
A New Anomaly Detection Algorithm based on Quantum Mechanics

Hao Huang∗, Hong Qin∗, Shinjae Yoo† and Dantong Yu†
∗Department of Computer Science, Stony Brook University (SUNY)

Email: haohuang@cs.stonybrook.edu, qin@cs.stonybrook.edu
†Computational Science Center, Brookhaven National Laboratory

Email: sjyoo@bnl.gov, dtyu@bnl.gov

Abstract—The primary originality of this paper lies at the
fact that we have made the first attempt to apply quantum
mechanics theory to anomaly (outlier) detection in high-
dimensional datasets for data mining. We propose Fermi
Density Descriptor (FDD) which represents the probability
of measuring a fermion at a specific location for anomaly
detection. We also quantify and examine different Laplacian
normalization effects and choose the best one for anomaly
detection. Both theoretical proof and quantitative experiments
demonstrate that our proposed FDD is substantially more
discriminative and robust than the commonly-used algorithms.
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I. INTRODUCTION AND FUNDAMENTAL IDEA

Our novel unsupervised method in this paper, called

Fermi Density Descriptor (FDD), computes an accurate mea-

surement of anomalousness based on quantum mechanics

theory [8]. Thus, it has a sound physics theory background.

Compared with the existing algorithms, this new algorithm

is more reliable than direct statistics based on Euclidean

distances or attribute distribution in the original space, and

hence more informative in a locally adaptive neighborhood.

A. Related Work

In anomaly detection, the local density of each instance

is always the main concern. However, it is far from trivial

to measure such value. Many algorithms try to seek a better

approximation by means of statistics based on Euclidean dis-

tance [15] [3] [6] or attribute distribution in the original data

space [12] [11] [18]. Yet, the density of local neighborhood

is not as straightforward as pair-wise distance or attribute

distribution in the original space. A few techniques [1]

adopt spectral anomaly detection techniques with manifold

reconstruction in which the anomalous instances can be

easily identified [4]. However, the existing algorithms are

based on techniques such as isometric feature mapping

(ISM) or locally linear embeddings (LLE) [1] which are

highly sensitive to local data perturbation [19]. Therefore the

subsequent anomaly detection algorithms may fail miserably.

B. Motivation and Key Intuition

Different from common techniques that aim to preserve

local embedding for clustering, here manifold reconstruc-

tion concentrates on magnifying density difference between

anomalies and normal instances. Consequently, anomalous

instances will be more singular and distinctive. The dense

neighborhood will become even denser. Although this type

of mapping is non-isometric and the original distribution is

changed, it is of central interest in anomaly detection, as it

becomes more sensitive to local density distribution.

After projecting from the original to the manifold space,

we apply quantum mechanics for anomaly detection. For

unconstrained movement of free particles, a condensed point

set is equivalent to a singularity. A steep density gradient in

a data region can render the effect of trapping energy and

preventing particles escaping from such a singularity. If the

size of a point set (number of instances) is large, the average

probability a particle stays within a certain point is low. On

the other hand, if this point set represents anomalies, the

probability for a particle to stay at each instance is high.

C. Contribution

This paper articulates a novel unsupervised anomaly de-

tection algorithm with the following salient contributions:

1) It is the first to quantitatively characterize local density

information based on quantum mechanics theory (Sec-

tion II) which supplies rigorous probabilistic explana-

tion from the perspective of modern physics theory.

2) It firstly analyzes different Laplacian normalization

effects (Section III) with the goal of anomaly detection.

It demonstrates that NN normalization is the best choice

for anomaly detection.

3) We evaluate FDD with several closely-related base-

line algorithms on a number of benchmark datasets

(Section V). Our algorithm shows both better average

performance and more stable results.

II. FERMI DENSITY DESCRIPTOR

A. Schrödinger Equation and Wave Function

Quantum mechanics [8] is a mathematical machinery for

predicting the behavior of microscopic particles. Anomalous

instances can be treated as regions of low density that

correspond to the aggregation area of maximal free energy,

and such area is easier to trap particles. The Schrödinger

equation is the key equation in quantum mechanics, which

describes how the quantum state of a physical system
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changes with time. If we ignore the potential energy, it is

directly associated with Laplace operator L as follows:

i
∂ψ

∂t
(x, t) = Lψ(x, t), (1)

where ψ is the space-time wave function of the quantum

system, i is the imaginary unit, x is the position and t is time.

The mod square |ψ(x, t)|2 depicts the probability density

of a particle at position x at time t. Assume the Laplace

spectrum has no repeated eigenvalues, and L = φ′λφ (φ
and λ are the eigenvectors and eigenvalues of L), the wave

function can be expressed in the spectral domain as

ψ(x, t) =
∞∑
k=1

eiλktφk(x)f(λk), (2)

where f(λ) is the energy distribution since in spectral

domain, eigenvalue λ is equivalent to energy level E [8].

So f(λ) can be also rewritten as f(E).
Integrating the mod square of wave function |ψ(x, t)|2

over all times, we can get

p(x) = limt′→∞
1

t′

∫ t′

0

|ψ(x, t)|2dt =
∞∑
k=1

f(λk)
2φk(x)

2.

(3)

The physical meaning of p(x) is the possibility for a particle

with an energy distribution f(λ) found at position x. The

property of quantum mechanics states that due to the fast de-

caying nature of the evanescent wave, a particle tends to be

trapped within the vicinity of region where the strong field

enhancement occurs. In high-dimensional dataset, the “tip”

regions house those data points with sparse neighborhood.

In other words, the particle tends to stay at instances with

more sparse neighborhood and rarely shows up at instances

with denser neighborhood. Therefore in theory p(x) can

intuitively represent the local density of each instance. In

practice, however, the key challenge is how to choose a good

energy distribution f(λ) for p(x).

B. Energy Distribution Function and Definition of Fermi
Density Descriptor
f(λ) in Equation 3 is the probability that a particle is in

energy state λ. In quantum mechanics there are three main

distribution functions [8]: Maxwell-Boltzmann distribution

(MB), Fermi-Dirac distribution (FD), and Bose-Einstein

distribution (BE). Besides quantum mechanics, existing re-

search also explores distributions based on other theoretical

assumptions. Sun [17] et al. used heat dissipation (HD) to

describe the heat diffusion (distribution) given time t. In

2011, Aubry [2] chose a Gaussian distribution (GD) in the

logarithmic energy to define wave kernel signature. Here

we will analyze these five distribution functions and their

respective performance on anomaly detection.

Maxwell-Boltzmann Distribution (MB)

fMB(λ) =
1

eλ/T
. (4)

Fermi-Dirac Distribution (FD)

fFD(λ) =
1

e(λ−μ)/T + 1
, (5)

where μ can be obtained from

∑
λ

1

e(λ−μ)/T + 1
= n/2. (6)

Bose-Einstein Distribution (BE)

fBE(λ) =
1

e(λ−μ)/T − 1
, (7)

where μ can be obtained from

∑
λ

1

e(λ−μ)/T − 1
= n/2. (8)

These three functions depend on the absolute temperature T .

FD and BE distributions also depend on a chemical potential

μ, and n is the number of particles in the whole systems.

Heat Diffusion (HD)

fHD(λ) = e−λt, (9)

where t is the time for heat dissipation. HD describes how

the amount of heat dissipates from a heat source to its

neighborhood at time t.
Gaussian Distribution (GD)

fGD(λ) = e−
(e−log(λ))2

2σ2 . (10)

GD is derived in [2] from a perturbation-theoretic analysis.

Under the assumption that the eigenvalues (eigenenergies)

of an articulated dataset are log-normally distributed random

variables, the author claimed that it is robust to small data

perturbations while being as informative as possible.
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Figure 1. Different energy distribution comparison on Glass dataset.
Besides the eigenvalue (EV) ordered by increasing value (decreasing
importance) in blue curve, (1(a)) shows four distributions when T = 0.001,
and (1(b)) shows four distributions when T = 50. Green, red, purple and
brown curves are the corresponding MB, FD, BE and GD distribution. We
can see that FD has the most stable performance as T changes.

HD and MB distributions have similar mathematical prop-

erties if we simply replace t in Equation 9 with 1
T in Equa-

tion 4. So we will ignore HD and only compare the other

four distribution functions. For the sake of convenience,

we assign σ in Equation 10 with the same value as T in

every comparison. Among these distributions, FD is the most
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practical one for anomaly detection, especially in terms of

stability under different T . In Equation 5, the bias term

and balancing term can stabilize FD distribution function

performance: the constant smoothing term “plus one” and

the balancing term μ in the denominator part. The role of the

“plus one” is to damp the contribution of the exponential part

from being too small, which results from either extremely

small λ or large T . The balancing term μ is a parameter

controlling the trade-off between small and large λ. Besides,

it helps to tune a sweet range for E according to T , since it

has a positive side-effect that it can accelerate the attenuation

of contribution from those trivial eigenvalues in Equation 5.

Figure 1 shows the value of different distribution functions

across different eigenvalues of Glass dataset (Section V-A).

In general, FD distribution tends to assign stable weights

for the nontrivial eigenvalues compared with the other three

distributions regardless how temperature T changes.

Therefore we integrate the FD distribution function (E-

quation 5) into Equation 3, and define Fermi Density
Descriptor (FDD) at a point x as:

FDD(x) =
1

C

∞∑
k=1

(
1

e(λk−μ)/T + 1
)2φk(x)

2, (11)

where C =
∑∞

k=1(
1

e(λk−μ)/T+1
)2, and μ can be derived

from Equation 6.

III. NORMALIZATION METHODS

In practice, the discrete Laplace operator in Equation 1

has different normalization ways. Although their effects on

clustering has been thoroughly analyzed in [10] and [5], it is

still unclear what is the best choice for anomaly detection.

This section analyzes the effect of five different normaliza-

tions for anomaly detection. Denote the unit matrix as I ,

the affinity matrix of dataset as W and the corresponding

degree matrix as D, there are:

No-normalization (NN)

LNN = D −W. (12)

Random walk normalization (RW)

LRW = I −D−1W. (13)

Symmetric normalization (SM)

LSM = I −D−1/2WD−1/2. (14)

Fokker-Planck normalization (FP)

LFP = I −D−1W
′
1, (15)

where W
′
1 = D−1/2WD−1/2.

Laplace-Beltrami normalization (LB)

LLB = I −D−1W
′
2, (16)

where W
′
2 = D−1WD−1.

For clustering purpose, we focus on normal instances

and want to recover manifold that is insensitive to the

existing anomalies (usually being treated as noise in

such applications) [10] [5]. However, from the anomaly

detection’s point of view, the recovered manifold should

be aware of local density variation, therefore in the

manifold space the density differences between anomalies

and normal instances should be preserved or even magnified.

Theorem 1: The density impact factors for NN, RW, SM,

FP and LB normalization are 2, 1, 1, 0.5, and 0 respectively.

Proof: Define q(x) as the true density function of x,

according to [5] the infinitesimal operator can be given by

Δφ− Δ(q1−α)

q1−α
φ, (17)

where φ = fq1−α. For RW, αRW = 0 [5] so the density

impact factor is 1 − αRW = 1. For FP, αFP = 0.5 [5]

so the density impact factor 1 − αFP = 0.5. For LB,

αLB = 1 [5] so 1−αLB = 0. SM can be transformed from

RW by LSM = D1/2LRWD−1/2. From the analysis in [5]

we know that D is proportional to the density function q,

therefore its limσ→0LSM,σf depends on density function

q1/2q1−αRW q−1/2 = q1 where αRW = 0. So its density

impact factors is also 1. For NN, since LNN = DLRW ,

limσ→0LNN,σf depends on density function q×q1−αRW =
q2 where αRW = 0, therefore its impact factors is 2. �

As an illustration, Figure 2 shows the effects of different

normalizations on Ecoli dataset (Section V-A). We only

plot the first three non-trivial eigenvectors derived from the

normalized affinity matrix. The red circles are anomalous

instances while crosses with other colors represent different

clusters of normal instances respectively. We also show

AUC score (Section V-A) of anomaly detection results, and

NMI score [9] of clustering results from different Laplacian

normalizations. With NN normalization, the influence of

density is mostly maximized compared with the other four

normalizations. It results in that the normal instances with

higher density shrink to a condensed area while anomalous

instances are far away from the collapsed center. So NN

normalization has the strongest ability (with AUC 0.9042)

to separate anomaly from normal instances though it is not

the sweet choice for clustering (with NMI 0.5432).

IV. ALGORITHMIC FRAMEWORK

Let X be a matrix of size n×m, where n is the number of

instances and m is the number of dimensions, our algorithm

is detailed in Algorithm 1. It undergoes a kind of data

wrapping in the first two steps. Then we perform the eigen-

decomposition and compute FDD for each instance. FDD

value is used as the final measurement of anomalousness.

Anisotropic Gaussian Kernel (AGK) [16] has been used in

our experiment to build the affinity matrix in Step 1, because

it can better capture the manifold structure of data.
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(a) Random walk (RW) (b) Symmetric (SM) (c) Fokker-Planck (FP)

(d) Laplace-Beltrami (LB) (e) No-normalization (NN)

Figure 2. Different normalization effects for anomaly detection (in AUC) and clustering (in NMI).

Table I
STATISTICS OF OUR EVALUATION DATASETS.

Dataset # Instance # Attribute % Anomalies(classes) References

1 BRCAN 683 9 35.0% (malignant) [7]
2 WDBC 569 29 37.3% (malignant) [14]
3 Pima 768 8 34.9% (positives) [12] [14]
4 Arrhythmia 452 279 45.0% (abnormal) [6] [12] [14]
5 Hayes-Roth 132 5 22.7% (class 3) [14]
6 Ecoli 336 7 2.7% (omL,imL and imS) [14]
7 Yeast 1484 8 3.7% (vac, pox and erl) [14]
8 Abalone 4177 7 8.0% (age < 5 or > 15) [14]
9 Pageblocks 5473 10 4.2% (graphic, vertline and picture) [14]

10 Glass 214 9 4.2% (tableware) [14]
11 Ionosphere 351 34 35.9% (bad) [12] [14]
12 Magic 19020 10 35.2% (hadron) [14]

Algorithm 1: FermiDensityDescriptor(X , T )

Input: Input data X ∈ Rn×m, T is the environmental

temperature

Output: FDD score for each instance

1 Build affinity matrix W on X ;

2 Construct NN Laplacian normalization, which is

L = D −W , where D is the degree matrix of W ;

3 Compute generalized eigenvectors ψ(i) and

corresponding eigenvalues λi, i = 1, 2, ..., n of L ;

4 Construct Fermi Density Descriptor (FDD) with

temperature T using Equation 11 ;

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup
Dataset and Baselines. To demonstrate the performance

of our new method, we evaluate it on twelve benchmark

datasets listed in Table I. We choose seven state-of-the-art

competitors in three categories to show the performance

of our new FDD. For kNN-based algorithms, we choose

Local Outlier Detection (LOF) [3] and Local Correlation In-

tegral (LOCI) [15]. For attribute-based methods, we include

IForest [12] and Mass [18]. For manifold-based methods,

we refer readers to three nonlinear techniques including

heat kernel signature (HKS) based on random walk (RW)

normalization [17], locally linear embeddings (LLE), and

isometric feature mapping (ISM) [1] followed by LOF to

obtain anomalousness measurement.

Evaluation Metrics. Due to space limitation, AUC (Area

under Receiver Operating Characteristics Curve) [13] is used

as our evaluation metric here because it is commonly used

to evaluate anomaly detectors and it is cut-off independent.
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Table II
COMPARISON OF FDD AND OTHER FOUR METHODS USING AUC METRICS. THE BOLD-FACE NUMBERS INDICATE THE BEST METHOD IN A

PARTICULAR DATASET; THE NUMBERS IN PARENTHESES INDICATE THE RANKS OF METHODS ACCORDINGLY. AVERAGE AND THE RANK TOTAL IS THE

AVERAGE OF PERFORMANCE AND THE SUM OF ALL RANKS FOR EACH METHOD ACROSS DATA SETS RESPECTIVELY. A ∗ INDICATES A P-VALUE OF 5%
OR LOWER AND ∗∗ INDICATES A P-VALUE OF 1% OR LOWER IN THE STATISTICAL SIGNIFICANCE TEST FOR PERFORMANCE COMPARISON W.R.T. FDD.

Dataset LOF(k=10) LOF(k=25) LOF(k=50) LOCI(k=10) LOCI(k=50) Mass IForest FDD

BRCAN 0.2819 (7) 0.3870 (6) 0.7354 (4) 0.7209 (5) 0.7455 (3) 0.2515 (8) 0.9775 (2) 0.9835 (1)
WDBC 0.5874 (8) 0.6192 (7) 0.7784 (4) 0.7573 (6) 0.8119 (2) 0.7974 (3) 0.7760 (5) 0.8989 (1)
Pima 0.4847 (8) 0.5270 (7) 0.6003 (4) 0.5946 (5) 0.6089 (3) 0.5812 (6) 0.6630 (2) 0.7121 (1)
Arrhythmia 0.7419 (7) 0.7547 (1) 0.7482 (4) 0.7482 (4) 0.7483 (3) 0.6363 (8) 0.7456 (6) 0.7484 (2)
Hayes-Roth 0.7033 (4) 0.5948 (7) 0.5464 (8) 0.8176 (3) 0.6686 (5) 0.6581 (6) 0.9894 (2) 0.9918 (1)
Ecoli 0.8260 (7) 0.8614 (4) 0.8454 (6) 0.8641 (3) 0.8549 (5) 0.7699 (8) 0.8754 (2) 0.9042 (1)
Yeast 0.4159 (8) 0.6253 (1) 0.5986 (6) 0.6076 (4) 0.6035 (5) 0.5712 (7) 0.6159 (3) 0.6168 (2)
Abalone 0.5724 (8) 0.6056 (7) 0.6525 (6) 0.6932 (4) 0.7058 (3) 0.6923 (5) 0.7466 (1) 0.7332 (2)
Pageblocks 0.6819 (8) 0.7953 (5) 0.8256 (4) 0.7823 (6) 0.7823 (6) 0.8661 (2) 0.8625 (3) 0.8939 (1)
Glass 0.7474 (6) 0.7008 (7) 0.7528 (4) 0.7480 (5) 0.7593 (3) 0.8922 (1) 0.6933 (8) 0.8737 (2)
Ionosphere 0.9064 (2) 0.8709 (3) 0.7982 (7) 0.8512 (4) 0.7923 (8) 0.8269 (6) 0.8467 (5) 0.9302 (1)
Magic 0.6420 (7) 0.6804 (6) 0.6970 (4) 0.5672 (8) 0.6825 (5) 0.6984 (3) 0.7506 (2) 0.7520 (1)
Average 0.6326∗∗ (8) 0.6685∗∗ (7) 0.7149∗∗ (5) 0.7294∗∗ (4) 0.7303∗∗ (3) 0.6868∗ (6) 0.7952∗ (2) 0.8365 (1)

In our paper we also show that our FDD has the most robust

and stable performance for all the datasets by using macro

paired t-tests [20] against each competitor respectively.

Parameters. In experiments documented in Table II we

fix T = 1000 for FDD. In Figure 3(f) and 3(e) we test

T of FDD and t of HKS in [10−4, 104] in order to show

their sensitivity to scaling parameter. For LOF we try size

of neighborhood k = 10, 25, 50. As for LOCI, we only test

Radius coefficient α = 0.5, and k = 10 and 50 in that LOCI

is more robust to k [15]. As for IForest, to conduct safe and

fair comparison we set ρ = 4000 and the number of trees

nt = 100 as in [11]. For similar reason, in Mass we set the

number of mass estimation ne = 100 and the sub-sampling

size as the dataset size. For each dataset we run 30 times

for both IForest and Mass and use the average AUC in the

final comparison. For LLE and ISM experiments, we first

fix d = 3 and test k in [10, 50] (Figure 3(a) and 3(c)), then

fix the best k for each dataset and test d in [2, 30] (Figure

3(b) and 3(d)).

B. Algorithm Performance Comparison

Table II documents the anomaly detection results (in AUC

and p-value) of LOF, LOCI, Mass, IForest and FDD, while

Figure 3 shows the performance and robustness (as parame-

ters vary) of LLE, ISM, HKS and FDD. In Table II, our FDD

shows the best average performance (with AUC 0.8365).

Across each dataset our FDD has the best performance for

eight out of the twelve selected datasets, and the second

best for the other four datasets. For Arrhythmia and Yeast

our FDD scores are extremely close (less than 0.01) to the

best score by kNN-based algorithms LOF and LOCI. As for

Abalone and Glass dataset the AUC score of our FDD are

still comparable to the best one (less than 0.02) by attribute-

based methods Mass and IForest.

As for the macro paired t-tests, compared with LOF and

LOCI respectively, FDD has extremely small p-value (less

than 1%). Compared with Mass with IForest, FDD has p-

value less than 5%. This, once again, proves that our FDD

has the best and most stable average performance. From

Table II, we can see that FDD outperforms the selected

kNN -based algorithms and attribute-based algorithms in

terms of performance and stability.

To systematically demonstrate the performance and

parameter-tuning sensitivity of manifold-based algorithms,

we test LLE and ISM with different k and d, and HKS and

FDD with changing t and T respectively. Figure 3 shows

that our new FDD has the most robustness on parameter

tuning. This stable property of FDD (Figure 3(f)) is derived

from Fermi-Dirac distribution (Section II-B) and NN nor-

malization (Section III), which is extremely important for

reliable data analysis, and for those domain experts who

do not have strong machine learning background as they

become much more comfortable in utilizing robust anomaly

detection algorithms such as our new FDD.

VI. CONCLUSION

We have devised a new unsupervised anomaly detection

algorithm with good performance and strong robustness to

parameter tuning. It is originated from quantum mechan-

ics and Fermi-Dirac distribution. To further enhance the

functionality of our algorithm, we first explored the best

choice among different Laplacian normalizations for mining

anomalous instances. Extensive experiments and evaluations

have demonstrated the sustained superb performance of

FDD in comparison with other popular anomaly detection

algorithms. Immediate future work will be concentrated on

seeking connection between local and global patterns with

an emphasis on learning the intrinsic structure of data.
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