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Abstract—This paper presents a complete and robust solution for dense registration of partial nonrigid shapes. Its novel contributions

are founded upon the newly proposed heat kernel coordinates (HKCs) that can accurately position points on the shape, and the

priority-vicinity search that ensures geometric compatibility during the registration. HKCs index points by computing heat kernels from

multiple sources, and their magnitudes serve as priorities of queuing points in registration. We start with shape features as the sources

of heat kernels via feature detection and matching. Following the priority order of HKCs, the dense registration is progressively

propagated from feature sources to all points. Our method has a superior indexing ability that can produce dense correspondences

with fewer flips. The diffusion nature of HKCs, which can be interpreted as a random walk on a manifold, makes our method robust to

noise and small holes avoiding surface surgery and repair. Our method searches correspondence only in a small vicinity of registered

points, which significantly improves the time performance. Through comprehensive experiments, our new method has demonstrated

its technical soundness and robustness by generating highly compatible dense correspondences.

Index Terms—Dense registration, partial nonrigid shape, heat kernel coordinates.

Ç

1 INTRODUCTION

DYNAMIC shapes are ubiquitous in various real-world
applications. To model unorganized fragments of a

dynamic shape in the space-time domain toward model
completion and its deformable behavior, it is imperative to
establish correct dense correspondences among partial
shapes, i.e., to register them accurately. In this paper, we
refer registration to a compact matching of two shapes. In
recent years, the problem of shape matching has received
considerable attention in computer graphics [1], [2], [3], [4],
[5], [6], [7], [8], [9]. Here, we address the dense registration
of nonrigid partial shapes, with foreseen challenges in the
following aspects. First, dynamic shapes are frequently
nonrigid, which force us to seek new methods of working
with intrinsic “coordinates” rather than extrinsic ones in
Euclidean domain. Second, the fragments acquired from the
object are partial shapes with overlapping regions and
changing boundaries. Therefore, the globally defined
coordinates are not applicable, including the shape-DNA
[10], the global point signature [11], mean value coordinates
[12], and harmonic coordinates [13], to name just a few.
Third, the output correspondences must be dense, which is
compounded by more difficulties, including accuracy of
registration, geometric and topological compatibility, com-
putational efficiency, etc.

To establish a compact matching, dense registration
typically needs some intrinsic coordinates to parameterize
and index points on the shape. Since we are concentrating
on partial shapes of natural nonrigid objects (e.g., faces,
articulated objects), the coordinates must be invariant to
natural deformation, and they should be determined only
by local geometry while avoiding negative effects from
changing boundaries and topological variation. Heat kernel,
as a fundamental solution of the heat diffusion on
manifolds, has been applied to indexing points in the heat
kernel map (HKM) [6] and the heat triangulation [14]. It
measures the heat transferred from one point to another. As
time increases, heat spreads out toward a growing
neighborhood that elegantly bridges the local and global
characteristics in a multiscale sense. This multiscale prop-
erty gives rise to an intrinsic connection between the
diffusion and time. Heat kernel is also relevant to the
statistical probability of connecting paths (e.g., random
walks in a Brownian motion). Therefore, it is very stable
under inelastic deformation, noise, and small topological
holes, which is destined as a promising tool for shape
registration as well as other problems in computer graphics.

For local coordinates, using anchored references is a
popular strategy to position points. For example, the HKM
employs one or multiple reference points, and the heat
triangulation utilizes d points for d dimensional manifold.
For points on the shape, the geometric relations with
anchors measured by some metric can be used as their
coordinates. With this parameterization, the registration can
be conducted by searching correspondences with closest
distances of intrinsic coordinates. The searching scheme
also plays an important role in registration. A commonly
used approach is the nearest-neighbor (N-N) search [3], [6],
[15] in the entire searching domain. However, this scheme
does not consider geometric compatibilities between corre-
spondences. Here, the geometric compatibility means that
points on one shape should have compatible geometric
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relations with their corresponding points (if such points
indeed exist) on the other shape. In a nutshell, the points are
registered compatibly. An improved strategy is to use
“voting” [3], [16] from more than sufficient coordinates to
decide the optimal location of a correspondence. Although
voting can enhance the robustness of positioning by
multiple locations in a statistical sense, it does not explicitly
ensure the geometric compatibility either.

In this paper, we develop a robust solution for dense
registration of partial nonrigid shapes. The central idea of
our method is to index all points on the shape by local
coordinates and establish dense correspondences via
propagation from feature anchors to all other points. As
shown in Fig. 1, it proceeds in three main steps: feature
detection, feature matching, and dense registration, all of
which are hinged upon heat kernels approximated from the
Laplace-Beltrami eigenfunctions. We adopt the heat kernel
signature (HKS) [17], referring to the heat kernel from one
point to itself (i.e., the main diagonal of the heat kernel
matrix), to find features on the shape. The detected features
are matched using a graph matching method [18] with
adaptive multiscale measurements based on heat kernels.
We select reference points from the matched features, and
conduct registration directly on the shape. Unlike previous
parameterization-based methods [3], [16], [19], our method
does not need to flatten the surface into a lower dimen-
sional space. It accommodates complex shapes with great
flexibility without surface surgery and repair. Moreover,
because of the probability property of random walks, our
method is robust to noise and small holes. Key contribu-
tions in our new method include:

. We articulate the concept of “positioning,” referring
to the procedure of locating a point on a shape, and
employ it to design and match point indices. Good
indices should have accurate positioning and tolera-
tion to boundary changes.

. We propose the heat kernel coordinates (HKCs),
which have a strong positioning ability that can
locate and index points accurately. The HKCs are
multiscale outputs of heat kernels from multiple
sources to points on the surface. In our work, the
sources (i.e., reference points) are obtained from
feature matching.

. We develop a fast algorithm to propagate corre-
spondence by searching local vicinities of registered
points, following the priority order of their HKCs.
The proposed algorithm is named “priority-vicinity
search,” which ensures the geometric compatibility
and optimizes the location of correspondence.

. We provide a complete solution for shape registra-
tion, which automatically builds dense correspon-
dences between two partial shapes. This solution is
robust to noise, and can even handle different but
similar shapes.

. We conduct various experiments to demonstrate the
performance of our method both visually and
quantitatively.

2 PREVIOUS WORK

This section briefly discusses relevant work in three
categories: shape feature, shape matching, and shape
registration. Here, we categorize the related work as
matching or registration, according to whether it is carried
out on selected points or compact areas. These two categories
usually have different purposes involving different techni-
ques. For an elaborated and comprehensive taxonomy of
shape correspondence, we refer readers to a recent survey [9].

Shape feature. Feature extraction plays a critical role in
many graphics problems. Specifically, for registration, it
provides sufficient points to anchor and stitch different
shape pieces, which should be salient, stable, and repre-
sentative. Shape features can be interpreted as local extrema
of some geometric quantities, such as normal [20], curvature
[21], [22], and geometry image [23], [24]. Local geometric
characteristics are usually sensitive to mesh perturbation
and resolution. So multiscale property is much more
desirable, and its construction should be stable. Shape
features can also be described by global properties, such as
Laplace-Beltrami eigenvalues [10] and eigenfunctions [11].
Nevertheless, global properties are easily affected by
changes of topology and geometric boundary. Recently,
Sun et al. [17] proposed the HKS to describe and detect
manifold features. The HKS is an intrinsic property that
indicates the diffusion process in different time (scales),
naturally bridging local and global information. It starts to
gain more popularity in the state-of-the-art for its merits in
stableness, multiscale, isometric invariance, and informa-
tiveness. It has been successfully applied to shape matching
and registration [5], [6]. Vaxman et al. [25] proposed a
multiresolution approach to improve the computational
efficiency of HKS for large meshes. In [26], convolution
based on heat kernels was used to find multiscale features.

Shape matching. Shape matching is to match selected
points on shapes, with purposes in shape recognition and
retrieval. In graphics, the topic of shape matching starts to
gain momentum recently, which is often performed by
building a map between two sets of points, or searching
common subgraphs of two graphs. Lipman and Funkhouser

HOU AND QIN: ROBUST DENSE REGISTRATION OF PARTIAL NONRIGID SHAPES 1269

Fig. 1. The architecture of our method highlights a complete solution for shape registration. It computes the Laplace-Beltrami eigenfunctions, by
which three steps proceed: feature detection, feature matching, and dense registration.



[3] utilized conformal mapping and a voting strategy to
match samples. In [27], the eigenfunctions of the Laplace-
Beltrami operator were employed for shape matching,
which are global functions defined on the entire shape. In
[6], Ovsjanikov et al. defined the HKM as heat kernels from a
fixed reference point, and applied it to shape matching using
a simple N-N search. They also extended the one-point
method to multiple reference points. In [5], a shape was
mapped to a feature space, and represented by feature
vectors. The matching of two shapes turns into scoring the
shape pair using feature vectors. In [8], a correspondence
map was measured by the intersection configuration
distance. Bronstein et al. adopted diffusion distance as an
isometry-invariant metric in shape recognition [28] and
shape matching [29]. In [30], an affine invariant diffusion
geometry was proposed for matching deformable shapes,
which is invariant to squeeze and shear transformations.

In computer vision, this problem can also be well modeled
by the graph matching with pairwise or high-order geometric
compatibilities. Leordeanu and Hebert [18] proposed the
spectral matching method that constructs a graph by taking
each candidate correspondence as a point. Correct corre-
spondences were found by the eigenvector with the largest
eigenvalue of the affinity matrix, whose entries are pairwise
geometric relations. In [31], Cour et al. improved the second-
order graph matching by a spectral relaxation scheme and a
normalization procedure. Torresani et al. [32] proposed an
optimization technique of high-order graph matching using
dual decomposition. Recently, Duchenne et al. [33] extended
the spectral matching to the affinity tensor with third-order
potentials, which improves the robustness but requires
heavy computational load. In [16], a 3D shape was flattened
to a 2D image using conformal map in order to adopt the
high-order graph matching. However, the surface flattening
has strict requirements on topology.

Shape registration. For articulated objects, piecewise
rigid transformation [2], [34] was adopted to segment the
surface to rigid subparts, lacking of accuracy for nonrigid
deformation. For complete nonrigid shapes, global map has
been widely used in previous methods. Kraevoy and
Sheffer [35] used cross-parameterization to establish a
bijective mapping between two surfaces through a common
base domain. The mapping from a surface to its base
domain is initialized by mean value parameterization, and
the triangular interiors in the base domain are registered
using barycentric coordinates. Manifold harmonics are also
used to register shapes with isometric deformation by
spectral embeddings [7], [36], [37], [38], which are limited to
shapes with unchanged boundaries. Conformal maps [16],
[19] have been applied to register nonrigid surfaces, by
flattening a 3D surface to a 2D domain. However, they are
usually accompanied by model cutting and hole filling.
Therefore, they are very sensitive to topology and boundary
changes. In [39], barycentric coordinates of harmonic
functions were utilized to establish dense correspondences
between shape-from-silhouette surfaces. Multidimensional
scaling (MDS) has also been employed to register nonrigid
surfaces. Bronstein et al. [40] proposed the generalized MDS
to embed 2-manifolds and then match them. Jain and Zhang
[1] proposed a shape matching framework by spectral
embedding of the geodesic affinity matrices and thin-plate
splines. It requires computing geodesics between each pair

of points, and decomposing a dense affinity matrix. For
incomplete shapes, Tevs et al. [41] used the RANSAC-like
algorithm to match points and refine the registration by the
post process based on geodesics. Although it does not
enforce strict requirements on topology and boundary of
the shape, the geodesics are sensitive to noise and holes.

3 HEAT KERNEL COORDINATES

3.1 Heat Kernel

Let M be a compact Riemannian manifold. The heat
diffusion process over M is formulated by the following
partial differential equation (PDE), i.e., the heat equation,

@uðx; tÞ
@t

¼ �uðx; tÞ; ð1Þ

where � denotes the Laplace-Beltrami operator on M. The
heat kernel htðx; yÞ is known as a fundamental solution of
the heat equation, subject to the Dirac condition [42]

htðx; yÞ ! �xy; as t! 0þ: ð2Þ

The physical meaning is the heat diffused from x to y at
time t, with a unit source of heat placed at x.

Assume the Laplace-Beltrami operator � has the eigen-
decomposition f�k; �kg1k¼0:

��k ¼ �k�k; ð3Þ

where �k and �k are the kth eigenvalue and corresponding
eigenvector of the operator �. The spectrum of � consists
of an increasing positive sequence f�kg1k¼0. The eigenfunc-
tions f�kg1k¼0 form an orthonormal basis in L2, which have
been applied to shape segmentation [43], [44], [45]. The
heat kernel then has the following eigenfunction expan-
sion formula:

htðx; yÞ ¼
X1
k¼0

e��kt�kðxÞ�kðyÞ: ð4Þ

A numerical solution can be computed by a finite number
of eigenfunctions, with discrete Laplace-Beltrami operator
[46]. The short-time asymptotic property of the heat kernel
is given by [42],

lim
t!0

t loghtðx; yÞ ¼ �
1

4
d2
Mðx; yÞ; ð5Þ

where dMðx; yÞ is the geodesic between x and y on M. For
manifolds of bounded geometry (volume) �ðMÞ, the heat
diffusion has a stationary state as:

lim
t!1

htðx; yÞ ¼
1

�ðMÞ : ð6Þ

The heat kernel has many attractive properties, such as
isometric invariant, informative, multiscale, and stable,
which have been discussed in [17]. In our system, we
concentrate on dense registration of partial shapes, so the
multiscale nature and the stable property are worthy to
be reaffirmed.

The multiscale property states that the heat kernel htðx; �Þ
is mainly determined by a neighboring area of x, and the size
of the area is related to t. This is because the heat distributed
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outside this area is very small, and hence can be ignored. Let
D �M be a compact submanifold of M with smooth
boundary, the heat kernel hDt ðx; yÞ associated with domain
D is a good approximation of htðx; yÞ as long as t is small
enough. For more details toward its mathematical proof, we
refer readers to [42], [47], [48]. The multiscale property
allows us to utilize heat kernel on partial shapes with well-
chosen time range that will be discussed in the next section.

The stableness of the heat kernel comes from Brownian
motion on manifold, where the heat kernel is interpreted as
the transition density function of random walk. A Brownian
motion on a manifold is a diffusion with a characteristic
operator defined as 1=2�. The heat kernel htðx; yÞ is
equivalent to the probability of a random walk from x to
y after time t in the Brownian motion. A concise proof of
this equivalence was given in [49]. A random walk is a finite
Markov chain that is time reversible. The probability of
random walk considers all the connected paths between
two points. Therefore, local perturbations of the shape
would hardly affect the heat kernel. Particularly, in our
system, the partial scans acquired from the scanner may
always contain local perturbations such as noise and
nonisometric distortion. As a consequence, heat kernel is
more stable than other metrics such as geodesic and
euclidean distance.

3.2 Time Range

In the usage of heat kernels, how to choose time t is a
critical problem that has not been fully explored. Accord-
ing to the multiscale property, a great t corresponds to a
large supporting area of the heat kernel. We adopt a time
range for heat kernels on partial shapes to ensure
appropriate supporting areas.

For a Brownian motion Xt, there is an increasing
function RðtÞ called an “upper radius” [50] if, with
probability 1, we have Xt 2 BRðtÞðxÞ for all t large enough,
where BrðxÞ denotes a geodesic ball centered at x with
radius r. More precisely, the upper radius gives rise to a
theoretic result given in the following theorem.

Theorem 1 (The Law of the Single Logarithm [50]). Let M
be a geodesically complete manifold. Assume that, for some
x 2M and all r large enough, the volume

VrðxÞ � const rN;

with some N > 0. Then for any � > 0, the function

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ �Þt log t

p
;

is an upper radius for the process Xt started at any x 2M.

Fig. 2 shows an upper radius and its geodesic ball with
t ¼ 20 and � ¼ 0:1, where the color denotes the heat kernels
starting from the center. This theorem provides a practical

way to obtain an upper radius of a Brownian motion, or
equivalently, an upper time tuðxÞ. We assume that the heat
kernel htðx; �Þ with t < tuðxÞ can be well approximated by
the traversing area of a Brownian motion. Hence, we obtain
an upper time tuðxÞ for heat kernels starting from x,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2þ �ÞtuðxÞ log tuðxÞ
p

¼ inf
y2@M
ðdMðx; yÞÞ; ð7Þ

with some � > 0. Similarly, we can have a upper time for
heat kernels on a closed shape without boundary, by using
the longest geodesic as the upper radius.

On the other hand, for discrete surfaces, t also has some
lower bound tl. In our work, we scale the average edge
length to be the unit one. Hence, we obtain a lower time
tl ¼ 1, which corresponds to one step in a random walk. For
small t, the heat kernel htðx; yÞ is close to the Dirac function
�x;y, which indicates the heat kernel htðx; yÞ with y 6¼ x is
very small and therefore error-prone. Moreover, numerical
heat kernels are usually computed with finite low-
frequency eigenfunctions, which are not adequate for
small-scale geometry. Therefore, numerical heat kernels
have a lower time tl > 1 depending on the number of
eigenfunctions used. We found that for heat kernels
computed by 3% � 5% eigenfunctions, tl ¼ 4 � 8 would be
a reasonable setting. For example, in Fig. 3, we compare the
numerical solutions (using 3 percent eigenfunctions) and
analytic solutions (i.e., the Gaussian ð4�tÞ�1 expð� kx�yk

2

4t Þ)
on a triangular mesh of a 2D plane. Using our scaling
scheme, t is meaningful and equivalent to the one in the
analytic solutions. For very small t, the numerical and
analytic solutions have large differences, which shows our
lower time tl is in a proper setting. Furthermore, the
numerical solutions start to oscillate around the analytic
solution when the distance jx� yj is getting larger.

3.3 Heat Kernel Coordinates

In [6], the HKM was defined by the following map

�M
p : M ! F; �M

p ¼ hMt ðp; xÞ; ð8Þ

where p is a fixed source point, and F is the space of
functions from IRþ to IRþ. Thus, �M

p associates with every
point x 2M a real-valued function of one parameter t given
by hMt ðp; xÞ. The source point p may be any point on
manifold M. For a generic connected compact manifold M

without boundary and a generic point p on M, the HKM is
injective, which indicates �M

p ðxÞ ¼ �M
p ðyÞ if and only if

x ¼ y. This result has been proved by [6].
The HKM has been used for shape matching. However,

it has some drawbacks when directly applied to registration
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Fig. 2. An upper radius RðtÞ and its geodesic ball with t ¼ 20 and � ¼ 0:1.
The color denotes the heat kernels starting from the center.

Fig. 3. Numerical and analytic heat kernels on a triangular mesh of a 2D
plane: htðx; xÞ with varying t (left); htðx; yÞ with t ¼ 10, and varying
distance jx� yj (right).



of partial shapes. First, the proof of its injection in [6] relies
on t!1. For partial shapes, heat kernels are subject to
boundary changes at large t. As shown before, t is bounded
by a range ½tl; tuðxÞ� on partial shapes. Even for complete
discrete shapes, numerical heat kernels will converge to a
stationary state given by (6), when t is large enough. Fig. 4
shows the time behaviors of two corresponding heat kernels
on different partial shapes. At the beginning, the heat
kernels are close but very small. Then they gradually differ
due to boundary changes, and finally converge to different
stationary states. Second, the HKM is not applicable to
manifolds whose Laplace-Beltrami operators have repeated
eigenvalues [6]. For example, in a plane (IR2), the heat
kernel is a Gaussian function. In this case, all the points on a
circle centered at p have the same HKM values as shown in
Fig. 5a, thus, the HKM is unable to differentiate them.
Third, the HKM lacks of sufficient discriminating power in
positioning for dense registration. By discriminating power,
we mean the ability to distinguish x and y through �M

p ðxÞ
and �M

p ðyÞ. Since the HKM concerns only one heat source,
the sense of positioning on partial shapes may be ambig-
uous, as shown in Fig. 6.

With the time range, we are apt and forced to adopt
multiple sources for dense registration. For d-dimensional
manifold M, we define the HKCs as a vector of heat kernels
produced by the map �t : M ! IRs with the number of
sources s > d:

x! ðhtðx; z1Þ; . . . ; htðx; zsÞÞ; x 2M; ð9Þ

where fz1; . . . ; zsg are source points on M. Multiple sources
can offer direction and distance information during index-
ing, which is analogous to the trilateration technique in
navigation and surveying. While this multisource map is an
extension of the HKM as mentioned in [6], we provide a
complete and robust solution to obtain multiple sources. In
fact, we are inspired by the heat triangulation theorem for
local parameterization in [14].

Theorem 2 (Heat Triangulation Theorem [14]). Let M be a
smooth, d-dimensional compact manifold, and z be a point
on M. Let BrðzÞ be an embedded ball with center z and
radius r. Let p1; . . . ; pd be d linearly independent directions.
Let yi be so that yi � z is in the direction pi, with c4r �
dMðyi; zÞ � c5r for each i ¼ 1; . . . ; d and let t ¼ c6r

2. The
map � : Bc1rðzÞ ! IRd, defined by

x! ðrdhtðx; y1Þ; . . . ; rdhtðx; ydÞÞ;

at some t satisfying, for any x1; x2 2 Bc1rðzÞ
c2

r
dMðx1; x2Þ � k�ðx1Þ � �ðx2Þk �

c3

r
dMðx1; x2Þ;

with constants c1; c2; c3; c4; c5; c6 > 0.

This theorem induces a one-to-one map from a local
geodesic ball Bc1rðzÞ on the manifold to IRd, which therefore
proves the injection of HKCs in this local ball. However, it
needs d points with independent directions from center
point z, leading to another problem to solve.

Besides some properties inherited from heat kernels,
including intrinsic, stable, nonnegative, and multiscale, the
HKCs are flexible to conditions of geometry and time. Even
for a plane with simple geometry, the HKCs can position a
point x as shown in Fig. 5. The HKCs also do not require a
large range of time. Fig. 6 shows positioning of different
maps: one-source multitime HKM, multisource one-time
HKCs, and multisource multitime HKCs, where t 2
½4; 1;024� for multitime maps. Within the circles, the color
of an arbitrary point y denotes k�ðxÞ � �ðyÞk2, i.e., the
discrimination of map � at x. The one-source HKM has
similar values in a dark ring around the source point,
resulting in ambiguities in location for dense registration.
Multisource HKCs restrict similar values of �ðxÞ to the dark
area close to x, which localizes x with small deviation. Since
one-time and multitime HKCs have similar performance of
positioning, we will use one-time HKCs in our experiments
to reduce computation time and tolerate strict time range.
Moreover, we use stable matches of features as source
points, resulting in feature-driven HKCs.

4 FEATURE DETECTION AND MATCHING

4.1 Feature Detection

The multiple sources for HKCs require stable matches of
salient points between shapes. In our work, we adopt the
HKS [17] for feature detection, and the spectral matching
[18] for feature matching.
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Fig. 4. The time behaviors of two corresponding heat kernels on partial
shapes M1 (10k vertices) and M2 (5k vertices). In the semilog plot, the
heat kernels are close but very small at the beginning, with a log-log plot
shown nearby. Then they gradually differ due to boundary changes, and
finally converge to different stationary states.

Fig. 5. Position a point x by heat kernels with (a) one-source multitime,
and (b) multisource one-time on a plane.

Fig. 6. Positioning of different maps (from Left to Right): one-source
multitime HKM, multisource one-time HKCs, and multisource multitime
HKCs. Within the circles, the color of a arbitrary point y denotes
k�ðxÞ � �ðyÞk2, i.e., the discrimination of map � at x.



The HKS is defined as the heat kernel from a point to itself

KtðxÞ ¼ htðx; xÞ: ð10Þ

As a common treatment, we compute it by (4) with a finite
number of eigenfunctions. We use the Neumann boundary
condition for shapes with boundaries, leading to the fact
that the first eigenvalue is always 0. Particularly, we
normalize it to balance HKS Kt at different t

K0tðxÞ ¼ log
KtðxÞ
ð4�tÞ�d=2

 !
; ð11Þ

where ð4�tÞ�d=2 is the HKS in IRd at time t. For 2-manifolds, the
K0tðxÞmeasures how the surface is curved from a plane with
respect to t. HKS features are recognized as local extrema of
K0tðxÞ at some t. The descriptor of a feature x is a vector of its
HKS at a sequence of time t, sampled logarithmically in the
range ½tl; tuðxÞ�. If the feature has tu < tl, and it is close to the
boundary, then we simply eliminate it.

4.2 Feature Matching

We solve the feature matching by a graph matching method
from [18], named “spectral matching,” but with multiscale
measurements based on heat kernels. Assume we have
found two feature sets F1 and F2 on two shapes. A pair
i ¼ ði1; i2Þ denotes a candidate match with i1 from M1 and i2
from M2. For a candidate pair i ¼ ði1; i2Þ, its binary
assignment is given by

xðiÞ ¼ 1; if i is chosen
0; otherwise

�
; with

X
i1

xðiÞ � 1: ð12Þ

The matching problem is equivalent to finding an assign-
ment x that maximizes the objective function with
geometric compatibilities.

Let i ¼ ði1; i2Þ be a candidate match in the set

F ¼ fijði1; i2Þ 2 F1 � F2; dðiÞ < �dg;

where dðiÞ is the distance of two feature descriptors, and �d
is a threshold to determine candidate matches. Specifically,
for HKS features, the distance function is defined as

dðiÞ ¼
��K0tði1Þ �K0tði2Þ��2

; with t 2 ½tl; tu�; ð13Þ

where k � k2 is the l2-norm, tl ¼ maxðtlði1Þ; tlði2ÞÞ, and
tu ¼ minðtuði1Þ; tuði2ÞÞ. Therefore, this distance has multiple
scales adaptive to its location. The relations between each
pair of candidate matches in F are represented by the
affinity matrix A, which is constructed as follows:

1. The entry Aði; iÞ is the affinity of the correspondence
itself, which is computed by

Aði; iÞ ¼ e�dðiÞ
2=2�2

1 ; ð14Þ

where dðiÞ is defined in (13), and �1 is a parameter
that is set to be �1 ¼ �d in our work.

2. The affinity Aði; jÞ represents the geometric compat-
ibility of two candidate correspondences, defined as

Aði; jÞ ¼ e�aði;jÞ
2=2�2

2 ; ð15Þ

where aði; jÞ is a function measuring the difference
of geometric distances between ði; jÞ:

aði; jÞ ¼ khtði1; j1Þ � htði2; j2Þk2

khtði1; j1Þk2 þ khtði2; j2Þk2

; ð16Þ

with t 2 ½tl; tu�, and the parameter �2 ¼ 0:1.
3. If two candidate correspondences i and j are

conflicting (e.g., i1 ¼ j1 and i2 6¼ j2), we letAði; jÞ ¼ 0.

The objective function is then represented as

JðxÞ ¼ xTAx: ð17Þ

Usually, the objective function is relaxed to

J 0ðxÞ ¼ x
TAx

xTx
: ð18Þ

And the optimal solution maximizes the objective function

x	 ¼ arg maxx
xTAx

xTx

� �
: ð19Þ

It can be solved by computing the leading eigenvector of A.
The final assignment is the binary projection of x	, subject to
conflicting constraints. This binary projection algorithm is
given in Algorithm 1, where �b ¼ 0:1 is a threshold to select
matches with strong reliabilities. An example of detected
features and their matching is shown in Fig. 7, where the
color (from red to blue) of matches denotes the selecting
order, i.e., the reliability.

Algorithm 1. Binary projection.

5 DENSE REGISTRATION VIA HKCS

We find dense correspondences between two shapes by
comparing points with their HKCs. An available method in
existing work is the nearest-neighbor algorithm, which
finds the correspondence of a point as its nearest neighbor
in the parametric domain. However, it does not consider the
geometric compatibility, by which we mean if two points
are close to each other in the reference shape, their
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Fig. 7. Detected features and their matching.



correspondences in the target shape should also be close.
Consequently, there could easily be flips from generated
correspondences due to computation error and noniso-
metric distortion. Furthermore, the global search is time
consuming, as a result, the approximated algorithm is often
used instead.

To overcome the aforementioned difficulty, our idea is to
search correspondences locally in the vicinities of registered
points, and propagate correspondence from matched
features to other points. That is, for a registered pair
ðx1; x2Þ, a direct neighbor of x1 only finds its correspon-
dence by their HKCs in the vicinity of x2. This enforced
constraint ensures the geometric compatibility to avoid
large flips, but might be trapped into local optima and stop
the propagation. Due to the diffusion nature, the position-
ing of HKCs has different accuracies on the shape. If the
registration starts from inaccurately positioned points, it is
possible that mismatch will also accumulate during the
propagation. Therefore, our novel idea is to define a priority
for each point, and initiate the vicinity search by choosing
the candidate point with the highest priority. Intuitively
speaking, greater heat kernels are more reliable than
smaller ones. This naturally motivates us to measure the
priority of a point using the magnitude of its HKC, given by

PtðxÞ ¼ kðhtðx; z1Þ; . . . ; htðx; zsÞÞk2: ð20Þ

More precisely, active registered points are inserted into
a heap. Each time, the active point with the greatest priority
(the root of the heap) is processed, and vicinity searches are
initiated for its 1-ring neighbors. Fig. 8 illustrates the
procedure of a vicinity search. At this moment, the red
point in M1 is at the root of the heap with the highest
priority (key). The blue point is a direct neighbor. The
algorithm now finds its corresponding point in the blue-
shaded vicinity in M2. Newly registered points are inserted
into the heap, and the current processing point is
deactivated. We name the overall algorithm “priority-
vicinity search” documented in Algorithm 2, where �p is a
parameter. The computational complexity of this algorithm
is OðNpNv logNhÞ, where Np is the number of total points,
Nv is the vicinity size, and Nh is the size of the heap. In
practice, since Nv 
 Np and Nh 
 Np, the complexity is
approximately linear to N . The size of the vicinity, usually
set of 2-ring or 3-ring in our experiments, balances the local
geometric compatibility and global optimization. That is,

large vicinity size increases the global optimization but
decreases the geometric compatibility, and vice versa. We

choose to use a small vicinity to ensure the geometric

compatibility, since the global optimization may not be

stable due to similar or indistinctive patterns in the shape.
Algorithm 2. Priority-vicinity search.

Fig. 9 shows that a reference (blue) shape is registered to a

target (pink) shape with t ¼ 80. Correspondences in the right

figure are color coded, where in the reference shape, the

color (changing from red to blue) also indicates the priority.
We will follow this color-coding fashion in our experiments.

We adopt matched features as the sources, thus, the

registration is both feature driven and feature aligned.

6 EXPERIMENTAL RESULTS

In this section, we first evaluate the proposed method on a

benchmark data set [51] with ground truth. Then, we

carefully examine our method by conducting comprehen-

sive experiments on various data sets of real scans [51], [52],
[53], [54]. A comparison with the multipoint HKM is also

conducted. At the end, we show the time performance of

our method in the experiments.
Evaluation on ground-truth data set. We employ two

groups of deformable shapes from the data set, each of
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Fig. 8. Illustration of the vicinity search. At this moment, the red point in
M1 is the root of the heap with highest priority. The blue point is a direct
neighbor. The algorithm now finds its corresponding point in the blue-
shaded vicinity in M2.

Fig. 9. A reference (blue) shape is registered to a target (pink) shape
with t ¼ 80. Correspondences in the right figure are color coded, where
in the reference shape, the color (changing from red to blue) also
denotes the priority.



which contains 10 isometrically deformed shapes. Every
pair of shapes in a group offers a test case, resulting in 90
cases in total count. In Fig. 10, we show an example pair and
the statistics of 45 pairs for each group. The histograms
comprise geodesic distances between found matches and
the ground truth. Specifically, for each registered point on
the reference shape, we compute the geodesic distance
between its found match and the ground-truth point on the
target shape, using the average edge length as the unit. The
evaluation demonstrates that our method perform registra-
tion with high accuracy on complete shapes.

Quantitative method for evaluating experiments on real
scans. The real scans have distortions and natural deforma-
tions, which are a challenge we must tackle in this paper. For
quantitative evaluation, we calculate the histogram of edge
length differences of registered shapes. The edge length
difference refers to the absolute difference of an edge length in
the reference shape and the corresponding length (which may
not be an edge) in the target shape, using the average edge
length as the unit for the normalization purpose. For
isometric deformations and natural deformations (e.g., facial

expression, articulated movement), the edge length differ-
ence is expected to be very close to zero. Since we locate
correspondence on the existed points, the resolution of our
registration method is approximately 1, and the expected
edge length difference is in ½0; 1�. However, the histogram of
edge length difference alone might not faithfully reflect the
accuracy of registration. An extreme case is that, all the points
in the reference shape are registered to the same point in the
target shape. In this case, the edge length differences are all
close to 1. Therefore, we also color code the output
correspondences to directly visualize the registration results.
The two approaches collectively can better evaluate the
registration results.

Face scans. Fig. 11 shows two examples of face scans.
Our method finds about 10 feature matches with mean-
ingful saliences. Registrations are propagated from the
matched features to other points. In this experiment, we let
t ¼ 80, and the vicinity size is 2-ring. We stop the
registration when the propagation approaches to the
boundary, where the mismatch increases. From the histo-
gram in Fig. 11, we observe that most of the edge lengths
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Fig. 10. Evaluation on a benchmark with ground truth. For each group, we show an example pair, and the statistics of all 45 pairs. The histograms
comprise geodesic distances between found matches and the ground truth.

Fig. 11. Experiments on face scans.



fall into ½0; 1�. The experimental result demonstrates that our
method can find accurate correspondences on face scans,
and is very stable under facial expressions.

Similar objects. Moreover, our method can handle some
different yet similar objects. Fig. 12 shows an experimental
result, where a woman’s face is registered to a man’s face. We
accept more features in feature detection, aiming to create
more candidates for feature matching. We reset the para-
meter �2 ¼ 1 in (15) to increase the affinities of feature pairs,
which weighs more on geometric compatibility than feature
similarity. This experiment demonstrates that our method
has great tolerance on distortion and noise, with a potential
to be used for expression or motion transfer. It shows that the
nature of our method relies more on the probability and
geometric compatibility, not on single-point similarity.

Robustness. This experiment in Fig. 13 is to examine the
robustness of our method under some challenging cases.
We add Gaussian noise (with standard deviation � ¼ 80%
of average edge length) to perturb vertex coordinates along
their normals (first row), punch small holes (topological
noise) on the shapes (second row), and fill the big hole of
the mouth on the reference shape to make a large topology
change (third row). As shown by the results, our method is
robust to local changes such as noise and small holes.
Large topology changes severely affect the connecting
paths between points, and hence the heat kernels. How-
ever, the influence is restricted to the area of the change
(i.e., the mouth), since our method is locality driven. Points
outside the mouth area are still well registered.

Articulated objects. Other than facial expression, an-
other commonly seen natural deformation is the articulated
movement. Articulated objects usually have long and thin
branches, which are more challenging than face scans due
to the complicated geometry. Figs. 14 and 15 show two
results of partial shapes from a man and a woman. We use
3-ring as the vicinity size to increase the search area, and set
time t ¼ 50. The feature detection and matching in our
method perform the same way as other examples shown
earlier. In the dense registration, our method performs well
in the areas of head and body. However, the ambiguity of
positioning in long branches (e.g., arms) makes the
registration very challenging, since we only have sources
at branch ends. We notice that, thin branches (marked by

red circles) are more difficult than thick ones. Although it is
extremely challenging, our method still outputs reasonable
results quantitatively evaluated by the histograms of edge
length differences.

Comparisons. Considering the similarity between the
HKM and our method, we conduct this experiment to
compare them on complete and partial shapes. For fairness,
we use multiple sources for the HKM, which are found by
our feature matching. Hence, the two methods have the
same source points. We also apply the same parameters for
the two methods. Fig. 16 shows a comparison on complete
shapes. Since our method finds more feature matches as
sources, both of the two methods lead to nice registration
results. However, the HKM still has some flips at certain
areas (e.g., the claws). The comparison in Fig. 17 is carried
out on partial shapes with fewer sources available. On face
scans, the HKM has some mismatches around the mouth.
On articulated objects, large flips and mismatches start to
appear in the HKM’s result. The experimental results
demonstrate that our searching algorithm improves the
registration in propagating correspondences and avoiding
large flips.

Time performance. We implement our method using
C++ on a laptop with Core2 Duo CPU 2.53GHz and 4GB
RAM. The time performance of selected experiments is
shown in Table 1. Please note that, we did not list the time
of computing the Laplace-Beltrami eigenfunctions. For all
the experiments, we compute 300 eigenfunctions, which

1276 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 8, AUGUST 2012

Fig. 12. Experiment on similar but different shapes. A woman’s face is
registered to a man’s face.

Fig. 13. Experiment on partial shapes under noise, small holes, and a
large topology change.



takes about 10 to 30 seconds for one shape, and can be

accelerated by a multiresolution approach introduced in

[25]. With computed Laplace-Beltrami eigenfunctions, our

method is very efficient to complete feature detection,

feature matching, and dense registration.

7 DISCUSSION

Based on the theoretical analysis and experimental results

documented in previous sections, we address some limita-

tions and open questions of our method as follows:

. Because of the diffusion nature of the HKCs, the
uncertainty gradually increases when the heat
diffusion approaches to boundaries from sources.
As a result, the registration close to the boundary
tends to be less trustworthy. Therefore, we may need

to ignore regions near the boundaries (as far as
dense registration is concerned), though we can still
proceed the registration if necessary.

. Although our method is robust to small holes, a
large topology change may greatly affect heat
kernels, and hence HKCs in the area of the change.
To overcome this difficulty, one can repair the
incorrect connections based on a template model or
topology learning.

. As shown in the experiment of articulated objects,
the registration in thin branches is not as good as
near-flat regions due to the lack of features. We
foresee that it can be solved if we have more features
in those regions in a straightforward fashion.

. Generally speaking, more sources will produce
more accurate correspondences. However, any
mismatch in the initial feature matching can cause
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Fig. 15. Experiment on articulated objects (woman).

Fig. 14. Experiment on articulated objects (man).



serious problems in registration. We use the robust
HKS and graph matching to find stable feature
matches, which have robustness yet sometimes find
a few matches.

. Natural objects are usually symmetric. The ambi-
guity of symmetry can cause mismatches in feature

matching. Although the graph matching considers
geometric compatibility, it still remains a challenge if
the shape is highly symmetric.

. Another outstanding issue is the parameter t for
HKCs. While the value of t affects the HKCs and
their priorities, we found that t 2 ½20; 100� leads to
results with similar qualities. In our experiments, we
give the suggested value of t for every type of data
sets as a feasible advice, yet the theoretic guarantee
on time selection demands further investigation in
the near future.

8 CONCLUSION

We have detailed a robust and complete method to address
dense registration of partial nonrigid shapes. The challenge
we are tackling in this paper shall serve as an impetus for a
new research direction of space-time modeling of partial
dynamic scans. The intrinsic HKCs can position and index
points on the shape accurately. In our method, we offer novel
and comprehensive solutions that aim to improve both
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TABLE 1
Time Performance of Our Method in Seconds

Fig. 16. Comparison with the multipoint HKM (first row) and our method (second row) on complete shapes. The two methods use the same source
points found by our feature matching.

Fig. 17. Comparison with the multipoint HKM (first row) and our method (second row) on partial shapes. The two methods use the same source
points found by our feature matching.



efficiency and robustness in many aspects, including the time

range of heat kernels, scaling scheme of the HKS, spectral

matching with adaptive multiscale measurement, and

priority-vicinity search. Our method affords dense registra-

tions that are both feature driven and feature aligned. Upon

extensive experiments on comprehensive data sets, we have

demonstrated the performance of our method through

visualized correspondences and quantitative evaluations.
For our ongoing efforts, we will work on possible

improvements of our method, and continue the research
along the direction of space-time modeling. Upon dense
correspondences, we are capable of aligning the data in
the space-time domain. It now sets a stage to employ
piecewise continuous functions to model object geometry
and its dynamic behavior in 4D toward model completion.
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