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Abstract High-fidelity smoke simulation in a large-scale
complex environment is extremely time-consuming due to
the expensive computational cost of using highly dense reg-
ular grids. There have been quite a few improved algo-
rithms/techniques aiming to enhance the simulation’s visual
effects and reduce the time consumption during the last two
decades. However, most of the state-of-the-art methods will
encounter difficulties of not being able to model fine tur-
bulent details during simulation or losing high-frequency
shape details at the fine scale when simulated smoke inter-
acting with nearby obstacles. One straightforward solution
is to continue to refine spatial resolution at the expense of in-
creased time complexity. This paper, however, advocates an
improved strategy for smoke simulation design over adap-
tive grids, while simultaneously enabling the functionalities
of local projection and guiding control. First, our new in-
tegrated method supports adaptive grid projection that can
significantly reduce the computational cost during the ve-
locity projection phase. During smoke simulation design,
the use of adaptive grids flexibly accommodates finer cells
near obstacles with fine details, and coarser cells anywhere
else, as a result, fine-scale object features can be faithfully
retained without the need of global grid refinement. Sec-
ond, our integrated solution over adaptive grids can tightly
couple guiding control with local projection, which is capa-
ble of handling tiny obstacles that are impossible to model
with global coarse grids alone during simulation preview.
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Comprehensive experiments have shown that our integrated
method has the advantage of generating turbulent phenom-
ena when interacting with small-scale features of obstacles,
and at the same time offering the preview mechanism for
efficient large-scale smoke simulation design.
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1 Introduction and motivation

Visually realistic animation of many complex physical phe-
nomena, such as smoke, fire, and water, could be effectively
simulated by using grid-based simulation in graphics. How-
ever, large-scale fluid simulation to generate many small-
scale details using prior methods [1, 2] is extremely time-
consuming due to the high computational cost associated
with high resolution for the underlying grids. During the last
two decades, there have been many research works explor-
ing new techniques to accelerate the simulation.

Among them, two key ideas are of most relevance to our
approach in this paper. The first one is to use a coarser grid to
solve the most costly step—velocity projection. Losasso et
al. [3] used an octree grid to accelerate the simulation. Their
method indeed reduces the projection cost. However, it does
not generate a underlying fine grid, so it may be difficult to
achieve higher-order interpolation and also the details (such
as vorticity) in the coarse cells may be lost or weakened.
Lentine et al. [4] improved the projection step by mapping
the velocity field to a regular coarse grid to solve a global
projection, and then conducted local projection for fine cells
in each coarse cell. Their method works well in most cases.
However, when the embedded obstacles can not be repre-
sented faithfully, the local projection will lead to artifact
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(e.g., no divergence-free or abnormal larger velocity com-
paring with surrounding cells). The second one is focusing
on using a coarse preview simulation to guide and control
the fine simulation [5–8]. Using the guiding control method,
one can design and adjust the smoke animation very fast on
the coarse preview grid, and the final fine-grid simulation
needs to be conducted only once. However, existing guid-
ing control methods may not work well in cases where the
obstacles cannot be represented well on the coarse grid, and
they cannot be integrated with the fast projection method ei-
ther [3, 4].

To tackle the above problems, we propose a novel inte-
grated design method for smoke simulation. In our method,
two main techniques—guiding control and fast velocity
projection—are integrated over an adaptive grid. Using our
method, one can benefit from two fronts. To obtain the final
fine smoke simulation, one can first design and adjust the
preview coarse grid and use the coarse simulation to guide
the fine simulation. Comparing with directly computing over
the fine grid, this is the first advantage. To conduct the final
fine-grid simulation, the simulation cost can be reduced by
our fast projection method and this is the second advantage.

The key contributions of this paper are as follows:

– We propose an Integration of Adaptive Grid Projection
and Guiding Control (IAGPGC) method. The users can
benefit from both two advantages of fast projection and
preview design;

– In our IAGPGC method, we develop an improved adap-
tive grid projection method which can model small-scale
features of obstacles embedded in the adaptive grid and
enhance their interaction with surrounding fluids pre-
cisely while significantly reducing the projection cost;

– We develop a novel guiding control method, which can
handle the cases where the obstacles cannot be repre-
sented well on the coarse preview grid.

2 Related work

Fluid simulation technologies have been gaining popular-
ity since the end of 1990s [1]. Significantly limited by the
computational power, earlier works failed to use large grids
to produce highly detailed results. Consequently, many re-
searchers explored different methods to improve the simula-
tion. We briefly review the most related work in the follow-
ing categories.

Higher-order methods To improve the baseline of simula-
tion on the existing grid, earlier research tried to use higher-
order interpolation method [2], or more accurate advection
schemes such as BFECC, QUICK, MacMormack, and so
on [9–11]. Additionally, a mass and momentum conserved
method was proposed by Lentine et al. [12].

Enhanced vorticity Fedkiw et al. [2] introduced a vorticity
confinement method to help recover some lost momentum
by adding external forces according to the existing vortici-
ties. Selle et al. [13] extended this method further by adding
vorticity particles. Chen et al. [14] developed Langevin par-
ticle method based on a turbulence energy model with tur-
bulence viscosity.

Irregular grid methods Several researchers adopted irreg-
ular grids such as octree grid [3], hybrid grid [15], and trian-
gular mesh for smoke simulation [16, 17]. All of these meth-
ods have an advantage of better representation of boundaries
and can reasonably distribute computing resources. How-
ever, the complicated structures hinder our ability to design
robust numerical methods. For example, a higher-order in-
terpolation on the octree grid could be rather laborious and
inaccurate.

Coarse grid projection In contrast to solving the global
projection on the finer grid, many researchers used only a
coarse grid projection. High resolution simulation can be
obtained by adding turbulences into the coarse grid [18–20].
Although these methods have exhibited some successes at
adding details, but they are nonphysical and produce signif-
icantly less realistic results than simply increasing the reso-
lution. Recently, Lentine et al. [4] mapped the velocity field
to the coarse regular grid to solve the Poisson equation and
then mapped them back to the fine grid for local projection.
Although their method can accelerate the projection one or
two orders of magnitude, artifacts may occur in case that the
high frequency obstacles cannot be represented well on the
regular coarse grid.

Guiding control Guiding control is a method that the fine
resolution simulation is guided by the coarse resolution one
and the two shall be matched to judge the guiding quality.
Earlier, Treuille et al. achieved keyframe control by opti-
mizing the control forces [21] and Mcnamara et al. used the
adjoint method to accelerate it [22]. Recently, very similar
to keyframe control, some authors focused on controlling a
fine simulation to follow a preview coarser one. Nielsen et
al. [5, 6] implemented the guiding control by changing the
projection step to solve a minimization equation between the
guiding and guided fields. Huang et al. [7] achieved guid-
ing control by applying control forces at sample points to
make the velocities follow the guiding velocities. Yuan et
al. [8] analyzed the Lagrangian Coherent Structure (LCS)
of the guiding velocity field and applied control forces in
these LCS regions. Although they can obtain good guiding
effects in some cases, generally speaking, their methods can-
not guarantee that the guiding always works especially when
obstacles can not be represented on the coarse grid for the
preview purpose.
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Fig. 1 The algorithmic pipeline of our system. Before fine resolution
simulation, a preview one will be quickly conducted and stored. For
fine grid simulation, when simulating each frame, we first build the
adaptive grid and decomposition grid. To obtain divergence free veloc-
ity field, we map the velocities to the adaptive grid and solve the global

projection. Then we map the velocities’ change back to the fine grid
and implement local projection for each local region. Finally, we apply
guiding control with the prestored coarse velocity field. To obtain bet-
ter performance, guiding for nonobject regions goes ahead of the local
projection step

Model reduction Model reduction is another method to re-
duce the projection cost. Some researchers used the model
reduction method to handle very high resolution grids
[23–25]. However, the use of bases is non-physical and
the achieved details are not as good as that of traditional
methods. Moreover, when boundary conditions change, all
the precomputation must be conducted again. Another ap-
proach is to reduce the three-dimensional simulation to a
series of two-dimensional ones via simplification [26, 27].
Although they produced visually compelling results in cer-
tain instances, in more general cases, the two-dimensional
simulations cannot approximate three-dimensional behavior
very well.

3 Overview

On the fine grid, the inviscid, incompressible fluids are char-
acterized by the equations

∂u/∂t = −u∇ · u − ∇p + f, (1)

∇ · u = 0, (2)

where u denotes fluid velocity, p denotes pressure, f is an
external force, and the fluid density is assumed to be 1
for the simplicity purpose. This set of equations is usually
solved using the operator splitting method [1]. In the split-
ting scheme, one phase called velocity projection costs the
most. In this paper, we change the traditional velocity pro-
jection phase to two phases—a global projection phase and a
local projection phase – via an adaptive grid. Moreover, we
propose a novel guiding control method tightly integrated
with our projection method. Our guiding control method is
also split to two phases—guiding in nonobject regions and

guiding in object regions (nonobject regions and object re-
gions will be described in Sect. 6.1 and an intuitive example
is given in Fig. 1).

Based on the splitting scheme, we implement our IAGP-
GC method for each frame as follows (also see Fig. 1):

1. Build the adaptive grid and decomposition grid. The
adaptive grid is used for velocity projection and the de-
composition grid is used for guiding control;

2. Implement global projection on the adaptive grid. The
velocity field is mapped from the fine grid to the adaptive
grid to implement global projection;

3. Apply guiding control for nonobject regions of the de-
composition grid;

4. Implement local projections;
5. Apply guiding control for object regions.

The traditional adding force phase and advection phase are
omitted.

4 Projection models

In incompressible fluid simulation, an important step is to
make the velocity field divergence-free. This step is called
velocity projection. To make a velocity field divergence-
free, the following Poisson equation is employed:

�p = ∇ · u∗, u = u∗ − ∇p, (3)

where p is the pressure field, u∗ is the intermediate veloc-
ity field, and u is the result of projection. Poisson equation
is usually solved with Dirichlet boundary condition or Neu-
mann boundary condition. To use these two boundary condi-
tions, the simulation domain is usually closed (for example,
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in a closed box, or a room with the velocity at the open win-
dow being fixed).

Alternative models can be derived by minimizing the in-
tegral of square of velocity change (also see [5]). We call
these models flux-based projection models. In an open do-
main, which means both boundary velocity and internal ve-
locity can be projected, the flux-based projection model is
given by

minimizex
∫
Ω

∣
∣x(r)

∣
∣2

dr,

subject to ∇ · (x(r) + u∗(r)) = 0,

(4)

where Ω is the domain of the entire field including bound-
aries, x is the change of velocity. This model means that
we expect to find a divergence-free velocity field and its Eu-
clidean distance to the original field is minimum. Using flux-
based projection models, pressure field is not used, and thus
Dirichlet boundary condition or Neumann boundary condi-
tion is not necessary.

In our integration method, global projection is imple-
mented using flux-based projection models, and local pro-
jection and guiding control are based on Poisson equation.
In the following sections, Poisson equation and flux-based
projection models are discussed in detail.

4.1 Poisson equation

The first property of Poisson equation is that using Pois-
son equation to do projection, all vorticity except that on
the boundaries will be preserved. This is because the diver-
gence part can be represented as the gradient of a scalar field
[16, 28], and this gradient field will naturally has no vortic-
ity. We can use this property to decompose the velocity field
of a closed domain to its low frequency part (only the global
trend and no vorticity) and high frequency part (only the vor-
ticity and no global trend).

The second property of Poisson equation is that projec-
tion using Poisson equation is a linear operation. We can
rearrange the pressures and velocities in certain order (not
unique though) and obtain vectors p and v, and v∗ is the
vector of the intermediate velocity (also see Fig. 2). As the
Laplacian matrix is not of full rank, we set the first element
of vector p to zero, and the remaining vector is denoted
by p′. A modified corresponding Laplacian matrix, denoted
by Lp , can be obtained by expanding Laplacian operation of
each cell. Similarly, we can obtain the divergence matrix Dv

and the gradient matrix Gp . Then Eq. (3) can be rewritten
as

Lp · p′ = Dv · v∗, p =
(

0
p′

)

,

v = v∗ − Gp · p,

(5)

Fig. 2 A 2D grid and its corresponding vectors and matrices

and Eq. (5) can be combined into

M = I − Gp ·
(

0
L+

p

)

· Dv, v = M · v∗, (6)

where L+
p is the pseudo-inverse of Lp (which can be com-

puted by a svd-decomposition-based method) and I is an
identity matrix. One should note that 0 in Eq. (6) is in fact a
row vector. The linear property of the Poisson equation can
be derived from Eq. (6):

M · (αv1 + βv2) = α(M · v1) + β(M · v2), (7)

which means blending two velocity fields before projection
is equivalent to blending them after projection.

4.2 Flux-based projection model

The discrete flux-based projection model over the adaptive
grid in open boundary condition is given:

minimizef v

∑
i∈faces Wi · f vi

2,

subject to ∀j ∈ cells,div(Cj ) = 0,
(8)

where faces is the set of all faces, i is the index of each face,
cells is the set of all cells, j is the index of each cell, f v

is the array of the change of all velocities, W is the array
of weight for faces, and div(Cj ) is the divergence of cell
Cj . Note that div( ) is in fact a linear function of f v for
each cell. We suggest Wi to be the area of face i (the same
as volume-weighted Poisson equation [3]), but one can use
other weighting schemes if necessary.

Typically, we assume the adaptive grid to be an octree
grid as it is easy and sufficient in most cases. Figure 3 is an
example of three-dimensional octree grid. In this example,
we assume the area of smaller faces to be 1, thus the area of
larger faces is 4. And the constraint for the larger cell using
Eq. (8) is (−4u1 + u2 + u3 + u4 + u5 − 4v1 + 4v2 − 4w1 +
4w2) = 0.

5 Adaptive grid projection method

In this section, we will describe our adaptive grid projection
method via an octree grid. This method is aiming to acceler-
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Fig. 3 A node of the octree grid

Fig. 4 An example of octree grid generation

ate the most costly step (velocity projection) in a dense grid
simulation.

5.1 Octree grid generation

The octree grid is constructed according to a distance field
with n thresholds for n + 1 levels. To compute the distance
field, all cells are initialized with a value larger than all the
thresholds. Then any cell of the fine grid occupied by ob-
stacles is set to zero for its distance value. Using these zero
cells as seeds, the final distance field can be generated via a
seed-filling method. After generating the distance field, the
octree grid is initialized to be the coarsest regular grid, and
then it is recursively subdivided when any leaf node has a
fine cell whose distance is smaller than the corresponding
threshold. Figure 4 gives an example to generate the octree
grid. In this example, we use two thresholds (2 and 4) and
three levels of cell size.

5.2 Global projection on the octree grid

To solve the projection on the octree grid, we first compute
the velocities according to the velocity field on the fine grid
with the following equation:

u∗
c = 1

n

∑

f ∈faceset

u∗
f , (9)

where u∗
c is the velocity of the coarse face, u∗

f is the velocity
of the fine face, faceset is the set of the fine scale faces,

which overlap with the octree face, and n is the number of
elements in faceset.

Then, using the Lagrange multiplier method, the formu-
lation in Eq. (8) can be rewritten as

minimizef v,λ

∑

i∈faces

Wi · f vi
2 −

∑

j∈cells

(
λj · div(Cj )

)
,

(10)

where λ is the Lagrange multiplier for each cell of the octree
grid. The solution of this equation is the KKT point [29], and
one can derive a linear equation Ax = b which can be solved
by linear system solvers.

5.3 Local projection

After solving the equation on the octree grid, we will obtain
the change f v for all the faces of the octree grid. As we want
to preserve the vorticity as much as we can, we simply map
the change back to the faces of the fine grid, which overlap
with the coarse face and the new velocities are computed by

uf = u∗
f + f v. (11)

We do not change velocities of the internal fine faces in
each coarse cell as Poisson equation can preserve all internal
vorticities [4]. For each local region of coarse cell, we im-
plement projection using the model described in Sect. 4.1.
For small-scale cells, each coarse cell’s velocities can be re-
arranged to a column vector and the velocity column vectors
of all cells with the same shape can be rearranged to a ma-
trix. Then a GPU-based matrix-matrix multiplication can be
employed to solve all the projections very fast. As octree
grid has no obstacle in the coarse cells, all the coarse cells
have only several shapes (if the largest coarse cell is 8 × 8,
there are at most three shapes, i.e., 2 × 2, 4 × 4, 8 × 8).
Alternatively, for larger ones, traditional iterative methods
such as PCG can be used instead [29]. This process is also
described in Algorithm 1.

6 Our guiding control method

Guiding control is in fact keyframe matching. Users expect
the fine resolution smoke to be globally the same shape as
the preview one and this matching should be frame by frame.
In this section, we will analyze how to control the velocity
fields to be matched, and then describe how to implement
our novel guiding control method.

Using a low frequency field to control a higher one, one
can decompose the latter field into a high frequency part
and a low frequency part and apply control only on the low
frequency part and then merge the low and high frequency
parts [30]. This can be described as follows:

F3 = αL(F1) + (1 − α)L(F2) + H(F2), (12)
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Algorithm 1 Local projection
Require: Velocity field before projection F ∗, obstacles

Objf , irregular grid Grid, region sets RegionSets.
Ensure: Velocity field after projection F .

// we assume precomputed matrices are M1, M2, M3.
1: F ← 0; U1 ←[ ]; U2 ← [ ]; U3 ←[ ];
2: for each region Ri ∈ RegionSets do
3: if Ri can be computed by GPU matrix-matrix multi-

plication method then
4: l ← octree level of Ri ;
5: vi ← rearrange the velocities of Ri ;
6: Ul = [Ul vi];
7: else
8: v ← rearrange the velocities of Ri ;
9: build corresponding matrix for PCGsolver;

10: v ← PCGsolver(v);
11: rearrange v to the corresponding position of F ;
12: end if
13: end for
14: U1 ← M1 · U1; U2 ← M2 · U2; U3 ← M3 · U3;
15: rearrange U1, U2, U3 to the corresponding position of

F ;
16: return F ;

where F1 is the guiding field, F2 is the guided field, F3 is
the result, α is the guiding coefficient and L(F) and H(F)

are the operations to get the low and high frequency parts
of F , respectively.

We decompose the velocity fields using Poisson equation
models via an irregular grid which is called “decomposition
grid.” We stress that the decomposition grid is the key of
our guiding control method. According to the linear property
described in Sect. 4.1, it is much cheaper to apply guiding
control using the following equation:

F3 = αL(F1) + (1 − α)L(F2) + H(F2)

= L(F2) + H(F2) + α
(
L(F1) − L(F2)

)

= F2 + L
(
α(F1 − F2)

)
, (13)

which means that we can first compute the field α(F1 − F2)

and then add its low frequency part to the guided field.
Comparing to Eq. (12), only one decomposition operation
is needed in Eq. (13) whereas three are needed in the former
case.

In Sect. 6.1, we will describe how to generate the de-
composition grid. And in Sect. 6.2, we will describe how to
decompose the needed low frequency part field.

6.1 Decomposition grid generation

Before decomposition, we build a decomposition grid to di-
vide the domain to smaller regions. In order to handle the

Algorithm 2 Low frequency part decomposition
Require: Coarse velocity field Fc, coarse obstacles Objc,

fine velocity field Ff , fine obstacles Objf , decompo-
sition grid Griddec, guiding coefficient α, and a flag
(OnlyObjectRegions or AllLocalRegions).

Ensure: Low frequency part Flow .
1: F ∗

c ← Upsample(Fc);
2: Fd ← α(F ∗

c − Ff );
3: for each face x of Fd do
4: if (x is not in any region of Objf ) and (x does not

overlap with Griddec) then
5: Fd(x) ← 0;
6: end if
7: end for
8: if flag = OnlyObjectRegions then
9: RegionSets ← {all object regions};

10: else if flag = AllLocalRegions then
11: RegionSets ← {all local regions};
12: end if
13: Flow ← LocalProjection(Fd,Griddec,RegionSets)
14: return Flow

cases where the obstacles’ shapes are different between the
low and high resolutions, we need to take special care when
building the decomposition grid. The difference of the low
and high resolution obstacles should not appear on the local
regions’ boundaries. And the decomposition grid should not
be too dense especially around the obstacles, otherwise the
guiding result will be much like upsampling.

An easy way to build such a decomposition grid is to con-
nect all the cells on the octree grid (the adaptive grid used for
global velocity projection) smaller than a threshold (such as
4 × 4 × 4 in 3D) to one or several large local regions, which
we call “object regions,” and preserve each of other cells as
a local region, which we call “nonobject region.” One can
see the zoom-in area in Fig. 1 for an example, the second
grid is the adaptive grid for velocity projection and the third
grid is the decomposition grid.

6.2 Decomposition of velocity field

Given a coarse velocity field Fc with coarse obstacles Objc
embedded to guide a fine velocity field Ff with fine obsta-
cles Objf embedded and a coefficient α, we can compute the
desired low frequency part Flow according to the decomposi-
tion grid Griddec as follows (also see Algorithm 1). We first
upsample Fc to F ∗

c . For faces in the region of any obstacle
Objci (region of obstacle includes the obstacle’s boundary),
the upsampled velocity value should be computed accord-
ing to the velocity of Objci . For other faces, bilinear interpo-
lation in 2D or trilinear interpolation in 3D can work well.
Then the difference field α(F ∗

c −Ff ) is computed and stored
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as Fd . Finally, we set all the internal velocities of Fd to zero
and implement local projection for each local region of Fd

according to the decomposition grid Griddec, and obtain the
low frequency part Flow.

7 IAGPGC method

In this section, we will describe the framework of our
IAGPGC method (also see Algorithm 3).

Before the fine simulation, the preview simulation will be
conducted and stored. For fine simulation, the first step is ap-
plying boundary condition. In this step, position and velocity
of obstacles, position, and density of smoke source and wind
forces can be set or changed. The second step is adding force
step. Buoyancy force and wind forces can be applied to ve-
locity field. We use the vorticity confinement method [2] to
enhance details. Then we use BFECC method [9] to advect
the velocity field and employ GPU to accelerate the compu-
tation.

Algorithm 3 IAGPGC Method for Each Frame
Require: Fine velocity field Ff , coarse velocity field Fc ,

and scalar field S

Ensure: Fine velocity field Ff and scalar field S

1: Objf ← apply boundary condition;
2: Ff ← AddForce(Ff );
3: Ff ← AdvectVelocityBFECC(Ff );
4: if (first frame) or (any obstacle has changed) then
5: Gridoct ← BuildOctreeGrid(Objf );
6: Griddec ← BuildDecompositionGrid(Gridoct);
7: end if
8: MapToOctreeGrid(Ff ,Gridoct);
9: GlobalProjection(Gridoct);

10: MapToFineGrid(Gridoct,Ff );
// Guiding control in non-object regions: lines 11–16

11: Flow ← LowFrequencyPart(Fc,Ff )

12: for each face x of Ff do
13: if x overlaps with Griddec then
14: Ff (x) ← Ff (x) + Flow(x);
15: end if
16: end for

// Local projections: lines 17–18
17: RegionSets ← {all local regions of Gridoct}
18: Ff ← LocalProjection(Ff ,Gridoct,RegionSets);

// Guiding control in object regions: lines 19–23
19: for each face x of Ff do
20: if x is in any object region of Griddec then
21: Ff (x) ← Ff (x) + Flow(x);
22: end if
23: end for
24: S ← AdvectScalarBFECC(Ff ,S);

The following several steps are the main process of our
IAGPGC method. According to the obstacles’ positions with
octree thresholds, we build the adaptive grid, and the de-
composition grid is built according to the adaptive grid. If
the obstacles have not changed comparing to the last frame,
these two grids of the last frame can be reused. The velocity
field produced by velocity advection step is mapped from
the fine grid to the adaptive grid. We use the PCG method
to solve the linear equations derived from Eq. (10). Then
velocity field is mapped from the adaptive grid to the fine
grid. At this time, we use Algorithm 2 to get the low fre-
quency part Flow of the difference field and the flag is set to
OnlyObjectRegions. As the decomposition method, we use
is the Poisson equation, to apply guiding control in non-
object regions, we can simply guide the velocities of the
boundary of nonobject regions and do nothing for the in-
ternal velocities of nonobject regions. The next is the local
projections step. All velocities of the local regions of the
adaptive grid are projected using GPU matrix-matrix mul-
tiplication method (described in Sect. 5.3). To apply guid-
ing control in object regions, we add the prestored low fre-
quency part Flow to the fine velocity field for all object re-
gions.

The final step is advecting scalar field step. We use
BFECC method [9] to advect the scalar field (such as tem-
perature and density), and GPU is used to accelerate the
computation.

8 Experiment results and comparison

Several results of our adaptive grid projection and guiding
control method are discussed in this section.

8.1 Experiment results

Figure 5 shows two examples of our adaptive grid projection
method. We observe that our method produces large amount

Fig. 5 Two examples of our adaptive grid projection method. (a) A 3D
example with several holes (resolution 256 × 256 × 256). (b) A 3D
example with a static sphere (resolution 128 × 128 × 128)
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Table 1 Timing information when comparing with Losasso et al.’s
method [3], and Lentine et al.’s method [4] deploying a static sphere.
All the fine resolutions are 128 × 128 × 128. “Lentine10” means the
coarse grid projection method proposed by Lentine et al. [4], “Ours*”
means the extension of our flux-based projection model to the coarse
grid, “Losasso04” means the volume-weighted Poisson equation de-
scribed in [3] and “Ours” means our flux-based projection model. The
symbol “–” in the second column means we only use three levels of
octree cell. “Unkowns/NNZ” is the numbers of unknowns and nonze-
ros of the derived linear equation Ax = b and “Cost/iterations” is the
time cost of the global projection and number of iterations

Method Coarse or octree Unkowns/NNZ Cost/iterations

Lentine10 32 × 32 × 32 32687/222524 0.28s/150

Ours* 32 × 32 × 32 133752/493032 0.86s/150

Losasso04 2,4,− 44799/309489 0.41s/150

Ours 2,4,− 183294/680172 1.26s/150

Fig. 6 A 3D example of our guiding control method. (a) The preview
(64 × 64 × 64); (b) The un-guided fine simulation (256 × 256 × 256);
and (c) The fine simulation with guiding coefficient 1.00

of details without any visual artifact. To compare the effi-
ciency of our model with Poisson equation, we deploy a
static sphere in the scene (see Fig. 5(b)) and use different
models to implement simulations at resolution 128 × 128 ×
128. Timing of the projection step is given in Table 1. From
the table, we can see that our model has four times as many
unknowns and twice as many non-zeros as that in Poisson
equation, and our model’s cost is about three times as much
as that of Poisson equation.

Figure 6 shows an example of our guiding control
method. We deploy a stick-shaped moving obstacle and the
obstacles between the preview and the fine resolutions are
slightly different. We can see the fine un-guided simulation
(Fig. 6(b)) is quite different from the preview one (Fig. 6(a)),
whereas the guided one (Fig. 6(c)) and the preview are very
similar. Our guiding control method also enables users to
reuse prestored simulations (Fig. 7(a)) by changing the em-
bedded obstacles (Fig. 7(c)) to certain degree.

8.2 Comparison

To illustrate the advantage of our adaptive grid projec-
tion method, we compare our method with coarse projec-
tion method proposed by Lentine et al. [4] and the octree

Fig. 7 A 3D example of our guiding control method for reuse (all sim-
ulations are 128 × 128 × 128). (a) The prestored simulation, (b) the
simulation without guiding control, and (c) the reused simulation with
guiding control. Our method enables users to slightly change the ob-
stacles of the scene and produces visually correct results

grid method proposed by Losasso et al. [3]. The projec-
tion model of their methods is Poisson equation (or volume-
weighted Poisson equation), and we believe this model can
only be used in the constrained boundary velocity condition,
whereas our projection model can be used in unconstrained
boundary velocity condition. The projection step based on
our model is a bit slower than that based on Poisson equa-
tion, but our method is still a good choice for unconstrained
boundary velocity condition. Lentine et al.’s method using a
regular coarse grid to do the global projection cannot retain
tiny features of obstacles and artifacts will occur in some
cases, whereas our method does not have such problems. For
example, in Fig. 8(b), the coarse grid is 8×8 coarser than the
fine grid, and the velocities in the two coarse cells contain-
ing the thin sticks (see the zoom-in area) will be very large
and artifacts will occur. In some cases, when using Lentine
et al.’s method a coarse cell may be divided into several re-
gions by a tiny obstacle, and each region may not be di-
vergence free after local projection (see Fig. 8(a)). Although
they can use octree grid in the local projection step, the local
refinement is no better than using dense grid in local region
and can never influence the global coarse projection. How-
ever, our octree grid is global, and the refinement around the
obstacles is done in global projection step.

The other one includes the guiding control methods of
Nielsen et al.’s [5, 6], Huang et al.’s [7], and Yuan et al.’s [8].
Nielsen et al. claimed that their method cannot handle vary-
ing obstacles very well, whereas using our irregular coarse
grid structure we can tackle this problem well. Both Huang
et al.’s and Yuan et al.’s methods apply guiding control by
adding forces in sample regions. As a result, their methods
may not work well when using a coarse projection method
(just like ours or Lentine et al.’s [4]) to accelerate the projec-
tion, as only sample points on the coarse grid will influence
the global projection and the guiding effects will be weak-
ened accordingly.

There are some cases that our guiding control method
cannot handle well. When the obstacles are too large and we
may need to use verge large object regions, thus the guiding
control may not achieve good results.
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Fig. 8 Comparison with Lentine et al.’s method [4] with tiny objects.
(a) Lentine et al.’s method with 4 × 4 coarse cells (b) Lentine et al.’s
method with 8 × 8 coarse cells; (c) Our octree grid method; (d) The
fine projection. (c) and (d) are visually correct, but (a) and (b) have
artifacts. That is because the yellow areas in (a) may not be divergence
free and the red areas in (a) and (b) may have much larger velocity
than what the normal velocity should be

9 Conclusion

We have articulated an improved strategy for smoke simu-
lation design over adaptive grids, while simultaneously en-
abling the functionalities of local projection and guiding
control. Our method enables the smoke animation design
by offering two additional advantages. First, our new in-
tegrated method supports adaptive grid projection that can
significantly reduce the computational cost during the veloc-
ity projection phase without losing visually interesting de-
tails. Second, our integrated solution over adaptive grids can
tightly couple guiding control with local projection, which
is capable of handling tiny obstacles that are impossible to
model with global coarse grids alone during simulation pre-
view. Comprehensive experiments have shown that our in-
tegrated approach has the unique advantage of generating
turbulent phenomena when interacting with small-scale fea-
tures of obstacles, and at the same time offering the pre-
view mechanism for efficient large-scale smoke simulation
design.
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