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Abstract—The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to

the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically

rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-

harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor.

Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves

points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method’s originality is

highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the

computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new

algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion

probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and

high performance of our method.

Index Terms—Diffusion tensor, elliptic PDE, quasi-harmonic field, feature classification

Ç

1 INTRODUCTION

FEATURE extraction and classification have been of great
practical importance in many graphics tasks and

applications, with ever-increasing interest in recent years.
Extensive studies on feature extraction, while continuing for
more than a decade, have been gaining momentum,
because features can assist recognition, deformation, para-
meterization, segmentation, shape analysis and under-
standing, and many more [1], [2], [3]. Features can be
classified into multiple types that may include point
feature, curve feature, patch feature, and so on. From the
unified viewpoint of feature extraction and model segmen-
tation, the central task of feature classification is to weave
points into homologous features of different categories,
whose union collectively comprise the original shape. To
aid downstream graphics applications, the extraction and
classification of multitype features must be of relevance to
intrinsic geometry structure. The fundamental goal of this
paper is to advocate an integrated strategy for feature
identification, extraction, and clustering, and develop a

robust and efficient method to classify multitype features of
curved geometry.

Local geometric attributes, such as curvature, normal,
and other surface measurements [4], [5], are frequently
used to detect features. They are simple and intuitive, but
suffer from noisy perturbation and incomplete information.
As a local geometry description, tensor voting (TV) theory
has demonstrated great advantages in modeling tasks such
as feature detection, clustering, and recognition [6], [7], [8],
[9]. The voting tensor is a local attribute with rich
information of local geometry, which can explicitly deter-
mine the latent classification of a vertex by analyzing its
eigenvectors. It has advantages over commonly used local
geometric attributes. Nevertheless, certain limitations still
exist. It is sensitive to noise, resulting in degraded
performance for distinguishing weak features from noise.
Due to the lack of knowledge for global shape information,
tensor voting alone falls short of distinguishing different
patch features.

Diffusion process, which is intrinsically related to the
probability of random walks (RWs) [10], [11], is a powerful
tool in tackling many graphics problems. It elegantly
bridges the large gap between local and global behaviors
via time scale and has conducted a great accomplishment
in the rapid development of heat diffusion algorithms on
manifolds [12], [13], [14], [15], [16]. Recent works often-
times concentrate on dynamic solutions of the partial
differential equation of heat diffusion. It typically requires
global eigenfunctions of the Laplace-Beltrami operator and
convolutions with heat kernels, which is very time-
consuming. However, when the diffusion arrives at its
steady state, time variable can be omitted in the notation.
The diffusion problem then reduces to an elliptic PDE
that is a linear system constrained by the heat sources.
Moreover, most previous heat diffusion processes are
designed isotropically, based on isotropic heat kernels on
manifolds. For the problem of feature analysis, directly
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using the diffusion process will naturally give rise to the
smooth transition between nearby regions, without having
evident clues on feature types and how they are weaved to
dictate a globally meaningful structure. To tackle this
challenge, an anisotropic diffusion that has the capability
of controlling diffusion directions by assigning weighted
diffusion operators locally is much more favorable. In
addition, the steady state of the heat diffusion corresponds
to a quasi-harmonic field (QHF) generated by an elliptic
PDE with the weighted diffusion operators.

In this paper, we explore a multitype feature classifica-
tion based on diffusion tensor weighted quasi-harmonic
field, which collectively inherit the advantages of local
geometric tensors and global diffusion. The local geometric
tensor is a diffusion tensor used to control a global
anisotropic diffusion process on manifolds. Another ad-
vantage of this approach is that it is tunable through a few
intuitive parameters and is stable under near-isometric
deformations. Since these features have no rigorous defini-
tions, we give an intuitive explanation. From the diffusion’s
point of view, a patch feature can be defined as a collection
of piecewise smooth regions weaved together by the
diffusion in a QHF. A curve feature is a curve where the
QHF exhibits certain types of discontinuity. We may
consider a sharp edge as a good example of curve features.
A point feature is an isolated point scattered in isolation
across the QHF. A transition (combination) feature can be
viewed as a region that is littered on manifolds dominated
by the above features. Fig. 1 highlights multitype features
extracted from models with noise and holes. The weak
features (nonprominent features) and smooth transition
features (cluster of mixed feature vertices) can also be

detected. Fig. 2 illustrates the pipeline of our approach.
First, we transform the normal voting tensor to diffusion
tensor and use it to initially assign feature types for vertices.
A high-dimensional QHF is computed according to the
seeds that are enforced as constraints in such space. Note
that our seeds are automatically selected during the
classification procedure, where user interaction is also
supported. Then, a diffusion probability (DP)-based feature
classification is exploited to classify vertices into features of
different types, such as point features, curve features, and
patch features. Finally, the curve-tracking and postproces-
sing procedures are applied. Our approach can handle 2D
manifolds of arbitrary topology effectively. The salient
contributions of this paper include

. We formulate a versatile diffusion tensor, which can
be used to control the anisotropic diffusion, distin-
guish weak features from noise, and guide curve
tracking, and so on.

. We devise a probability metric-based seed selection
mechanism, which automatically determines the
position and the number of seeds according to the
shape information.

. We convert the diffusion problem to a linear system
with boundary value subject to the seed constraints.
Then, a high-dimensional quasi-harmonic field is
obtained by fast updating the elliptic PDEs in
such space.

. We develop a classification algorithm based on
diffusion probability, which can be directly computed
from the high-dimensional quasi-harmonic field.

. We propose a complete and robust framework for
multitype feature extraction and classification that
elegantly integrates the local diffusion tensor and
global diffusion. It is tunable through a few
intuitive parameters and is stable under near-
isometric deformations.

The remainder of this paper is organized as follows:
We briefly review related work in Section 2. We introduce
the theory and property of the diffusion tensor in Section 3.
The theoretical foundation and algorithmic steps of the
proposed method are detailed in Section 4, including
feature initialization, quasi-harmonic field construction, fast
update, and feature classification. We demonstrate our
experimental results from various aspects and discuss
current limitations of our method in Section 5. Finally, we
conclude our work in Section 6.
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Fig. 1. Feature extraction and classification on models with noise
(10 percent random noise) and holes (cf ¼ 0:025, �D ¼ 0:16). Different
patch features are decorated in different colors, while curve and point
features are colored in red. The connected curve features of Fandisk are
highlighted as a wireframe representation.

Fig. 2. The functional pipeline of our new method.



2 BACKGROUND REVIEW

Feature detection and classification can be augmented by
using the knowledge from differential geometry [17], [18].
To accurately compute differential properties, both local
estimation techniques [19], [20], [21] and global surface
fitting [22], [23] are employed. The local estimation carries
out computation in neighboring triangles of a point for fast
computation. In general, the global surface fitting can
enable the calculation of high-order derivatives and
curvature extrema more accurately than local estimation.
However, it is difficult for these methods to recognize and
classify different types of features. As a viable solution, the
tensor voting theory [6], [24] is adopted. Sun et al. [7]
defined the normal voting tensor of a vertex on a triangular
mesh by considering the unit normal vectors of neighboring
triangles. This method can only recognize regions bounded
by high-curvature borders. Lavoué et al. [8] introduced a
method that can detect weak features and smooth transition
features by using curvature tensor. Since the estimation of
curvature is sensitive to noisy and sampling artifacts, it
tends to overcut the entire mesh into many small pieces.
Kim et al. [9] developed an alternate method by adopting
the tensor voting theory, which can detect both sharp edges
and transition features. However, patch features are not
clustered into meaningful pieces. Besides, only local
information is involved in this method, resulting in
unstableness to noisy input. Wang et al. [25] solved this
problem using tensor-driven diffusion for feature classifica-
tion. However, the method can only handle rigid CAD
models because of the random selection of seeds and the
very strict feature classification algorithm. Based on the
characteristics of intersection curves with blowing bubbles,
Mortara et al. [26] proposed a method to locally classify
vertices into a few types, which is different from our
approach that takes global shape of features into account.
To extract the global shape of features, ideas from
mathematical morphology have been extended to surfaces
[27]. However, they did not further classify the features and
manipulate them corresponding to their types. Later, Lai
et al. [28] proposed a feature region extraction and
classification method based on a remeshing algorithm and
feature sensitive metric, at the cost of topology changes.
Sunkel et al. [29] learned line features from the user-
specified input with training examples, but they could not
find complex features with cycles. Readers can refer to the
survey [30] for other feature detecting methods on meshes.

Clustering can also be interpreted as a part of feature
classification, which segments a shape to several patches.
From the feature’s perspective, a clustering should partition
a mesh into parts characterized by similarity, with
boundaries as salient curves. In graphics applications, there
is a large literature on clustering, such as k-means [31], [32],
region growing [33], [34], [35], spectral clustering [36], mean
shift [37], [38], random walks [10], [11], variational methods
[39], [40], [41], and so on. Katz and Tal [31] adopted fuzzy
clustering and minimal boundary cut to obtain smoother
boundaries between k-mean clusters. Lai et al. [32]
combined integral and statistical quantities to segment
meshes with noisy or repeated patterns. One of the
drawbacks of these algorithms is that they have to compute

pairwise distances, which is extremely time-consuming for
large meshes. Sorkine et al. [33] addressed mesh segmenta-
tion by greedy region growing, while optimizing different
criteria. The easy mesh cutting algorithm [34] is introduced
to cluster the similar regions using region growing, which
heavily relies on seed positions and is, therefore, sensitive to
noise. Spectral clustering [36] is also adopted for mesh
segmentation. But the clusters are not aware of features and
their spatial relationship. Yamauchi et al. [37] employed
mean shift clustering of surface normals, for which
computational complexity may be a prominent difficulty.
Xiao and Liu [38] used K-D tree to accelerate the algorithm.
However, these methods tend to overaggressively segment
a mesh into more pieces than what are expected or desired.
Lai et al. [10] exploited random walks to segment meshes by
solving a linear system. However, since the matrix of
random walks is not symmetric, it does not admit fast
Cholesky factorization. Also, they did not consider weak
features. Constrained random walk [11] is developed to
obtain smooth cutting contours. However, the cutting only
occurs between two clusters. Cohen-Steiner et al. [39] and
Wang [40] casted shape approximation as a variational
geometric partitioning problem. They can well identify the
planar regions; however, they also overaggressively seg-
mented the model into more pieces than what we are
expecting. Yan et al. [41] exploited the quadric surface
fitting to segment a mesh using the variational method.
Their method worked well for tessellated CAD models, but
was not versatile for general models. Zhang et al. [42]
extended the Mumford-Shah model based on total varia-
tion. They automatically determined the number of seg-
ments and supported users’ interactive operation, but failed
at some models without clear geometry edges. Au et al. [43]
located concave creases and seams using a set of concavity-
sensitive scalar fields, but their method relies on local shape
information and is not robust. Moreover, their method is
not suitable for patch-type segmentation. We refer readers
to the excellent survey papers [44], [45] for the comprehen-
sive references and comparison on the topic of clustering.

3 ANISOTROPIC DIFFUSION TENSOR

In this section, we introduce an anisotropic diffusion tensor
that controls both the velocity and the direction of a global
diffusion. It is derived from the normal voting tensor, which
is robust and can be easily extended to a higher dimensional
space, but has a different formulation with more discrimi-
native power enabled by the anisotropic diffusion. We
further explore its versatile capacity to detect weak features,
resist noise, and guide posttreatment procedure.

A normal voting tensor NTðviÞ of a vertex vi can be
computed by the sum of the weighted covariance matrices
[6], [7], [9],

NTðviÞ ¼
X

tj2NtðviÞ
�jntjn

T
tj
; ð1Þ

where tj is a triangle, NtðviÞ denotes the set of neighboring
triangles of vi, ntj is the normal of triangle tj, and �j is the
weight coefficient (set as 1 in our work).
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Since the normal voting tensor is a positive semidefinite
tensor with second order, it can be diagonalized by
eigenvalues (�1 > �2 > �3 � 0) and reformulated by a
spectral representation

NTðviÞ ¼ �1e1e
T
1 þ �2e2e

T
2 þ �3e3e

T
3 ; ð2Þ

where ei is the corresponding eigenvector of �i, i ¼ 1; 2; 3.
The three eigenvectors of a normal voting tensor are

orthogonal, and the eigenvalues characterize the diffusion
velocities along the directions of the corresponding eigen-
vectors. Directly adopting the normal voting tensor as the
diffusion tensor will lead to fast diffusion when crossing
sharp edges, and slow diffusion when traveling along them.
This is, however, exactly opposite to our goal. Therefore, we
design a new diffusion tensor to assist the task of classifying
vertices subject to different types, given by

DðviÞ ¼ e�1e1e
T
1 þ e�2e2e

T
2 þ e�3e3e

T
3 ; ð3Þ

where

e�i ¼ exp � �i
�D

� �
; i ¼ 1; 2; 3; ð4Þ

with diffusion parameter �D that controls diffusion velo-
cities. The smaller the �D, the harder the heat diffuses
through the hindrance, such as sharp edge, and vice versa.
Intuitively speaking, we construct an ellipsoid at each
vertex that encodes the direction and velocity of diffusion,
as illustrated in Fig. 3 (left). According to the theory of
Rayleigh quotient [46], the diffusion velocity from the
vertex vi along a vector e can be expressed as

velðvi; eÞ ¼
eTDðviÞe

eTe
: ð5Þ

It can be interpreted as the length of the vector projection
onto the ellipsoid.

Usually, the principal diffusion direction is the most
informative one, which is defined as the direction corre-
sponding to the maximal diffusion velocity. For a vertex on
a plane, all the directions embedded on the plane are its
principal diffusion directions, since all the diffusion velo-
cities are equal. For a vertex on a sharp edge, the direction
along the edge is its principal diffusion direction. For a
vertex on a corner, all the directions are considered to be its
principal diffusion directions. However, the velocities along
all the directions are extremely small. Therefore, almost no

heat can flow in or out. Fig. 3 (right) shows the principal
diffusion directions and the propagation modes of the three
types of vertices. The principal diffusion directions are also
used to distinguish weak features from noise and guide the
feature curve growing and merging process.

4 OUR NOVEL METHOD

Given a triangular mesh, our method classifies all the
vertices into features with different types. Our new method
is founded upon the computation of anisotropic elliptic
PDEs subject to Dirichlet boundary conditions. It comprises
four steps: initial feature analysis, numerical construction of
the anisotropic elliptic PDEs, feature classification, and
curve tracking and postprocessing.

4.1 Feature Initialization

An initial type is assigned to each vertex according to the
principal diffusion directions and the eigenvalues of its
structure tensor. This initial assignment conducts a general
classification of vertices and extracts vertices with salient
characteristics, such as corners and sharp edges. The rest
will be further classified in subsequent steps.

According to the eigen-analysis and the neighboring
relationship, we assign vertices to different initial types:
planar vertices, corner vertices, sharp vertices, weak feature
vertices, and noisy vertices. Compared with the method in
[9], our method has the ability to distinguish weak vertices
from noise. Since the relative difference between eigenva-
lues is crucial for classifying vertices, the eigenvalues are
normalized to bring consistency into different data using

�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ �2
2 þ �2

3

q ; i ¼ 1; 2; 3: ð6Þ

For convenience, all the eigenvalues mentioned later are
normalized, and we still denote them as �i.

The types of planar vertices, corner vertices, and sharp
vertices can be directly determined by the corresponding
eigenvalues due to the tremendous differences among them.
To discriminate weak vertices and noisy vertices, we design
a criterion, named neighboring vertex coincidence (NVC), by
considering more neighbors. It utilizes the fact that a feature
vertex often has neighboring vertices with similar character-
istics, while a noisy vertex and its neighboring vertices
usually have different principal diffusion directions. Given a
vertex vi not belonging to planar vertices, we say the vertex
conforms to the NVC criterion, if it satisfies either of the
following two conditions: 1) We put vi into a front
propagation set. Along its principal diffusion direction,
there are nonplanar vertices having similar principal
diffusion directions (with intersecting angles less than
15 degree) in its neighbors. If such coincident vertex exists
and is not a corner vertex, we mark it as the new front and
keep this front tracking procedure going. The number of
found coincident vertices is greater than 2. 2) There are two
nonplanar neighbor vertices having similar principal diffu-
sion directions, which are also coincident with the corre-
sponding edge that connects vi and the neighbor vertex.
Fig. 4 shows an example of using the NVC criterion to
distinguish the weak features from noise. The algorithm of
initial feature assignment is documented in Algorithm 1.
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Fig. 3. The illustration of diffusion tensor and its propagation. Left: The
diffusion velocities at one vertex along all the directions can be
illustrated by an ellipsoid. Right: The principal diffusion directions
(denoted as red arrows) of three different vertices on a cube are shown.
The dash lines initiated from corner vertex represent the directions with
the diffusion velocities very close to zero.



The parameter cf controls the boundary interface separating
planar vertices and other ones, which has a large influence
on curve features, and we call it the curve feature parameter
and will further discuss it in the result section. The
parameter cc and cs controls the selection of corner vertices
and sharp vertices, respectively, and they have little
influence on the classification results and are determined
empirically. However, a proper parameter setup can
increase efficiency, this is because once the sharp vertices
are determined, they no longer need further processing.
Moreover, since the eigenvalues are normalized, the para-
meters in the algorithm are consistent for different models.

Since we do not categorize noise as a feature type, a
separate process is taken to reassign feature types for weak
vertices and noisy vertices. Considering that the diffusion is
a global PDE that has a built-in resistance to noise, a simple
smoothing and enhancement procedure suffices for this
purpose. We process a noisy vertex by smoothing the
second eigenvalue of the voting tensor according to its
neighbors, given by

�2ðviÞ ¼
P

j2NðiÞ velðvj; vi � vjÞ�2ðvjÞP
j2eNðiÞ velðvj; vi � vjÞ ; ð7Þ

where �2ðviÞ is the second eigenvalue of the voting tensor
of vi, velð:; :Þ is the diffusion velocity defined in (5), and NðiÞ
is the set of neighboring vertices of vi. Then, we enhance the
weak vertices by simply enlarging the second eigenvalue of
the voting tensor by a factor of 10. If a weak vertex satisfies
only the second condition of NVC, we need to further

replace its diffusion tensor by the average diffusion tensors

of the coincident neighbors. After this procedure, noisy

vertices are further classified into weak vertices or planar

vertices, while weak vertices are enhanced and reclassified

into the sharp vertices. After the initial feature assignment,

we mark corner vertices as point features, and the sharp

vertices as curve features. From the global point of view, the

boundary of a patch feature can also be treated as global

curve features. The planar vertices will be further classified

into different patch features and curve features.

4.2 Quasi-Harmonic Fields

In our method, we utilize the QHF to provide the stable

distribution of heat with some heat sources (seeds), which

are Dirichlet conditions for elliptic PDEs. The heat diffusion

over a manifold M is governed by the heat equation. We

formulate the weighted diffusion process as

@uðv; tÞ
@t

¼ �divðeDruðv; tÞÞ t 2 Rþ

uðv; tÞ ¼ cðvÞ v 2 S
uðv; 0Þ ¼ 0 v 2 others;

8><>: ð8Þ

where the diffusivity eD is a 3� 3 symmetric matrix, S is a

set of seeds, and cðvÞ is the fixed value of seed v. The weight

matrix eD serves for two purposes: encoding diffusion

tensor D, and characterizing geometric difference between

neighboring vertices. These local attributes are crucial for

our feature classification, which will be addressed next.
From a global perspective, we allow heat diffusion to

reach its equilibrium and consider the stable state of the

weighted diffusion in (8). When the diffusion has reached

its stable state, time t is omitted in the notation. Then, (8)

reduces to an elliptic PDE

divðeDruðvÞÞ ¼ 0
uðvÞ ¼ cðvÞ v 2 S;

�
ð9Þ

whose solution is a QHF. The discrete formulation of (9) can

be written into matrix form:

LF ¼ 0; ð10Þ

subject to Dirichlet conditions FðvÞ ¼ cðvÞ; v 2 S, where L is

a n� n coefficient matrix, and F is a quasi-harmonic field.

The coefficient matrix L has elements

Lij ¼ �Kðvi; vjÞ;
Lii ¼

X
j2NðiÞ

Kðvi; vjÞ;

8<: ð11Þ

with

Kðvi; vjÞ ¼ exp �ðvi � vjÞ
TDðvi; vjÞ�1ðvi � vjÞ

�K

 !
; ð12Þ

where Dðvi; vjÞ ¼ wijðDðviÞ þDðvjÞÞ, and �K is a penalty

factor set to be the inverse of the maximal eigenvalue of

diffusion tensors DðviÞ and DðvjÞ. The geometry-aware

weight wij is used as a diffusion tensor aide, and it is

defined as
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Fig. 4. Weak features (blue dots) and noisy vertices (orange dots) can
be clearly separated via the NVC criterion. The arrows are the
corresponding principal diffusion directions and the red line is the weak
feature line.



wij ¼ exp �kNCCi �NCCjk
�G

� �
; ð13Þ

where NCCi denotes normal-controlled coordinates (NCC)
[47] of vertex vi, and �G is a geometry-dilation parameter that
controls the influence of geometry descriptor NCC. Here, �G
is set to be maxfavgfðj NCC jÞ; 0:3g, where avgfðj NCC jÞ
is the average value of the NCCs of nonplanar vertices. We
use NCC here, because they encode local geometric details of
a vertex along its normal direction, and have proper
behaviors for open surfaces without tangential tension. In
this way, geometric differences of neighboring vertices are
well categorized. Since the diffusion tensor Dð�Þ is positive
definite and wij ¼ wji is a positive constant, the value of
(12) is within interval (0,1]. Moreover, it is easy to have
Kðvi; vjÞ ¼ Kðvj; viÞ, and we know that the coefficient matrix
L is symmetric. Fig. 5 shows an example of our QHF with two
seeds. Our QHF has shown a clear temperature discrepancy
between different parts separated by the sharp edge.

4.3 Fast Update QHF in High-Dimensional Space

A QHF is the solution of an elliptic PDE (10) with Dirichlet
conditions at seeds. A new seed will be automatically
selected according to the current QHF if the classification is
unfinished. For large meshes, it is time-consuming to solve
the QHF every time after the seeds are updated. We adopt
the popular Penalty method [48] to fast update the QHF with
Dirichlet condition assigned by the seeds. Specifically, L is
symmetric that admits fast Cholesky factorization and fast
updating of Cholesky [49]. As a result, adding/removing
seed constraints can be written as matrix additions. On the
other hand, to adjust the quasi-harmonic field suitable for
clustering, we construct a high-dimensional quasi-harmonic
field in Rd using selected seeds, where d is the number of
seeds. Hence, we need to put seeds in Rd to construct high-
dimensional constraints, which is a n� d matrix. Each
column of the constraint matrix is associated with one seed
initially valued as 1, and the other seeds are set to be 0.
Now, F becomes a n� d unknown matrix, which represents
d-dimensional quasi-harmonic fields. The region where the
values are most similar to that of a seed in the quasi-
harmonic field is treated as a patch feature. Then, (10) can
be rewritten as

ðLþ �PÞF ¼ �PB; �P ¼ PþUUT �RRT ; ð14Þ

where the n� n penalty matrix P, the n� n modification
matrices U and R, and the n� d constraint matrix B have
the following entries:

Pij ¼
� i ¼ j 2 C
0 otherwise

�
Uij ¼

ffiffiffiffi
�
p

i ¼ j 2 Ci
0 otherwise

�
Rij ¼

ffiffiffiffi
�
p

i ¼ j 2 Cd
0 otherwise

�
Bij ¼

1 i is the jth in �C

0 otherwise;

(
with � being the penalty factor, C the indices for the
previous seeds, Ci the indices for newly inserted seeds, Cd
the indices of seeds to be deleted, and �C the indices for the
updated seeds. As for the penalty factor, we choose � ¼ 108

for all the examples in our current implementation. It may
be noted that the penalty method only handles soft
constraints, so the � value must be large enough to confine
the values at seeds within a proper range [48].

Our seed selection is different from the previous
methods. We design a probability distance-based scheme
to automatically select seeds in the classification proce-
dure. Given a quasi-harmonic field, we classify a subset of
planar vertices into patch features. Then, a new seed is
selected from the nonclassified planar vertices. We can
obtain the updated quasi-harmonic field corresponding to
the newly updated seeds. The process is repeated until all
the planar vertices are classified. We compute the initial
quasi-harmonic field by randomly selecting two seeds
from the planar vertices with the euclidean distance larger
than the radius of the model’s bounding sphere. This can
avoid overclassification. Meanwhile, our system also
supports user interaction for seed selection, which can
fulfill specific needs of feature segmentation. The seed
selection and feature classification will be detailed in the
following section.

4.4 Feature Classification Based on Diffusion
Probability

In this part, we first give a definition, called diffusion
probability. After the d-dimensional QHF F is computed
from (14), the DP of a vertex vi to the jth seed DP ðvi; jÞ can
be intuitively defined as the jth element of Fi, where Fi ¼
ðFi1; . . . ; FidÞT is the vector value of the QHF at vertex vi.
Then, we classify features by a self-adaptive algorithm
based on the newly introduced concept of diffusion
probability. According to our prior discussion on high-
dimensional QHF and their valid value ranges, we observe
that each scalar component of this d-dimension vector at
any vertex is a nonnegative value between 0 and 1, it is both
natural and mathematically intuitive to consider the d-
dimensional vector field at a vertex as a probability
distribution function (PDF) with respect to d selected seeds:
The probabilities from the d corresponding seeds randomly
walking (diffusing) to the current vertex. Moreover, our
newly devised DP can be immediately obtained from the
existing QHF without extra computational effort, at the
same time it exhibits the robustness of QHF. Therefore, DP
can be considered as a powerful measurement to classify
vertices from the perspective of diffusion.

In the initial feature assignment, most types of vertices
have already been classified except planar vertices, we only
need to handle planar vertices in this step, and classify them
into different patch features and curve features via our
classification algorithm (Algorithm 2). The key idea is to
cluster planar vertices to the corresponding seeds that have
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Fig. 5. The QHFs generated using common cotangent Laplace operator
(left) and our anisotropic diffusion operator (right). The seeds are cold
source with the constant temperature of 0 and hot source with the
constant temperature of 1, respectively.



the maximum DP. Naturally, the boundary of each patch
feature constructs a curve feature that reflects geometric
saliency and segments the patch. Therefore, we treat
boundaries of the patches as curve features in our
classification algorithm. Intuitively speaking, patch features
are weaved together by curve features.

Now, we shall introduce our seed selection mechanism.
To automatically select seeds, a proper metric is inevi-
table. Many commonly used metrics, such as geodesic
distance and diffusion distance, suffice for this purpose.
Nevertheless, accurately calculating these metrics on
manifolds is time-consuming in principle. Since the QHF
is already computed in the earlier stage, it makes a perfect
sense to devise a distance metric that makes full use of it.
In the d-dimensional QHF F , we define a probability
distance between two vertices as

DPF ðvi; vjÞ ¼ kFi � Fjk2: ð15Þ

For a generic family of probability distribution functions, it
is easy to verify that when d > 2, the distance DPF ðvi; vjÞ is
a metric by using Minkowski’s inequality. This distance
metric will be further employed to merge small patch
features in later stages.

We iteratively determine seeds based on this newly
proposed distance measurement. During the iteration, a
new seed is chosen with the minimum distance value to all

the existing seeds. Fig. 6 illustrates an example of how a
new seed can be automatically placed on the model and
where to place such seed in an automatic way. The feature
classification based on automatic seed selection is docu-
mented in Algorithm 3. Given the Cholesky factorization of
coefficient matrix and the nonclassified planar vertices, the
classification is achieved after a fewer iterations. Since the
QHF has been computed in an earlier stage, the distance
measures and their summation can be obtained directly. If
the user needs to further segment large patch features into
small ones, our system also supports user interaction, which
can be handled in a similar way. Note that the number of
selected seeds equals to the number of patch features.

4.5 Curve Tracking and Postprocessing

Now, the vertices are classified into different features. For
models with sharp edge features, we build a concise
representation for a curve feature by ordering the vertices
and connecting them. This representation is useful in
downstream graphics applications. In previous methods
[23], [50], the connection algorithms are utilized, even
though they may generate many branches and intricate
lines. In our work, this can be easily handled using the
principal diffusion directions. Smooth feature curves are
found by curve tracking along the principal diffusion
directions. For an edge of M, if both endpoints belong to
point features or curve features, and at least one of the
principal diffusion directions is close to the edge (whose
intersecting angle is less than 15 degree), the two endpoints
are connected to form a line segment contributing to a curve
feature. For more general models, different line features and
point features may be interleaved together to form a more
complicated transition region. In this case, these features are
just illustrated by color rather than clustering into a
connected curve.

Finally, a postprocessing step might still be needed to
process small patch features. A small patch feature is
recognized as the one with the number of vertices fewer
than a given threshold (we set it to be 0.1 percent of the total
number of vertices in this paper). It is possible that a large
feature is separated by small ones due to noise or nonsalient
geometry. We tackle this problem by merging a small patch
into the most relevant neighboring patch (if such patch
exists), whose seed has the minimum distance to the small
patch. The distance of a vertex v to a patch P is defined as
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Fig. 6. An example illustrates the automatic seed selection mechanism.
The color scheme denotes the value in the distance field: the sum of the
probability distances from a vertex to all the existing seeds (denoted as
blue balls). The isolines are constructed by connecting vertices that
share the distance value. The new seed (denoted as a red ball) is
highlighted at a location that has a minimum value in the distance field.



DPF ðv; P Þ ¼ min
u2P
fDPF ðv; uÞg: ð16Þ

Sometimes, a small patch is surrounded by transition

features. In this case, we just merge it into a transition

feature. Fig. 7 shows the example of merging small patch

features. Note that this postprocessing stage is rather

optional and can be skipped by users, since small patches

may be useful in certain applications.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the performance of our

method by conducting experiments in various aspects,

including multilevel classification, noisy meshes, compar-

ison with other methods, general models, and deformable

meshes. All the experiments documented in this paper are

conducted on a computer with 1.6-GHz Intel Core (TM,

four cores/eight threads) i7 CPU with 4-Gb RAM, where

both synthetic and scanned meshes are utilized. Most

computation expenses of our approach can be done in the

preprocessing stage, such as the diffusion tensor computa-

tion, feature initialization, and Cholesky decomposition of

the coefficient matrix. Since only the updating procedure

instead of recomputation is needed in each iteration, our

method is extremely efficient and can reach real-time

performance. Table 1 summarizes the statistics and timing

performance of fast updating of the QHF for a collection

of data set used in our experiments, where #Ci and #Cd
are the numbers of newly inserted seeds and deleted

seeds, respectively

Parameters and multilevel classification. Parameter selec-

tion is a challenge for versatile intelligent methods.

Usually, fewer parameters and flexible multifunctional

capabilities are conflicting with each other, people have to

find a good tradeoff in practice. There are several

parameters that need to set in our approach; however,

most of them are either self-adaptive (�K is set to be the

inverse of the maximal eigenvalue of the corresponding

diffusion tensor, and �G ¼ maxfavgfðj NCC jÞ; 0:3g) or

determined empirically (cc ¼ 0:1 and cs ¼ 0:3), and they

are consistent throughout different models. We only need

to pay special attention to two parameters: curve feature

parameter cf and the diffusion parameter �D. As we have

discussed above, cf influences curve features. In principle,

the less prominent of the features, the smaller of curve

feature parameter should be. �D controls the influence of

diffusion tensor to the QHF, the less of the heat passing

across the feature regions, the smaller of the diffusion

parameter should be. That is, �D influences the patch

features. Fig. 8 shows the effect of the parameters. They are

set to be 0.03 and 0.16, respectively, by default if there is no

special requirement on parameter setting.
Moreover, our method also supports hierarchical

feature classification by interactively adjusting the curve

feature parameter and the diffusion parameter to form

different combinations. From coarse to fine, a large piece of

patch feature may be further classified into some small

pieces. Fig. 8 shows the multilevel results with different

parameters. We want to particularly mention that the

curve feature parameter is intuitive, users can interactively

slide the value bar to obtain the desired curve features. In

our ongoing work, we would like to improve the

parameter setting and tuning by exploring the intrinsic

relationship between the curve feature parameter and the
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Fig. 7. Merging small patch features. The top row: A small patch is
merged into a patch feature. The bottom row: A small patch is merged
into a transition feature.

TABLE 1
Time Performance of Updating Quasi-Harmonic Fields

with High-Dimensional Seeds

Fig. 8. Multilevel feature classification on the Fandisk, obtained by
adjusting the curve feature parameter cf and the diffusion parameter �D.



diffusion parameter and devise a semiadaptive parameter

selection scheme.
Classification on meshes with noise and holes. The tensor is a

local attribute determined by a small neighborhood of a

vertex. Therefore, only using the local tensor [9] can be easily

affected by noise. To address this problem, we adopt QHFs

in our method to classify features, which are stable solutions

to heat diffusion. The QHFs have high resilience in

combating noise and holes. Moreover, the gap between

features and noise are further magnified by exploiting the
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Fig. 9. Feature classification results for models with noise and holes (cf ¼ 0:03, �D ¼ 0:16). The first row: models (Octa-flower and Hand) with
10 percent random noise. The second row: models with holes.

Fig. 10. Comparison of different methods. (a) Original meshes. (b) The results of random walk [10]. (c) The results of tensor voting [9]. (d) Our results
(cf ¼ 0:025, �D ¼ 0:16).



information of the diffusion tensor. Figs. 1 and 9 show the
classification results under noise and holes. We add
10 percent (of average edge length) random noise to perturb
vertex coordinates and punch some holes (topological noise)
on the models. The small holes almost have no negative
effect on the results because of the diffusion nature. When a
hole is too large to allow the diffusion to pass through by
traversing around the hole boundary, the corresponding

patches will be further classified into smaller patches
according to the hole locations (Fig. 9 (bottom left)). Note
that, due to the diffusion nature of our QHF, no special
processing is required for the holes and open boundaries.

Comparison and discussion. In Fig. 10, we compare our
method with previous related methods: random walk [10]
(b), and tensor voting [9] (c). The RW method fails to find
weak features, since there is no feasible criterion to stop the
random walk from passing through the weak features.
Moreover, since the matrix of random walk is not
symmetric, fast Cholesky factorization is not applicable,
which limits its computational speed. The TV method
cannot distinguish weak features from noise either. There-
fore, the clustering is sensitive to noise, and much more
postprocessing is unavoidable. Besides, neither could
distinguish different patch features, they instead consider
them collectively as one patch. Our method can classify the
vertices into different features, and it can detect both the
weak features and the smooth transition features for noisy
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TABLE 2
Comparison of Different Methods in Time (sec)

Fig. 11. More examples for man-made objects (cf ¼ 0:03, �D ¼ 0:16). The connected curve features are highlighted beneath the feature
classification results.



meshes (Figs. 1 and 10d). Table 2 summarizes the running

time of the algorithms used in experiments in Fig. 10. It

indicates that our method performs better than the other

methods in terms of both speed and classification results.

More examples including deformed models. More experi-

mental results are shown to further demonstrate the

performance of our method. Fig. 11 demonstrates some

results of rigid manufactured objects. The connected curve
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Fig. 12. Feature classification on organic models. Patch features are shown in different colors, while all other features, including point features, curve
features, and transition features are shown in red (cf ¼ 0:03, �D ¼ 0:16).

Fig. 13. Consistent classification of deformed models. The classified features are well preserved under a series of near-isometric deformations
(cf ¼ 0:03, �D ¼ 0:16).



features are highlighted beneath the classification results. We
also examine our method on natural objects, with experi-
ments in Fig. 12. For simplicity, different patch features are
shown in different colors, and all other types of features,
including point features, curve features and transition
features being shown in red. Near-isometric deformation
usually preserves significant features of models. Thus, our
method can be expected to generate consistent results under
such deformation. Fig. 13 shows the classification of three
deformed models. Most classification results are well
preserved while undergoing deformation, except for some
places where the geometric features vanish after deforma-
tion, such as some creases on the thumb.

Limitations. Since the curve features of general models
are often complicated, they cannot be easily represented by
wireframes (which otherwise could be easily handled for
manufactured models). Also, in some extreme cases, the
features in small complicated regions are hard to be
discriminated. In such cases, we simply treat them as
transition (or composite) features consisting of point
features, curve features, and patch features, such as the
eyes and suckers of octopus shown in Fig. 13. For the clarity
of visualization, we just highlight them using red color in
this paper. How to derive a more general representation,
which considers either semantics or specific application
needs, will be our future work.

6 CONCLUSION AND FUTURE WORK

In this paper, we have articulated a new method for feature
extraction and classification on meshes, based on diffusion
tensor driven quasi-harmonic fields. A diffusion tensor has
been locally designed to control the global anisotropic
behavior of heat diffusion. Such diffusion tensor has also
been utilized to eliminate noise and form feature curves. The
novelty of our method centers at the elegant integration of the
locally defined diffusion tensor and the globally defined
quasi-harmonic field in an anisotropic manner. Moreover, we
transform the nonlinear diffusion problem into a linear
problem of field construction to make our method computa-
tionally efficient. A greedy feature classification process
enables our method to handle both rigid manufactured parts
and organic deformable objects. We believe that the funda-
mental ideas in this paper can propel us to pursue more real-
world applications, including feature-driven shape registra-
tion, local feature-sensitive parameterization, object recogni-
tion, shape synthesis, and so on.

For immediate future work, we are planning to extend our
method to handle diverse types of geometric and scientific
data, such as point clouds in urban architecture modeling and
volumetric data in medical imaging. Moreover, applying this
approach to vector/tensor field design and feature-aware
nonphotorealistic visualization deserves further investiga-
tion that could significantly broaden our method’s applica-
tion scope.
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[26] M. Mortara, G. Patané, M. Spagnuolo, B. Falcidieno, and J.
Rossignac, “Blowing Bubbles for Multi-Scale Analysis and
Decomposition of Triangle Meshes,” Algorithmica, vol. 38, no. 1,
pp. 227-248, 2003.

[27] C. Rssl, L. Kobbelt, H.-P. Seidel, and I. Stadtwald, “Extraction of
Feature Lines on Triangulated Surfaces Using Morphological
Operators,” Proc. Int’l Symp. Smart Graphics, pp. 71-75, 2000.

[28] Y. Lai, Q. Zhou, S. Hu, J. Wallner, and H. Pottmann, “Robust
Feature Classification and Editing,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 1, pp. 34-45, Jan./Feb. 2007.

[29] M. Sunkel, S. Jansen, M. Wand, E. Eisemann, and H.-P. Seidel,
“Learning Line Features in 3D Geometry,” Computer Graphics
Forum, vol. 30, no. 2, pp. 267-276, 2011.

[30] L.Di Angelo and P.Di Stefano, “C1 Continuities Detection in
Triangular Meshes,” Computer-Aided Design, vol. 42, no. 9, pp. 828-
839, 2010.

[31] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using
Fuzzy Clustering and Cuts,” ACM Trans. Graphics, vol. 22, no. 3,
pp. 954-961, 2003.

[32] Y. Lai, Q. Zhou, S. Hu, and R.R. Martin, “Feature Sensitive Mesh
Segmentation,” Proc. ACM Solid and Physical Modeling Symp.,
pp. 17-25, 2006,

[33] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski,
“Bounded-Distortion Piecewise Mesh Parameterization,” Proc.
Conf. Visualization, pp. 355-362, 2002.

[34] Z. Ji, L. Liu, Z. Chen, and G. Wang, “Easy Mesh Cutting,”
Computer Graphics Forum, vol. 25, no. 3, pp. 283-291, 2006.

[35] Y. Zheng and C.-L. Tai, “Mesh Decomposition with Cross-
Boundary Brushes,” Computer Graphics Forum, vol. 29, no. 2,
pp. 527-535, 2010.

[36] R. Liu and H. Zhang, “Segmentation of 3D Meshes Through
Spectral Clustering,” Proc. 12th Pacific Conf. Computer Graphics and
Applications, pp. 298-305, 2004.

[37] H.Y. Seungyong, H. Yamauchi, S. Lee, Y. Lee, Y. Ohtake, and
E.B.H. peter Seidel, “Feature Sensitive Mesh Segmentation with
Mean Shift,” Proc. Int’l Conf. Shape Modeling, pp. 236-243, 2005.

[38] C. Xiao and M. Liu, “Efficient Mean-Shift Clustering Using
Gaussian Kd-Tree,” Computer Graphics Forum, vol. 29, no. 7,
pp. 2065-2073, 2010.

[39] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational Shape
Approximation,” ACM Trans. Graphics, vol. 23, no. 3, pp. 905-914,
2004.

[40] C.C.L. Wang, “Extracting Manifold and Feature-Enhanced Mesh
Surfaces from Binary Volumes,” J. Computing and Information
Science in Eng., vol. 8, no. 3, 2008.

[41] D.-M. Yan, W. Wang, Y. Liu, and Z. Yang, “Variational Mesh
Segmentation via Quadric Surface Fitting,” Computer-Aided Design,
vol. 44, no. 11, pp. 1072-1082, 2012.

[42] J. Zhang, J. Zheng, C. Wu, and J. Cai, “Variational Mesh
Decomposition,” ACM Trans. Graphics, vol. 31, no. 3, pp. 21:1-
21:14, 2012.

[43] O. Kin-Chung Au, Y. Zheng, M. Chen, P. Xu, and C.-L. Tai,
“Mesh Segmentation with Concavity-Aware Fields,” IEEE
Trans. Visualization and Computer Graphics, vol. 18, no. 7,
pp. 1125-1134, July 2012.

[44] A. Shamir, “A Survey on Mesh Segmentation Techniques,”
Computer Graphics Forum, vol. 27, no. 6, pp. 1539-1556, 2008.

[45] H. Benhabiles, J.-P. Vandeborre, G. Lavoué, and M. Daoudi, “A
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