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Abstract
We present a novel methodology that utilizes four-dimensional (4D) space deformation to simulate a magnification lens on
versatile volume datasets and textured solid models. Compared with other magnification methods (e.g. geometric optics, mesh
editing), 4D differential geometry theory and its practices are much more flexible and powerful for preserving shape features
(i.e. minimizing angle distortion), and easier to adapt to versatile solid models. The primary advantage of 4D space lies at the
following fact: we can now easily magnify the volume of regions of interest (ROIs) from the additional dimension, while keeping
the rest region unchanged. To achieve this primary goal, we first embed a 3D volumetric input into 4D space and magnify ROIs
in the fourth dimension. Then we flatten the 4D shape back into 3D space to accommodate other typical applications in the
real 3D world. In order to enforce distortion minimization, in both steps we devise the high-dimensional geometry techniques
based on rigorous 4D geometry theory for 3D/4D mapping back and forth to amend the distortion. Our system can preserve
not only focus region, but also context region and global shape. We demonstrate the effectiveness, robustness and efficacy of our
framework with a variety of models ranging from tetrahedral meshes to volume datasets.
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1. Introduction

The rapid advances in three-dimensional (3D) scanning, acquisi-
tion and modelling techniques have given rise to the explosive
increase of volumetric digital models with extra density informa-
tion like magnetic resonance imaging (MRI), textured solid models
[KFCO*07], [TOII08] or computer aided detection (CAD) mod-
els containing materials. The great progresses in graphics process-
ing unit (GPU) rendering, and internet bandwidth, push forward a
stronger-than-ever need for visualizing large-scale volume datasets
in various science/engineering applications. Meanwhile, the explo-
sive emergence of various types of portable mobile devices (e.g.
smart phone) pursues the visualization technique to display large-
scale models on a physically limited device screen. It requires us
to non-homogeneously rescale different regions while keeping the
global shape of models within the screen space.

The traditional method is through the use of 2D screen region-of-
interest (ROI) magnification techniques, which functions as ‘lens’

and offers a good strategy to magnify a local region only. However,
compared with magnification on the image projected on the screen,
it is more preferable to locally magnify the 3D volume datasets
directly. For example, the user can translate, rotate, cut and visu-
alize the dataset from different angles without computing magnifi-
cation again and again. Magnifying datasets directly is also neces-
sary for many virtual reality applications (e.g. cultural heritage and
walkthrough).

From practitioners’ perspective, an attractive magnification
should address the following quality-centric aspects: Shape-
preserving—Shape (such as angle, rigidity) plays a crucial role
during magnification when improving the visual cognition. The
improper magnification distortion may cause serious cognitive
confusion. We should preserve the shape of focus region, sur-
rounding context region and global shape simultaneously. Smooth
transition—Any visual gain from unifying the local detail with the
surrounding context may easily be lost if the transition between
the focus and context regions is difficult to understand. Simple
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interaction—In most practical applications, the user only prefers
to use simple user sketch (e.g. draw a circle) to enclose the focus
region. Our system should thus support such simple interaction.

However, it is a tremendous challenge to optimize the output
simultaneously with respect to all of the aforementioned aspects.
The most challenging side effect is that: in a 3D world, a local
region’s magnification inevitably compresses the rest region and
leads to distortion. More severely, the conventional methods are
more likely to spread the distortion throughout the 3D space.
Any optimization technique only moderates but never eliminates
distortion. Meanwhile, the existing techniques consider neither
shape-preserving nor smooth transition from the rigorous geom-
etry’s point of view, thus lens distortions are intolerable when
features become sufficiently intricate.

To tackle the above-mentioned challenges, we are inspired by
the following idea: Rather than magnifying ROIs and shrinking the
rest region in the 3D world, we could increase ROIs’ volume in the
additional dimension without changing the rest region. Also, it is a
well-known knowledge that the differential geometry theory and its
practical techniques (e.g. surface parameterization) can handle angle
distortion rigorously and quantitatively. In this way, we examine
this conventional magnification task from a completely innovative
perspective of 3D/4D geometry processing.

To achieve this goal, we propose a framework to simulate 4D lens
in order to achieve local magnification while minimizing global
angle distortion. Our framework starts from transforming the 3D
input into a 4D mesh with an initial fourth dimension for every
vertex. Then we conduct 4D deformation which enlarges ROI’s vol-
ume while keeping the rest unchanged. To visualize this magnified
mesh, we automatically deform the mesh back into 3D space for
applications. Both steps require us to seek distortion minimization
for each individual mesh element during deformation. Specifically,
our contributions in this work include:

(1) A framework to address the 3D volume dataset magnification.
In contrast to other possible deformation solutions, our method
lets the additional dimension’s space absorb the volume mag-
nification rather than spreading throughout the nearby space
in the original dimensions. Therefore, our result can resemble
the original interior texture and the resulting transition between
ROIs and the rest is also smooth and seamless.

(2) Techniques for distortion minimization with high dimensions.
To achieve this, we propose a piece-wise method to solve the
harmonic function on nD tetrahedral mesh. Meanwhile, we
develop a flattening method to model the 4D shape flattening
back into 3D and preserve the shape.

Our system has the unique feature that we can preserve the shape
around both focus region and context region/global shape. Our
geometry-based method can also quantify and minimize distortion.
Therefore our system can effectively magnify and visualize volume
datasets while keeping distortion unnoticeable. Also, we first in-
troduce 4D geometry theory into computer graphics as a practical
application and powerful tool for real-world (3D) visualization and
modelling.

After discussing related literatures, a framework overview is given
in Section 3. On a global view, modelling the 4D magnification in

Section 4 is the first stage in our framework, followed by flatten-
ing techniques in Section 5. In Section 6, we demonstrate our ex-
perimental results and document more comprehensive discussion,
respectively.

2. Previous Work

Lens design problem originates from 2D image viewing study. Un-
like image resizing [WTSL08], focus + context application re-
quires non-uniform magnification. Optical effect, such as fisheye
lens [Fur86], offered an effective navigation and browsing de-
vice for various applications [NBM*06]. More sophisticated lenses,
like Bier et al. [BSP*93], utilized a toolglass and magic lenses to en-
hance the focal interest features and compress the less interesting re-
gions. Carpendale et al. [CCF97] proposed several view-dependent
distortion patterns to visualize the internal ROI, where more space is
assigned to highlight focal regions. LaMar et al. [LHJ01] presented a
fast and intuitive magnification lens with a tessellated border region
by estimating linear compression according to the radius of lenses
and texture information. Recently, Pietriga et al. [PA08], [PBA10]
provided in-place magnification without requiring the user to zoom
into the representation and consequently lose context. Similar to our
scheme, Zhao et al. [ZZG*12] proposed the geometry method that
magnifies the 2D image in 3D space for visualization of 2D image.
Unlike the above-mentioned 2D techniques, our ambitious goal is to
design lens for 3D volume. To our knowledge, no existing method
has attempted to provide the solution yet.

Another interesting prototype in lens design is that deformation
and mesh-editing–based methods are recently used for the compli-
cated 3D datasets, including volume data [CS07] [WWLM11] and
mesh models [WLT08]. Wang et al. [WLT08] presented a method
using an energy optimization model for large surface models. Later,
they further extended this framework into 3D volumetric datasets
[WWLM11]. Zhao et al. [ZLWK12] proposed a geometry-based
deformation mechanism using moving least-square method for vol-
ume data visualization. Inspired by these methods, we utilize the
relative geometric method, which originally applies to visualization
of 2D datasets like [ZZG*12], targeting to eliminate the local angle
distortion and keep the visual continuity for volume datasets.

High-dimension modelling and processing. Unlike other lens
design methods, our 4D lens framework utilizes vital geometric
modelling techniques like texture transfer and flattening. Texture
transfer is in essence a parameterization problem which seeks a
one-to-one continuous map between an n-manifold and a target
n − 1 domain with low distortions. Surface parameterization (2D
image to 3D triangle mesh) is widely studied because of its im-
portance in graphics and shape modelling. We refer readers to
comprehensive survey reports of [FH05], [SPR06] and [HLS07]
for various surface parameterization techniques. A main challenge
here lies at generalizing 3D techniques to higher dimension. More
closely related to our work, volumetric parameterization (3D-to-
3D) has gained great interest in recent years and a few related tech-
niques have been developed towards remeshing [LGW*07] or spline
construction [MCK].

One key technique in our framework is volumetric mapping.
Among all volumetric parameterization techniques, we have high
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Figure 1: Inputs of our framework. Top: A 3D solid textured model
is a tetrahedral mesh mapped by the colour texture. Bottom: For a
volumetric dataset, we partition the space into grids and each grid
is uniformly subdivided into tetrahedra.

interest in using local coordinates to minimize harmonic energy,
because it is particularly suitable for parameterization on dis-
crete tetrahedral mesh. The coordinates on the triangle mesh, like
[Wac75], [MDSB02], [Flo03], [LLCO08], are fully developed in the
conventional surface modelling. As for coordinates on the tetrahe-
dral mesh, Wang et al. [WGC*04] proposed a variational coordinate
method to parameterize solid shapes over a solid sphere. [LQ12]
managed to integrate volumetric local coordinates and interpolation
directly into continuous shape representations. Ju et al. [JSW05]
generalized the mean value coordinates [Flo03] from surface to
volume for a smooth volumetric interpolation. One obstacle within
these methods, however, is that building the coordinates requires
complex geometric algorithms, and these discrete methods always
do not converge for complex shape. [LLWQ13] developed simpli-
fied local volumetric coordinates based on domain decomposition
and regular poly-cube domain construction to simplify the mapping
difficulty. We expect to apply a simple coordinate formula which is
easy to obtain on generalized shape representation.

Three-dimensional to two-dimensional flattening is also a com-
mon application for surface geometric processing. Lévy et al.
[LPRM02] proposed the as-conformal-as-possible method that flat-
tens a triangle mesh to two dimensions for parameterization. Liu
et al. [LZX*08] designed a hybrid flattening method to get more
flexible results. All these methods inspire us to develop a generalized
4D-to-3D flattening algorithm.

3. Framework

This section gives a high level overview of our proposed framework.
Our system takes as input a wide range of 3D textured solid models
(Figure 1). For a tetrahedral mesh without texture, Takayama et al.
[TOII08] proposed a method for interior solid texturing modelling.
For volumetric datasets (like CT and MRI) with texture information

only, we partition the given volumetric dataset using a uniform grid.
Each vertex in the grid is associated with a 3D parameter (u, v, w).
The original volume dataset now becomes the volume texture of the
uniform grid. We further decompose each grid into several tetrahedra
and convert the input to a 3D textured tetrahedral mesh, as shown
in Figure 1 (bottom).

Now we can describe an arbitrary input by a uniform format.
We define the input as a tetrahedral mesh M = {T, E, V}. T =
{t1, t2, . . . , tn} denotes the set of tetrahedra, and {E, V} denotes the
set of edges and vertices. A mapping function φ maps vertices to the
texture. In a discrete setting, each vertex vi = (pi , φi) includes two
items: p denotes vertex’s position (we use p3D = (x, y, z) in three di-
mensions and p4D = (x, y, z, h) in four dimensions). φi = (u, v, w)
denotes a volumetric parameter corresponding to the volume tex-
ture. Our output is a new tetrahedral mesh Mout with updated p and
φ for each vertex. Our framework includes the following steps.

(Step 1) Choosing ROI: The user makes an initial choice about
ROIs. The shape/boundary of an ROI can be determined
by a bounding sphere that encloses user’s interested re-
gion, or, by a more accurate ROI’s boundary. We could de-
tect an accurate ROI’s boundary through automatic bound-
ary extraction operations (e.g. marching cube) or simple
heuristic methods.

(Step 2) Magnification: In order to magnify the total volume in
ROI, we generate a new 4D mesh M4D based on the initial
mesh.
(2.1) We deform the original 3D tetrahedral patch inside

the ROI in the 4D space, with the ROI boundary as
constraints. So that no shape changes outside ROI’s
boundary, and the total volume within the boundary
is magnified after this operation.

(2.2) We recompute each vertex’s parameter to rem-
edy the shape distortion during magnification. To
achieve this, we solve the volumetric harmonic
function: �φ12 = 0, where φ12 is a texture trans-
fer function M4D → M. Then for a vertex vi =
(p4D

i , φi) in M4D, we update its parameter as:
φi = φ(φ12(p4D

i )), where φ is the parameter on the
original 3D mesh M.

(Step 3) Flattening: In Step 2 we have already magnified M to M4D.
In order to visualize M4D, it is necessary to flatten M4D

back into a 3D mesh as the final output Mout and preserve
the magnification effect. We use a 4 × 3 rotation matrix
to rotate each 4D tetrahedron t4D

i back to a ‘flattened’ 3D
tetrahedron tFi . Then we stitch all separate tetrahedra to-
gether as the sole mesh Mout, and keep each tetrahedron’s
shape to similar to tFi after stitching. We can execute this
step iteratively until getting a visually promising result.

(3.1) We initially guess a 3D tetrahedral mesh (e.g. from
the last iteration’s result, or by simple projection
from M4D in the first iteration). By comparing
between the ‘guess’ tetrahedron t3D

i in M3D and
rotation-generated ‘flattened’ tetrahedron tFi , we
can compute a 3 × 3 Jacobian matrix Ji between
two corresponding tetrahedra. Then we can extract
from Ji a stretching-free/rotation-only matrix Ri .
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Figure 2: Illustration of the framework. Because it is impossible to visualize 4D space, we use an image, a planar triangle mesh and a
3D triangle mesh to represent a volumetric dataset, a 3D tetrahedral mesh and a 4D tetrahedral mesh. After pre-processing, the input is
a tetrahedral mesh with a volumetric dataset as the texture. The tetrahedral mesh is first embedded into a high-dimensional space and we
magnify the total volume in an ROI through the additional dimension. We solve the harmonic function to recompute the mapping and transfer
the texture to the new 4D tetrahedral mesh. Finally, we flatten the 4D tetrahedral mesh back into 3D for visualization.

(3.2) We solve the linear optimization equation to deter-
mine every vertex’s position in Mout such that, in
the resulting mesh, the Jacobian matrix between the
resulting tetrahedron and the ‘guess’ tetrahedron
approximates Ri .

Figure 2 shows our framework in a step-by-step fashion. Since it
is extremely difficult to visualize the 3D-to-4D deformation in an
intuitive way, we utilize 2D-to-3D deformation to simply illustrate
the entire framework: 2D image and triangle mesh to mimic volume
dataset and tetrahedral mesh, and deformed 3D triangle mesh to
mimic a 4D tetrahedral mesh.

4. 3D-to-4D Magnification

In order to magnify in 4D space, we first extend the input M by
embedding it into 4D space. For each vertex with a 3D position
p3D = (x, y, z), we expand it to p4D = (x, y, z, h), where the addi-
tional height h = 0. We can imagine this operation in the 2D layout
as pulling a 2D plane from 2D to a real 3D world with shape un-
changed (still a 2D plane but embedded in a 3D world after pulling).

ROI magnification. Now we start to magnify ROIs. ROI is a region
in the volume. Each ROI encloses a mesh patch Mp and we use
∂Mp to represent the boundary of patch Mp . To magnify the ROI’s
volume, we seek a solution that could stretch all vertices inside Mp

to new positions while keeping other vertices unchanged.

In most practical focus + context visualization applications, the
user only chooses a general approximate region via simple user
sketch or basic geometric primitives (like the region within a drawn

sphere), enclosing both mesh segment and nearby context space as a
reasonable proxy. In our system, we use a sphere to enclose the focus
region and simulate lens in most applications. The choice of sphere
lens is natural and humans are more accustomed to it with better
visual understanding compared with other geometric primitives. In
practice, we first visually choose a general approximate region,
then we pick the centre c of this region as the centre of sphere
associated with radius r , and r must be large enough to enclose the
entire ROI.

After setting the lens, we magnify its volume by moving each
vertex to a new position along the fourth dimension. As shown in
Figure 2, we use a gaussian function to compute hi in each p4D

i

because the shape changing in such case is not severe but smooth.
For each vertex we compute hi = g(1 − di

r
)h0, where di denotes the

distance to the sphere centre c, g(x) denotes a standard gaussian
function e−x2

and h0 is a user input to scale the magnification. As an
alternative solution, we can also use a standard 4D sphere instead
of gaussian function to accommodate user’s visual preference: hi =√

r2 − d2
i .

In some applications, the user may seek
for a lens with an arbitrary shape. For ex-
ample, a focus object extracted from the
volume may have complex shape or high
genus boundary and the user prefers to
use this exact boundary to be the lens (like
Figure 3 b). To achieve this, we can gen-
erate a central skeleton-like curved path C
(e.g. [ATC*08]) and get the medial axis
transform for every point on the object boundary. Each vertex vi
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Figure 3: Two ways of lens shape design: (a) We can use a 3D
sphere, with a centre c (red point), to enclose the entire ROI. The
radius is r . (b) For an arbitrary shape lens like an extracted object’s
boundary (horse) from the volume, its medial axis can assist us to
generate the lens. Each vertex inside the ROI associates a distance
value di with the axis.

inside the lens associates the shortest distance di with the axis path
C. Now again we can use gaussian function to compute hi for
each vertex: hi = g(1 − di

dm
)h0, where dm is the maximum distance

value.

Large-scale magnification may stretch/shear the tetrahedron and
sabotage the mesh quality. To solve this, we need to subdivide
the highly stretched tetrahedron and compute the locations and pa-
rameters (p, φ) for newly inserted vertices. We utilize barycentric
coordinates and linear interpolation to interpolate new positions
and parameters. For a point pc inside a tetrahedron, its barycentric
coordinate is:

fc =
4∑
i

λifi, λi = 1

3

< pc, �si >

V
, (1)

where V is the volume and �si = Ai �ni. Ai indicates the area of
one tetrahedron’s face triangle (and each tetrahedron has four face
triangles). Using the barycentric coordinates, we can keep the shape
unchanged before and after adding vertices. Although the texture
interpolation may not be optimal under this strategy, we compen-
sate it by modifying the texture coordinates in the following texture
transfer step.

Texture transfer. The tetrahedral mesh in the focus region has al-
ready been magnified after the magnification step. The following
texture transfer step is necessary because after the above-mentioned
magnification step, the tetrahedron in the focus region has already
been significantly deformed to a different shape, thus still using the
unchanged coordinates to map and interpolate the texture will in-
evitably cause angle distortion. Texture re-mapping can preserve the
original texture shape after deformation. Figure 4 uses a surface in
3D example to illustrate the necessity of texture transfer (since we
are unable to visualize the real volume in 4D example). Direct mag-
nification without texture transfer (left) produces severe distortion
effect for the context region, and texture transfer step can remedy this
distortion (right).

Figure 4: Texture transfer in 2D layout to illustrate the effectiveness
of texture transfer. (a) Direct magnification without texture transfer.
(b) The result after texture transfer.

The objective of this step is to texture the new mesh using the
original texture, while preserving the initial texture shape. We have
the tetrahedral mesh M ∈ R3 and M4D ∈ R4 before and after the
magnification. To transfer the texture from M (with the texture
function φ) to M4D, it is desirable to construct a function φ12 :
M4D → M, that maps the entire space of M4D onto M. Then we
can describe the transferred texture mapping function on M4D as
φ ◦ φ12.

This function can be solved from the following harmonic func-
tion to minimize the mapping distortion: �φ12 = 0, where � =
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . We use discrete piece-wise coordinates to solve it
numerically.

(1) In M4D, we use each vertex’s original 3D position as the initial
parameter φi = (ui, vi, wi) = (xi, yi, zi).

(2) We iteratively update each vertex’s parameter (ui, vi, wi) =∑
Ng(vi ) ωij (uj , vj , wj ), where Ng(vi) is the one-ring neigh-

bour of vi , (uj , vj , wj ) is every neighbour’s parameter, ωij is
the local coordinate associated with each neighbour. We keep
parameters unchanged on the volume boundary vertices, as
Dirichlet boundary conditions.

(3) φ12 now maps vertex vi to one point location (ui, vi, wi) on
M. Now we assign the texture parameter on this point in
M to vi .

Volumetric local coordinates. We use cotangent
coordinate here because it is a robust coordinate
system and widely used on triangle mesh pro-
cessing thus we generalize it from triangle mesh
to volume ones. Note that, there are generally
more than two tetrahedra sharing the same edge.
Suppose for edge Euv , it is shared by n tetrahe-
dra thus it is corresponding to n dihedral angles,
θi, i = 1, . . . , n, we define the string energy as ku,v = ∑n

i=1 cotθi .

Then for a vertex vi , we express its one-ring neighbour’s local coor-
dinate as ωij = ki,j∑j

Ng(i) ki,j

. String energy kuv involves computing the

dihedral angles between two faces. We compute a dihedral angle in
three dimensions as follows. As shown in the wrapped illustrative
figure, we can compute the cosine of the dihedral angle between
two opposite faces �ABD and �CDB as the following multiplica-
tive term (up to the product of the norm of these vectors):

( �AB ∧ �AD) · ( �CD ∧ �CB). (2)
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However, in our 4D space M4D this formula is not suitable for
computing. It turns out that in 4D space, cross product operator ‘∧’
requires three vectors rather than just two. To avoid using ∧, we can
use Lagrange’s identity to compute the above formula:

(s · u)(t · v) − (s · v)(t · u) = (s ∧ t) · (u ∧ v). (3)

Now we can compute the cosine of the dihedral angle with the
following updated formula:

( �AB · �CD)( �AD · �CB) − ( �AB · �CB)( �AD · �CD). (4)

5. Flattening

After the above step, we have already magnified the volume of
ROI in a 4D mesh M4D. However, we have to flatten it back to 3D
space for visualization and other applications. The key challenge in
this step is to preserve every magnified tetrahedron’s volume/shape
during flattening. Inspired by 3D techniques like [SA07], [LZX*08],
we devise a two-step algorithm to handle 4D flattening. We first
rotate each 4D tetrahedron t4D

i individually back to 3D space as
the 3D tetrahedron (without changing shape except rotation). We
denote this ‘flattened’ 3D tetrahedron tFi . Note that every tetrahedron
is rotated back to three dimensions independently, thus all tFi are
separate from each other in three dimensions without being glued
together. The second stage includes stitching them together into one
piece as the original tetrahedral mesh structure. During stitching we
minimize the shape distortion such that the final tetrahedron in Mout

i

preserves the shape of tFi .

Algorithm 1 The flattening algorithm.

Input: Initial 4D mesh M4D,
threshold ε

Output: 3D mesh Mout

for all t4D
i ∈ M4D

//Compute a flattened tetrahedron
tFi = Flatten(ti )

end for
M0 = Initialize(M4D)
k = 0, d =INF MAX
while d > εdo

for all tki ∈ Mk
i do

//Compute Jacobian matrix
Ji = Jacobian(tki , tFi )
//Rotation-only matrix
Ri = SV D(Ji )

end for
//Build and solve Eq. 9
Assemble(L, R, VF )
Vk = SolveEquation(L, R, VF )
//Compute moving distance
d = MaxDistance(Mk−1, Mk)
k = k + 1

end while
Mout = Mk

Output: Mout

Rotating a 4D tetrahedron t4D
i back to a 3D tetrahedron tFi is

simple. The challenge lies at keeping its shape after stitching in the
resulting mesh Mout

i . Our system affords two iteratively computed
phases to achieve this goal. To clearly describe the algorithm, we
denote k as the current iteration, then Mk , vk

i , tki as the tetrahedral
mesh, a vertex and a tetrahedron in the k-th iteration, respectively.
Note that Mk always keeps the same mesh structure as the input
mesh M. Initially, we generate the mesh M0 in the first iteration
by removing the fourth dimension from every vertex in M4D: For a
vertex with p4D

i = (xi, yi, zi , hi) in M4D, we initialize its position in
M0 as p3D

i = (xi, yi, zi).
In the first phase we compute the Jacobian deformation matrix

for each tetrahedron tki . The matrix represents the transformation
from the localized flattened tetrahedron tFi to its counterpart tki . We
represent this transformation as a 3 × 3 matrix Ji . Generalized from
[HHN88], we can compute this Jacobian matrix as:

J
(
tki

) =
6∑

i=1

�ei
k
(

�ei
F
)T

, (5)

where �ei
k and ( �ei

F )T are the corresponding edges between tk and tF

(totally there are six pairs of edges for every tetrahedron). This ma-
trix measures two tetrahedral deformation on two factors: rotation
and scaling. Our goal is to preserve the shape of each tetrahedron
thus we allow a rotation-only matrix, which can be decomposed
separately by singular value decomposition of J:

J
(
tki

) = U	VT , Ri = UVT , (6)

where Ri is the rotation-only matrix.

Now in the second phase, we can update the position of each
vertex by minimizing the following energy:

Ek =
|T|∑
i

6∑
j=1

κij || �ei
t

j − Ri �ei
F

j ||2, (7)

where T is the set of all tetrahedra and |T| denotes the total number,
�ei

k
j , �ei

F
j are six edges on the tetrahedron tki and tFi , κij is the weight

associated with the edge. Now we rewrite the function in terms of
every edge vector:

Ek =
∑
m,n

κmn||
(
vk

m − vk
n

) − Rl

(
vF

m − vF
n

) ||2, (8)

where we use vk
m − vk

n to represent every edge in Equation (7), Rl

and κmn are the rotation-only matrix and weight of the tetrahedron tl
which the edge (vk

m, vk
n) belongs to. Note that an edge vk

m − vk
n may

appear multiple times if it is shared by more than one tetrahedron,
and thus we use different Rl when the edge appears more than once.
Setting the gradient to zero, we obtain the following linear equation:

L(Vk)T = RL(VF )T , (9)

where the matrix L represents the edge relationship of vertices
(weighted by κmn) in Equation (8). The matrix R includes all local
matrix Rl , Vk and VF are vectors including all vertices’ positions
on Mk and MF . Vk is the only unknown vector here and solving this
equation gives rise to the positions of all vertices in Vk .
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After updating the positions, we compute the moving distance
for each vertex between Mk−1 and Mk . The distance is normalized
to the diagonal length of the volume. We record the maximum
moving distance among all vertices, and the iteration loop stops if
this distance is smaller than the threshold. We set the threshold to be
10−4. In practice for all experimental results our algorithm converges
in at most two iterations. The reason of this fast convergence is that
our tetrahedral mesh is very simple: just a volume as an R3 plane
with a simple magnified function in the middle.

Weights. The choice of weight κmn in Equation (8) depends on
the importance of a tetrahedron. From the cognitive perspective,
tetrahedra around the ROI centre are more sensitive. Also a tetra-
hedron with large volume should have a higher weight than the one
with small volume, because the distortion on a large tetrahedron is
more visually confusing. For each edge, we design the weight as
(1 + h)V ku,v , where V is the average volume of connected tetrahe-
dra, h is the averaged height (h-values) and ku,v is the string energy
computed during texture transfer.

Boundary constraints. For a solid textured model, it is necessary
to keep the boundary shape. For a volumetric dataset, the user also
prefers to get a resulting shape with an original square boundary.
Therefore, we keep the position of every boundary vertex unchanged
during all iterations.

6. Experimental Results and Discussions

Our system can effectively provide magnification information to the
user, allowing the user to get detailed focal region while maintain-
ing the integral perception of the model. The results shown in the
following figures demonstrate the power of our techniques. Our ex-
perimental results are implemented on a 3 GHz Pentium-IV PC with
4 Giga RAM. We utilize both magnification functions like sphere
for Figures 5 to 7 and gaussian function for other figures.

We test our system on both solid textured models and volumetric
datasets. From Figure 5 to Figure 6, we test various solid textured
models such as watermelon and kiwi. Figure 5 demonstrates one
important application using our focus + context magnification. The
figure shows that more seeds appear after magnification. Also, the
distribution of seeds (i.e. their relative positions between seeds)
is preserved. Preserving particle distribution and relative positions

Figure 5: The tetrahedral mesh of watermelon.

Figure 6: The tetrahedral mesh of kiwi.

Figure 7: The volumetric aneurism dataset.

during magnifying has many potential applications in experiment-
driven science and engineering (e.g. structural biology, game de-
sign). Our focus + context magnification provides an effective mag-
nification lens for this category of applications.

Figure 6 shows another example. Compared with [WWLM11],
in which the sphere-like shape is severely distorted (e.g. the brain
model is severely distorted to an irregular heart-like model), our lens
successfully keeps the structure of kiwi core still as the spherical
shape, and the shape of context region is also unchanged.

From Figure 7 to Figure 9, we test several volumetric dataset
examples: aneurism, bonsai and fuel. In these tests, we magnified
different shapes like tumour in Figure 7, trunk in Figure 8 and
irregular air head in Figure 9. All experimental results clearly
demonstrate that our framework can keep the prominent global
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Figure 8: The volumetric bonsai tree dataset with magnified trunk.

Figure 9: The volumetric fuel dataset with magnified head.

shape and the context region unchanged for viewers’ easy recog-
nition. Meanwhile, in Figure 7 we demonstrate an application on
structure-aware visualization using a model with many branches
(in many practical applications the input model includes many
branches). We magnify the tumour model while long branches
(thinner vessels) are preserved without occlusion or relative po-
sition distortion. This example shows that our method could be
of great value to structure-critical applications (e.g. oil pipeline
optimization and detection, indoor routing and planning). Fig-
ure 7(b) shows that we can observe the wrinkles on the tumour after
magnification.

Figure 8 demonstrates the application of arbitrary shape lens. In
most of our examples we use the standard sphere shape lens. How-
ever, as we discussed in Section 4, we can also generate arbitrary
lens shape. We first extract a 2D rectangle-like shape trunk bound-
ary separately on each image layer along 3D input’s z-axis. Then
we can reconstruct the 3D ROI boundary from these 2D boundaries
and generate the medial axis centre line. The trunk is magnified and
the shape is well preserved. In Figure 9 we show that we can modify
the magnification ratio. This function is achieved through changing
the height of our gaussian function.

In Figures 10 and 11 we demonstrate more applications such
as medical and physics experiment visualization with complicated
models. We magnify the multiple parts in Figure 10 and the resulting

Figure 10: The volumetric body dataset with multiple ROIs.

Figure 11: The volumetric smoke dataset.

Table 1: Statistics of various test examples: # Tex, # pixels in the texture;
# V, # of vertices; Distortion, average distortions by all vertices.

Model # Tex # V Time Distortion

Melon 643 600 1.5 s 0.05
Kiwi 643 880 2.1 s 0.08
Aneurism 2563 303 315 s 0.07
Bonsai 2563 40 × 202 127 s 0.03
Fuel 643 253 110 s 0.08
Body 1283 303 275 s 0.03
Smoke 2563 303 340 s 0.04

model preserves the context region very well. The user (doctor) can
easily recognize each surrounding part (pelvis, artery, etc.) without
any difficulty. This advantage enables the doctor to obtain the accu-
rate information and avoid mis-diagnosis. In Figure 11, we magnify
the smoke obstacle while we can still recognize the details like shape
and number of surrounding flows.

Performance. The performance of our framework does not depend
on the size of texture/volumetric datasets but the size of vertices
in the input tetrahedral mesh. The statistics of examples are shown
in Table 1. About computational time, in practice, we can interac-
tively use a sparse low-resolution cube/tetrahedral volume, like in
[WWLM11], to accelerate the computation and get a fast result.
Furthermore, we can pre-compute magnification and flattening on
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pre-designed mesh and later use it on different volumes by just
changing textures of the mesh.

Compared with other optical-/voxel-/resizing-based methods, our
geometry-based method has the advantage that we can quantify the
local distortion by computing mesh angle distortion, instead of just
displaying visual effects. In the conventional lens design techniques,
the user can only recognize the distortion through observation be-
cause of lacking an accurate measurement method. By comparison,
our focus + context lens defines two categories of distortions: the
local distortion and global distortion. We define the local distortion
as the angle distortion in each tetrahedron. This metric can be quan-
tified by computing the ratio of the single values σ1 and σ2 from the
Jacobian matrix J (the metric is normalized by the diagonal length
of the whole cube grid volume).

Generally, the flattening step may cause self-intersection result
if the minimization solver in the flattening algorithm leads to a
local minimum solution. However, our system can avoid this self-
intersection, because the input (magnified 3D plane) we use is very
simple (here ‘simple’ means its shape is very close to the final flat-
tened shape). To theoretically illustrate its robustness on how to
avoid self-intersection, we shall notice that our flattening algorithm
is a 3D generalization from the surface method [SA07, LZX*08],
which is originally designed to handle very complex and/or high
genus surface model input with no self-intersecting triangle in the
output. In practice this method can effectively handle a model with
very complex shape without self-intersection. Compared with these
complex surface models, our model’s geometry and topology struc-
ture is rather simple: a flattened R3 plane with a simple gaussian
function in the middle. This simple structure means the deformation
is rather slight from this simple input to a flattened output. In our
experimental results, the self-intersection does not visually appear.
Consequently, degeneration prevention is not practically necessary
for our mesh, thus our system does not need to provide more mech-
anism to prevent self-intersection.

Comparisons. Currently most of magnification lens design fo-
cuses on 2D image visualization only. Recently, Wang et al. in
[WWLM11] introduced a data reduction method which can achieve
magnification effect. Compared with [WWLM11], our method’s
most important advantage is that: we can preserve both the focus
region’s shape and the nearby/global shape. Although the method
in [WWLM11] can preserve the shape surrounding the focus re-
gion, it is incapable of preserving the nearby transition region (e.g.
context), especially the global shape. These phenomena appear in
the examples of [WWLM11] and show their method’s major lim-
itation. For example, in [WWLM11] Figure 1, column 2, in order
to magnify the focus region, the entire brain model (i.e. the global
shape) is distorted significantly: from an original sphere-like shape
to an irregular heart-like shape. In another focus + context visu-
alization example in [WWLM11] Figure 8, the contour of skull
is severely deformed. Such severe distortion of the global shape
may cause misunderstanding/mis-diagnosis [WQK06]. By compar-
ison, our technique preserves the context region and global shape
much better than [WWLM11]. For example, our method can keep
the sphere boundary of watermelon and kiwi unchanged after mag-
nification (Figures 5 and 6). Therefore, our method with an im-
proved context region/global shape-preserving capability could be
more useful in the relevant applications. We shall notice that in

[WWLM11]’s example, multiple ROIs are magnified within the
brain model. We also magnify the multiple ROIs in Figure 10 to
demonstrate that our method still can well preserve the nearby re-
gion when magnifying multiple ROIs. Also, the key factor to the
quality of shape preserving is total size of ROIs rather than number
of ROIs, because texture transfer and flattening optimization are
solved globally without using ROIs’ boundaries as constraints. The
total size of ROIs in our tests always takes a large percentage of the
input datasets, to demonstrate our method’s efficiency.

Another comparison is on distortion measuring and quantifying.
The distortion mechanism in [WWLM11] is highly arbitrary,
determined by weighted cube grid magnification. Our method
is geometry based and generalized from the surface conformal
parameterization technique, thus we can measure the local angle
distortion much better from the perception’s point of view.
Angle-oriented shape perseveration and distortion minimization are
more perceptually pleasing than using cube grid in [WWLM11].
Their cube resolution is very coarse with hundreds of voxels inside
each cube. The linear interpolation of these voxels after cube grid
deformation will cause additional angle distortion. Therefore, the
cube grid distortion metric is always inaccurate. Our system can
visualize the distortion not only through visual display but also
quantifying such effect by computing angle distortion in a more ac-
curate way (which is the ratio of two singular values from Jacobian
matrix).

We also compare our method with another focus + context tech-
nique [WLT08]. We shall notice that our system handles much
more complicated scenarios than those in [WLT08]. The input in
[WLT08] is only surface boundary model, so it has no interior or
nearby information to display or magnify (all nearby context re-
gions are empty 3D space). Consequently, [WLT08]’s system can
hide severe distortions in the empty context region without any vi-
sual information (since it is invisible). By comparison, our input
is 3D solid model or volume with multiple materials/tissues, both
inside the focus region and outside such region. When we mag-
nify a focus region inside our model, all nearby context regions
should avoid distortion because they also contain important tis-
sue, material and shape information. By comparison, our geometry-
based method can accommodate more complicated models with
well-preserved magnification results for interior and exterior
regions.

Since our lens is geometry based, it can effectively obtain a bet-
ter global distortion minimization even on surface mesh when only
compared with [WLT08]. We can simply modify our framework
to support surface-only triangle mesh: we use a polycube to cover
the whole input mesh and then magnify the polycube. Figure 12
compares our method with the result in [WLT08]. After setting the
user-selected focus region (red circle in Figure 12a), the magnifica-
tion result generated by Wang’s method preserves structure/shape
in the focus area, but severely affects the context region (e.g. the
upper body, red circle in Figure 12b) and introduces visual artifacts,
like the distorted proportion of body. By comparison, our technique
keeps upper/lower body proportion without obvious shape confu-
sion for easy object recognition (red circle in Figure 12c).

Our lens is also similar to the mesh-editing–based method (which
is equivalent to magnifying the surface boundary first and then
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Figure 12: Comparison between Wang’s method. (a) Input and
the focus region (red circle). (b) [WLT08]’s method (courtesy of
[WLT08]) and its resulting context region (red circle). (c) Our
method and the resulting context region (red circle).

interpolating the interior texture). However mesh-editing techniques
are not suitable for the focus + context visualization application be-
cause they focus on totally different input and task. First, mesh
editing requires users to operate on an exact mesh boundary seg-
ment. However, in focus + context visualization applications, the
desired regions cannot be easily detected, extracted and described
as the triangle mesh model. For example, boundary extraction is
extremely difficult for most volumetric/medical datasets. In most
practical focus + context visualizations, the user only chooses a
general/approximate region via simple user sketch and/or basic ge-
ometric primitives (like the region in a drawn circle), enclosing
both mesh segment and nearby context space as a reasonable proxy.
Second, mesh editing only attempts to preserve the shape of focus
region around mesh boundary during magnification. The nearby
context region and global shapes will be severely distorted without
consideration (in most cases, these regions are just empty space
in a typical mesh-editing task). Finally, mesh editing only focuses
on surface mesh’s shape, thus for interior textures/tissues, we still
need to design a shape-preserving interpolation technique to pre-
serve the shape after boundary deformation. In Table 2, we compare
our method with [WWLM11, [WLT08] and mesh-editing methods.
The table clearly shows that our method is a more powerful tool for
volume data focus + context visualization.

Limitations. At present, our framework still lacks of mechanism
to handle some key features like long straight edges in the input
volume, especially when sharp features are on the boundary of the
context region. For most visualization applications, this drawback
may not be obvious. However, for visualization involving manufac-
tured objects in traditional CAD (like crack analysis), this distortion
may cause severe difficulty during object exploration. We shall study
how to design better algorithms to support this type of applications
to keep meaningful sharp features like cracks unchanged during
magnification.

Also, our framework cannot guarantee to uniformly magnify mul-
tiple chosen regions or accurately modify different regions’ magnifi-
cation ratio. This requirement is important in many applications like

Table 2: Comparison with various methods. We test their abilities in follow-
ing aspects: Preserving the shape of focus region (Focus region); Preserving
the shape around context region and/or global shape (Context region global
shape); Supporting solid model and/or volume dataset (Solid texture); Quan-
tifying local distortion (Distortion quantifying); Allowing simple sketch to
choose ROI (Simple sketch input).

Model [WWLM11] [WLT08] Mesh editing Ours

Focus region Yes Yes Interpolation Yes
needed

Context region No No Empty space Yes
global shape

Solid texture Yes No No Yes
Distortion No No Yes Yes

quantifying
Simple sketch Yes Yes No Yes

input

virtual surgery analysis, where all focused polyps should be mag-
nified in the equal ratio in order to avoid mis-diagnosis. The user
can also obtain flexible magnification results through controlling
magnification ratio.

Theoretically, our method can achieve a large-scale magnification
result. However in practice, extreme magnification may still cause
distortion. Also, in some practice we choose to visualize the volume
interior region by cutting the model and observe the cross-section
on the screen. The magnification deforms the whole model and
the original cross-section may not be on the same cutting plane
anymore, forcing the observer to modify or re-cut the cross-section.

7. Conclusion and Future Work

In this paper, we have developed novel techniques towards design-
ing magnification lens for volumetric datasets. Specifically, we start
from the input of a 3D tetrahedral mesh and magnify the ROIs in 4D
space through the use of dimensional enhancement. Our geometry-
centric methodology and the prototype system manifest that the
4D geometry greatly empowers the visualization techniques. Our
approach is expected to transcend the traditional boundary of geo-
metric modelling and is of benefit to data visualization and visual
analysis.

Our framework outperforms other methods with many unique
features. It offers users the immense power on shape distortion
minimization and quantitative measurement. Compared with other
methods, our system can preserve the shape not only around the
focus region but also the surrounding context region and global
shape. Also, it enables the user to draw either simple sketch (like
drawing a sphere) or arbitrary shape as magnifiers to effectively
display the entire ROIs. Our system affords a wide spectrum of 3D
input ranging from volume datasets to solid textured models.

In near future, we continue to explore the utility of 4D geomet-
ric modelling/processing. At present, our framework still lacks of
mechanism to handle sharp features like long straight lines in the
input volume. We shall study how to design better algorithms to
keep meaningful sharp features unchanged during magnification.
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The whole algorithm could also be accelerated in parallel on GPU
platform. Meanwhile, we also observe that the current scheme is
capable of handling higher dimensional datasets, like solid textured
models equipped with multiple vector fields/heterogenous materials.
Four-dimensional models will provide more efficient representation
for these datasets. We will also explore its applications on more
generalized models like multivariate splines. For volume image re-
construction and vectorization like [LQ11], this technique could
better preserve image features and thus we could utilize our method
to improve reconstructed continuous representations for volume im-
age processing and visualization.
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