes, cuboids, and ill points.

It may be noted that our parameterization algorithm may

not guarantee a globally minimized angle and volume

distortion. However, since our algorithm decomposes the

input into part-aware patches, each of which is parameterized

on a geometrically similar cuboid, the distortion is satisfac-

tory for our spline construction. The models of dancer, 4-

sphere, kitten, greek and david (Figs. 12, 13, 14, and 15)

demonstrate several surface and volumetric GPC parameter-

ization results. Fig. 16 shows several volumetric spline

approximation results. We overlay the control grid line

1548 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 9, SEPTEMBER 2013

Fig. 13. The dancer model visualized with T-shape decomposition,

cuboid organization, polyedge structure, GPC graph, and volumetric
parameterization.

TABLE 1
Statistics of Various Test Examples

Fig. 14. The kitten model visualized with surface and volumetric
parameterization.

Fig. 15. The greek and david model visualized with T-shape decomposition, cuboid organization, polyedge structure, volumetric parameterization
and their GPC graphs, respectively.

Fig. 12. The 4-sphere model visualized with cuboid organization,
polyedge structure, surface parameterization, and volumetric parame-
terization.

(black lines) onto the fitting results, and the T-junctions on the

control grid reduce the control point greatly while still

preserving the shape details. The statistical results are given

in Table 2. The table shows that the vertices’ number increases

dramatically when we convert a surface model into a volume

data. Our spline scheme can significantly reduce control

points for shape representation. In most of our experiments,

approximation with good quality can be achieved within

three levels of hierarchical refinement. The fitting qualities

are measured by RMS errors normalized to the overall sizes of

solid models.

Comparisons. We compare our method with other

volumetric parametric domain construction and mapping

approaches: [13], [8], [4], [6], [16], and [21]. As shown in

Table 3 and Fig. 4, our method has advantages in the

following aspects. First, our method works well for volumes

with complex topology and structure. Second, our domain

does not have any singularity and can control the type and

number of ill points (which is highly desirable for spline

construction). Our domain construction does not require

tedious design, even for very complex shape input. Mean-

while, we can also flexibly edit the cube domain to better

approximate the shape interactively.
We also test our system on the rocker-arm model, which

also appears in other papers (e.g, CubeCover in [29]). As the

comparison shown in Fig. 17, our parameterization has the

same quality as in [29]. However, 26 cube domains and four

singular points are used in [29], while we only have eight

cuboids and no singularity. In Fig. 18, we compare our

domain (Middle Left) with the methods in [8] (Middle

Right) and [17] (Right) using the fertility model. Our

domain significantly decreases the number of cuboids (19)

LI ET AL.: SURFACE MESH TO VOLUMETRIC SPLINE CONVERSION WITH GENERALIZED POLYCUBES 1549

Fig. 17. Our segmentation/mapping result of the rocker-arm model
(left/middle). Our GPC (right up) has only eight cuboids/no singularity,
compared with 26 cubes/four singular points (right bottom, courtesy
of [29]).

Fig. 18. Comparisons of different methods on the fertility model
(courtesy of [8] and [17]). Our domain has significant improvement on
cuboid and ill-point number.

Fig. 16. The volumetric spline approximation results.

TABLE 3
Comparison with the existing approaches

TABLE 2
Statistics of various spline examples

as while as ill points (only on cuboids with more than two
edges in the GPC-graph).

Discussions. Since singularity-free and ill-point simplifi-
cation is the first priority in our spline-oriented system,
this enforcement may lower mapping quality in certain
region. According to users’ requirement, we can always
change it on the fly based on a hybrid system. Inside the
current partitioning framework, we may further allow
extra local segmentation to improve its geometry aware-
ness. Upon initial partitioning, we detect long branches,
and construct additional cuboids to parameterize these
branches. For example, we map the axial shaft and handle
of the screwdriver (Fig. 19) to separate cuboids. Compared
with using only one cuboid, the distortion (e.g., the
extrusion effect) around the handle top is significantly
reduced. However, as mentioned above, this modified
GPC decomposition will bring extra singularities, ill points,
and merging cases. In this example, we add four
extra“type-4” ill points.

Our system decomposes the input model mainly
according to global shape and topology. This implies that
it fails to handle the model with complex features if they
are everywhere. Enforcing polyedges covering features
(Section 4.2) can only recover major features, which are
globally dominant. For spline construction, this is not a
critical issue since we can always improve the fitting
quality hierarchically around any sharp feature. However,
many feature-based applications may require features to be
retained. We will investigate how to preserve the feature as
much as possible.

Our polyedge tracing algorithm cannot prevent them
from intersecting with each other. Fortunately, our tracing
algorithm can avoid intersection on a well partitioned part-
aware patch. However, intersection may happen on a very
poorly shaped T-shaped patch. We will develop an
automatic method to detect degeneration and correct it.

8 CONCLUSION

We have presented a GPC spline framework for data
transformation from surface meshes to continuous volu-
metric splines. The novelty of this paper lies at the
systematic handling of GPC parametric domain without
any strong assumption. Compared with CPC, GPC
provides more generalized shape domain and better
numerical stability to represent complicated models of
arbitrary structure. We design a volumetric parameteriza-
tion procedure based on GPC, which better handles solid

objects with general topology and structure than existing

volumetric parameterization techniques. We then devise a

global “one-piece” volumetric spline based on GPC

parameterization. The GPC construction enables a novel

and desirable mechanism that facilitates the “one-piece”

spline representation. Using local point-based strategy,

global volumetric T-splines can be constructed on piece-

wise GPC because transition functions can be effectively

computed from the GPC’s topological structure. The entire

spline framework affords hierarchical refinement and

level-of-detail control. Our GPC volumetric splines have

great potential in various shape design and physically

based analysis applications. Our GPC is of great value to a

wide range of geometry processing tasks, including

volumetric isogeometric analysis [1], volume deformation,

anisotropic material/texture synthesis.

ACKNOWLEDGMENTS

This research is supported in part by US National Science

Foundation Grants IIS-0949467, IIS-1047715, and IIS-

1049448, Louisiana Board of Regents Research Competitive-

ness Subprogram (RCS) LEQSF(2009-12)-RD-A-06 and LA-

BOR PFund: NSF(2011)-PFund-236; and the open program

of the CAD&CG state lab, Zhejiang University, China.

REFERENCES

[1] T.J. Hughes, J.A. Cottrell, and Y. Bazilev, “Isogeometric Analysis:
Cad, Finite Elements, Nurbs, Exact Geometry and Mesh Refine-
ment,” Computer Methods in Applied Mechanics and Eng., vol. 194,
pp. 4135-4195, 2005.

[2] K. Wang, X. Li, H. Xu, and H. Qin, “Restricted Trivariate Polycube
Splines for Volumetric Data Modeling,” IEEE Trans. Visualization
and Computer Graphics, vol. 18, no. 5, pp. 703-716, May 2012.

[3] B. Li and H. Qin, “Component-Aware Tensor-Product Trivariate
Splines of Arbitrary Topology,” Computer and Graphics, vol. 36, no.
5, pp. 329-340, 2012.

[4] T. Martin and E. Cohen, “Volumetric Parameterization of
Complex Objects by Respecting Multiple Materials,” Computer
and Graphics, vol. 34, pp. 187-197, 2010.

[5] T. Martin, E. Cohen, and R. Kirby, “Volumetric Parameterization
and Trivariate B-Spline Fitting Using Harmonic Functions,”
Computer Aided Geometric Design, vol. 26, no. 6, pp. 648-664, 2009.

[6] Y. Zhang, Y. Bazilevs, S. Goswami, C.L. Bajaj, and T. Hughes,
“Patient-Specific Vascular Nurbs Modeling for Isogeometric
Analysis of Blood Flow,” Computer Methods in Applied Mechanics
and Eng., vol. 196, no. 29/30, pp. 2943-2959, 2007.

[7] H. Wang, Y. He, X. Li, X. Gu, and H. Qin, “Polycube Splines,”
Computer Aided Design, vol. 40, no. 6, pp. 721-733, 2008.

[8] Y. He, H. Wang, C. Fu, and H. Qin, “A Divide-And-Conquer
Approach for Automatic Polycube Map Construction,” Computer
and Graphics, vol. 33, no. 3, pp. 369-380, 2009.

[9] A. Shamir, “A Survey on Mesh Segmentation Techniques”
Computer Graphics Forum, vol. 27, no. 6, pp. 1539-1556, 2008.

[10] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent Mesh
Partitioning and Skeletonisation Using the Shape Diameter
Function,” The Visual Computer, vol. 24, pp. 249-259, 2008.

[11] R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or, “A Part-Aware
Surface Metric for Shape Analysis,” Computer Graphics Forum,
vol. 28, no. 2, pp. 397-406, 2009.

[12] M. Ovsjanikov, J. Sun, and L. Guibas, “Global Intrinsic Symme-
tries of Shapes,” Computer Graphic Forum, vol. 27, no. 5, pp. 1341-
1348, 2008.

[13] M. Tarini, K. Hormann, P. Cignoni, and C. Montani, “Polycube
Maps,” ACM Trans. Graphics, vol. 23, no. 3, pp. 853-860, 2004.

[14] H. Wang, M. Jin, Y. He, X. Gu, and H. Qin, “User-Controllable
Polycube Map for Manifold Spline Construction,” Proc. ACM Solid
and Physical Modeling Symp. (SPM ’08), pp. 125-136, 2008.

1550 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 9, SEPTEMBER 2013

Fig. 19. Modified result of the screwdriver model (up). Mapping it to two
separate domains (bottom right) instead of one cuboid domain (bottom
left) can moderate distortion like extrusion round the handle top region.

[15] J. Xia, I. Garcia, Y. He, S. Xin, and G. Patow, “Editable Polycube
Map for GPU-Based Subdivision Surfaces,” Proc. Symp. Interactive
3D Graphics and Games (I3D), pp. 151-158, 2011.

[16] J. Lin, X. Jin, Z. Fan, and C.C.L. Wang, “Automatic Polycube-
Maps,” Proc. Fifth Int’l Conf. Advances in Geometric Modeling and
Processing (GMP ’08), pp. 3-16, 2008.

[17] J. Gregson, A. Sheffer, and E. Zhang, “All-Hex Mesh Generation
via Volumetric Polycube Deformation,” Computer Graphics Forum,
vol. 30, no. 5, pp. 1407-1416, 2011.

[18] M. Floater and K. Hormann, “Surface Parameterization: A
Tutorial and Survey,” Advances in Multiresolution for Geometric
Modelling. Springer, 2005.

[19] A. Sheffer, E. Praun, and K. Rose, “Mesh Parameterization
Methods and Their Applications,” Foundations and Trends in
Computer Graphics and Vision, vol. 2, no. 2, pp. 105-171, 2006.

[20] K. Hormann, B. Lévy, and A. Sheffer, “Mesh Parameterization:
Theory and Practice,” Proc. ACM SIGGRAPH ’07 Courses, 2007.

[21] Y. Wang, X. Gu, T.-F. Chan, P. Thompson, and S.-T. Yau,
“Volumetric Harmonic Brain Mapping,” Proc. IEEE Int’l Symp.
Biomedical Imaging: Macro to Nano (ISBI ’04), pp. 1275-1278, 2004.

[22] X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin, “Harmonic
Volumetric Mapping for Solid Modeling Applications,” Proc.
ACM Symp. Solid and Physical Modeling (SPM ’07), pp. 109-120,
2007.

[23] T. Ju, S. Schaefer, and J. Warren, “Mean Value Coordinates for
Closed Triangular Meshes,” Proc. ACM SIGGRAPH ’05, pp. 561-
566, 2005.

[24] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki,
“Harmonic Coordinates for Character Articulation,” ACM Trans.
Graphics., vol. 26, no. 3, p. 71, 2007.

[25] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y.
Shum, “Large Mesh Deformation Using the Volumetric Graph
Laplacian,” ACM Trans. Graphics, vol. 24, no. 3, pp. 496-503, 2005.

[26] S. Han, J. Xia, and Y. He, “Hexahedral Shell Mesh Construction
via Volumetric Polycube Map,” Proc. 14th ACM Symp. Solid and
Physical Modeling, pp. 127-136, 2010.

[27] M. Floater, “Mean Value Coordinates,” Computer Aided Geometric
Design, vol. 20, no. 1, pp. 19-27, 2003.

[28] J. Xia, Y. He, X. Yin, S. Han, and X. Gu, “Direct-Product
Volumetric Parameterization of Handle Bodies via Harmonic
Fields,” Proc. Int’l Conf. Shape Modeling and Applications, pp. 127-
136, 2010.

[29] M. Nieser, U. Reitebuch, and K. Polthier, “Cubecover-Parameter-
ization of 3d Volumes,” Computer Graphics Forum, vol. 30, no. 5,
pp. 1397-1406, 2011.

[30] J. Hua, Y. He, and H. Qin, “Multiresolution Heterogeneous Solid
Modeling and Visualization Using Trivariate Simplex Splines,”
Proc. ACM Symp. Solid Modeling and Applications, pp. 47-58, 2005.

[31] C. Rössl, F. Zeilfelder, G. Nurnberger, and H. Seidel, “Reconstruc-
tion of Volume Data with Quadratic Super Splines,” IEEE Trans.
Visualization and Computer Graphics, vol. 10, no. 4, pp. 397-409,
July/Aug. 2003.

[32] W. Song and X. Yang, “Free-Form Deformation with Weighted T-
Spline,” The Visual Computer, vol. 21, no. 3, pp. 139-151, 2005.

[33] X. Zhou and J. Lu, “Nurbs-Based Galerkin Method and Applica-
tion to Skeletal Muscle Modeling,” Proc. ACM Symp. Solid and
Physical Modeling (SPM ’05), pp. 71-78, 2005.

[34] T. Sederberg, J. Zheng, A. Bakenov, and A. Nasri, “T-Splines and
T-Nurccs,” ACM Trans. Graphics, vol. 22, no. 3, pp. 477-484, 2003.

[35] T. Sederberg, D. Cardon, G. Finnigan, N. North, J. Zheng, and T.
Lyche, “T-Spline Simplification and Local Refinement,” ACM
Trans. Graphics, vol. 23, no. 3, pp. 276-283, 2004.

[36] J. Zheng, Y. Wang, and H.-S. Seah, “Adaptive T-Spline Surface
Fitting to Z-Map Models,” Proc. Third Int’l Conf. Computer Graphics
and Interactive Techniques in Australasia and South East Asia
(GRAPHITE ’05), pp. 405-411, 2005.

[37] X. Li, X. Gu, and H. Qin, “Surface Mapping Using Consistent
Pants Decomposition,” IEEE Trans. Visualization and Computer
Graphics, vol. 15, no. 4, pp. 558-571, July/Aug. 2009.

[38] T. Dey, K. Li, and J. Sun, “On Computing Handle and Tunnel
Loops,” Proc. Int’l Conf. Cyber Worlds, pp. 357-366, 2007.

[39] D. Reniers and A. Telea, “Skeleton-Based Hierarchical Shape
Segmentation,” Proc. Int’l Conf. Shape Modeling and Applications,
pp. 179-188, 2007.

[40] G. Taubin, “A Signal Processing Approach to Fair Surface
Design,” Proc. 22nd Ann. Conf. Computer Graphics and Interactive
Techniques (SIGGRAPH ’95), pp. 351-358, 1995.

[41] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P.
Seidel, “Laplacian Surface Editing,” Proc. Eurographics/ACM
SIGGRAPH Symp. Geometry Processing (SGP ’04), pp. 175-184, 2004.

[42] C. Carbonera and J. Shepherd, “A Constructive Approach to
Constrained Hexahedral Mesh Generation,” Eng. with Computers,
vol. 26, pp. 341-350, 2010.

Bo Li received the BS degree in computer
science from Zhongshan University (Sun Yet-
sen University) and is working toward the PhD
degree in the Department of Computer Science
at Stony Brook University (SUNY). His research
interests include computer graphics, geometric
modeling, computer-aided geometric design
(CAGD), physical animation/simulation, and
visualization. For more details, please visit
http://www.cs.stonybrook.edu/~bli.

Xin Li received the BS degree in computer
science from University of Science and Technol-
ogy of China in 2003, and the MS and PhD
degrees in computer science from Stony Brook
University (SUNY) in 2008. He is an assistant
professor in the School of Electrical Engineering
and Computer Science, and the Center for
Computational and Technology, at Louisiana
State University. His research interests include
geometric data modeling and processing, and

their applications in graphics, vision, visualization, computational
forensics, computational medicine, and robotics. He is a member of
the IEEE and IEEE Computer Society. For more information, please visit
http://www.ece.lsu.edu/xinli.

Kexiang Wang received the BS and MS
degrees in computer science from the University
of Science and Technology of China in 1998 and
2001, respectively, and the PhD degree in
computer science from Stony Brook University
(SUNY) in 2010. He is currently a data analyst at
Renaissance Technologies, LLC.

Hong Qin received the BS and MS degrees in
computer science from Peking University, and
the PhD degree in computer science from the
University of Toronto. He is a professor of
Computer Science in the Department of Com-
puter Science at State University of New York at
Stony Brook (Stony Brook University). In 1997,
he was awarded NSF CAREER Award from the
National Science Foundation (NSF). He was
also a recipient of Honda Initiation Award, and

Alfred P. Sloan Research Fellow by the Sloan Foundation. He served as
the general cochair for Computer Graphics International 2005. He was
the Conference cochair for ACM Solid and Physical Modeling
Symposium in 2007. In 2008, he served as the Conference chair for
ACM Solid and Physical Modeling Symposium and IEEE International
Conference on Shape Modeling and Applications. He is currently an
associate editor for Graphical Models, The Visual Computer, and
Journal of Computer Science and Technology. His research interests
include geometric and solid modeling, graphics, physics-based model-
ing and simulation, computer aided geometric design, human-computer
interaction, visualization, and scientific computing. For more details,
please visit http://www.cs.sunysb.edu/~qin.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: SURFACE MESH TO VOLUMETRIC SPLINE CONVERSION WITH GENERALIZED POLYCUBES 1551

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

