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Abstract

This paper presents a feature-driven, hierarchical
shape registration algorithm. The central idea is to gen-
erate correspondences in multiple levels in a coarse-to-
fine manner, with additional features incrementally in-
serted in each level. The registration starts from the
coarsest resolution. Registration results obtained in
one level serve as references for the registration in the
next level. We adopt the heat kernel coordinates [3]
for local shape parameterization, giving rise to a com-
plete solution capable of registering partial shapes un-
dergoing isometric deformation with higher accuracy.
Through experiments, we demonstrate the effectiveness
of this multi-resolution method and its advantages over
the single-resolution method.

1. Introduction

Shape registration is an important problem in shape
analysis and computer vision. The goal is to estab-
lish valid optimal correspondences between points on
two different shapes. Its many applications include
shape interpolation, attribute transfer, surface comple-
tion, shape matching and retrieval, etc. Comparing with
rigid shapes, deformable shapes are more challenging
to handle, typically requiring a parameterization that is
invariant under certain deformations. Among various
types of non-rigid deformations, isometric deformation
is of particular value, as numerous real-life deforma-
tions can be deemed as approximately isometric, e.g.
facial expression and articulated movement.

A common and effective approach to dense corre-
spondence is first matching a small number of pre-
selected feature points, and then using the matched fea-
tures as references for dense correspondences. Features,
encoding important information of shapes, can be used
to parameterize the shapes and serve as anchors to boot-
strap the matching of the rest points. In general, it
is necessary to have a fairly large number of matched
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Figure 1. Pipeline overview of our hierar-
chical registration framework.

features to obtain dense correspondence of good qual-
ity. Otherwise, the feature-based parameterization may
have difficulty in discriminating nearby elements, es-
pecially in parts of shapes that are far away from any
features. However, automatically finding and matching
a large number of features is very difficult and error-
prone. Even in the case of user-assisted feature match-
ing, one would prefer a small set of matched features,
since manually corresponding many features is burden-
some and time-consuming.

In this paper, we present a feature-driven hierarchical
registration method that can achieve high-quality regis-
tration results even when the size of initial correspon-
dence set is small. As illustrated in Figure 1, the main
steps of our method are: (1) Detect and match features
to get a small initial set of feature matches; (2) Con-
struct hierarchical structures of input shapes; (3) Per-
form registration at the coarsest level using the initial
feature set; (4) Select some newly registered points as
additional features; (5) Perform registration at the next
level using results from the previous level and the ex-
panded set of feature references; (6) Repeat step (4) and
(5) until all valid points are registered.

The rationale of our approach is that distinguishing
elements that are distant from each other on the surface
is much more accurate than nearby elements. Even with
a small number of features, we can achieve very good
registration on a heavily downsampled version of the
original shapes. The registration result of a coarse res-
olution can serve as seed correspondences when per-
forming registration in a finer level. The large number
of available seeds significantly reduce the chances of
correspondences being trapped in an incorrect location.

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-0-9 ©2012 ICPR 113



Moreover, the multi-resolution process enables us to
pick additional features from already registered points.
This greatly enhances the discriminative strength as the
meshes become more refined. To summarize, the con-
tributions of this paper are:

• We propose a hierarchical framework for shape
registration with incremental reference insertions.
The central idea is to establish correspondences in
multiple levels in a coarse-to-fine manner.

• We improves the method of heat kernel coordi-
nates (HKC) by developing a complete solution for
high-quality registration.

• We articulate the advantages of hierarchical regis-
tration over one-level method and demonstrate the
performance with experimental results.

2. Related work

In [1], Bronstein et al. proposed the generalized mul-
tidimensional scaling (GMDS) framework and compute
the least distortion mapping between the two surfaces in
the Euclidean embedding space. Conformal mapping is
able to flatten non-rigid 3D meshes to a 2D domain;
the registration then can be performed in the embed-
ding space[6]. [10] presented a randomized, RANSAC-
like feature matching algorithm to match points and
optimize the registration by post-processing based on
geodesics. The dense correspondence method in [8] is
similar to this paper in terms of the coarse-to-fine strat-
egy, where the full correspondences are determined by
means of gradually refined patches. Many diffusion-
based characteristics, such as heat kernel, are invariant
under isometric shape deformation just like geodesics,
but tend to be more stable in the presence of holes and
noises. Hence, these characteristics are often adopted
in isometric registration in place of geodesics. In [7],
Ovsjanikov et al. defined heat kernel map (HKM)
which parameterizes a surface by computing multi-
scale heat kernels from a fixed reference point; given
two shapes whose reference points are matched before-
hand, the full correspondence can be recovered via a
greedy global N-N search. [3] proposed the heat ker-
nel coordinates, which utilize multiple feature points as
anchors and globally parameterize the surface via heat
kernel. Instead of searching for optimal correspondence
in the entire domain as in [7], the search space for each
point is restricted to the vicinity of already-registered
points, generating results of great geometric compati-
bility. However, the registration is only performed at
one resolution, which is difficult to achieve high-quality
results in fine details.

3. Hierarchical registration

Given a source shape S and a target shape T , both
represented as triangular meshes, and let V S = {si}
and V T = {ti} be their respective vertex sets, the ob-
jective of dense registration is to find an optimal map-
ping τ : V S → V T . In practice, we represent the
registration results as a set of correspondences R =
{vSi , vTi }. When the shapes in question are not com-
plete, some vertices in V S may not have correspon-
dences in R.

3.1. Initial feature detection and matching

The goal of this step is to obtain a small feature cor-
respondence set C∗. One can employ any good method
to find and match features as long as the matched
features are stable and representative. In this work,
we adopt the heat kernel signature (HKS) [9] to ex-
tract multi-scale features and spectral graph matching
method [5] to match them. The HKS is defined as the
heat kernel from one point to itself: ht(x, x), with

ht(x, y) =

∞∑
k=0

e−λktφk(x)φk(y), (1)

where λk and φk are the k-th eigenvalue and eigenfunc-
tion of the Laplace-Beltrami operator. We strongly refer
readers to [3] for more details on this step.

3.2. Multi-resolution structure

Once we obtained features correspondence set C∗,
we can use it as reference to propagate the correspon-
dences by searching in the vicinity of already matched
vertices, until every source vertex is mapped to a vertex
in the target shape [3, 4]. However, when the size of
C∗ is small, simple propagation approaches often can-
not produce satisfactory registration. On one hand, with
insufficient features as anchors, it is difficult to distin-
guish nearby vertices no matter what kind of parame-
terization scheme we employ. On the other hand, since
the sources for propagation are few, wrong correspon-
dences are more likely to accumulate following a mis-
match.

To address this issue, instead of computing registra-
tion in a single run, we perform it hierarchically in a
coarse-to-fine manner. We construct a multi-resolution
structure of the original shapes, and in each level we
only register vertices that belong to the current reso-
lution. Given a triangular mesh M0 = (V0, F0) and
constants d,m ∈ Z, we downsample M and obtain the
mesh hierarchy {M0,M1, . . . ,Mm}. Assume Mi =
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Figure 2. Major steps of our hierarchical registration algorithm. The blue shape is the source
and the red one is the target. We use a three level hierarchy in this example. (a) Initial feature
correspondences; (b) Coarse registration result (Third level); (c) Expanded feature correspon-
dences (Third level); (d) Final registration result.

(Vi, Fi) and ni = |Vi|, we enforce that ni+1 = ni/d.
We adopt the method in [2] for mesh downsampling. In
our implementation, we select d = 4.

3.3. Correspondence propagation and feature
expansion

Let both the initial correspondence set Rm+1 and
initial feature set Cm+1 be C∗. In level l, we input
the previous level’s registration result Rl+1 and feature
set Cl+1. The goal is to find the l-th level correspon-
dence set Rl that registers meshes Sl and Tl, with an
augmented feature set Cl.

For each vertex x in Sl and Tl, we compute its heat
kernel coordinates

HKC(x) = (ht(x, c1), . . . , ht(x, cz)), ci ∈ Cl+1. (2)

Inhering Rl+1 as the initial correspondence set, we
propagate correspondence to match the rest vertices in
Sl and Tl. We use a heap to determine the order by
which the vertices in Sl are processed, prioritizing on
the magnitude of HKC. For an already matched pair
(sj , tj) and one of sj’s immediate neighbor si, we
search for si’s best correspondence ti ∈ V Tk in the
neighborhood of tj , and add (si, ti) into the correspon-
dence set. ti is selected using the following criterion

ti = argmin
t∈n(tj ,Tk)

‖HKCS(si)−HKCT (t)‖2 (3)

where n(tj , Tk) represent the set of tj’s neighboring
vertices in Tk, and HKCS and HKCT denote the heat
kernel coordinates of points on S and T .

The correspondence propagation continues until all
vertices in Sk have been matched and we get the corre-
spondence set {(si, ti)} ⊂ V Sm−1×V Tm−1. Note that for

each correspondence (si, ti), the endpoint ti actually
represent a set of vertices K(ti) in the original mesh
T0. To find the precise correspondence of si in the orig-
inal target mesh, we search K(ti) and replace ti with
tj ∈ K(ti) if tj is closer to si in the embedding space.
The result is the l-th level correspondence set Rk that
relates points si ∈ Sk to ti ∈ T0. For each correspon-
dence (si, tj), we assign a matching score

score(si, tj) = exp(−‖HKCS(si)−HKCT (tj)‖2).
(4)

We then select fromRl some vertex pairs as new fea-
tures and insert them into the feature set. These new
added feature pairs should be both reliable (having great
matching score) and not in the δ-neighborhood of any
existing feature points. The expanded feature set Cl
enables a more discriminative HKC in the next level.
We carry on this process from the coarsest level to the
finest level until we obtain the final registration set R0

between the original meshes S0 and T0. Figure 2 shows
the major steps of our algorithm.

4. Experimental results

To assess the registration results represented by map
τ : V S → V T , we randomly sample N = 300 pairs of
source vertices {(s11, s12), (s21, s22), . . . , (sN1 , sN2 )}. We
measure the quality of τ in terms of the mean relative
error of geodesics:

error(τ) =
1

N

N∑
i=1

|dSG(si1, si2)− dTG(τ(si1), τ(si2))|
dSG(s

i
1, s

i
2)

(5)
where dSG and dTG are the respective geodesic distance
functions on surface S and T .
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data |V S |, |V T | #initial features #final features #levels error (multi-level) error (single-level)
Face 10.5K, 9.8K 11 68 2 0.058 0.108

Horse 8.4K, 8.4K 18 37 3 0.083 0.101
Cat 7.2K, 7.2K 14 65 3 0.123 0.167
Man 10.0K, 10.0K 13 90 3 0.077 0.117

Woman 10.0K, 10.0K 25 106 3 0.048 0.101

Table 1. Evaluation result. Our method has lower errors than the single-level method.

Figure 3. Some registration results by
our multi-resolution method (Left) and the
single-resolution method [3] (Right). Large
colored dots represent matched features.

We evaluate our algorithm on various models and
compare it with the single-resolution method [3]. Table
1 documents the evaluation results. Starting with the
same initial feature set, our hierarchical method con-
sistently achieves a better registration than the single-
resolution method. In average, the sampled error is only
64% of the single-resolution approach. Figure 3 shows
some registration results in our experiments.

5. Conclusion

We have presented a feature-driven, hierarchical
framework for high-quality shape registration, in which
correspondences are established in multiple levels from
the coarse resolution to fine resolution. By integrat-
ing heat kernel coordinates into this framework, we
developed a complete solution that is capable of reg-
istering partial shapes undergoing isometric deforma-
tions. We demonstrate via experiments the superior-
ity of our multi-resolution approach over traditional,
single-resolution method. As future work, we plan to
integrate other parameterization schemes in this frame-
work and explore possible applications.
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