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ABSTRACT
Current popular anomaly detection algorithms are capable
of detecting global anomalies but oftentimes fail to distin-
guish local anomalies from normal instances. This paper
aims to improve unsupervised anomaly detection via the ex-
ploration of physics-based diffusion space. Building upon
the embedding manifold derived from diffusion maps, we
devise Local Anomaly Descriptor (LAD) whose originali-
ty results from faithfully preserving intrinsic and informa-
tive density-relevant neighborhood information. This robust
and effective algorithm is designed with a weighted umbrel-
la Laplacian operator to bridge global and local properties.
To further enhance the efficacy of our proposed algorithm,
we explore the utility of anisotropic Gaussian kernel (AGK)
which can offer better manifold-aware affinity information.
Comprehensive experiments on both synthetic and UCI real
datasets verify that our LAD outperforms existing anomaly
detection algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application-
s—Data Mining ; I.5.1 [Pattern Recognition]: Models—
Unsupervised Anomaly Detection

Keywords
Anomaly detection, diffusion space, LAD

1. INTRODUCTION
Anomaly detection or outlier detection is of great signifi-

cance to many applications [40] [28]. Its primary goal is sim-
ilar to that of a classification problem except that it further
distinguishes normal instances from a small portion of new
or abnormal instances (anomalies) [5] [19] [20]. In many ap-
plications, anomalies are sparse and quite diverse, learning
with the known anomalies [9] [38] [3] may not be necessarily
useful in detecting the unknown ones in unseen data [34]. On
the other hand, labeling known datasets can be extremely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

time-consuming for real-life applications and sometimes even
unpractical to detect new types of rare events. Therefore,
the key challenge of anomaly detection still lies in its robust
ability to quantitatively and unsupervisedly characterize the
intrinsic and informative density distribution around every
instance.

Our proposed unsupervised method in this paper, called
Local Anomaly Descriptor (LAD), computes a measuremen-
t of anomalousness based on physics-based diffusion theory,
which is more informative and intrinsic compared with
the existing algorithms ([4] [25] [19] [36] [1] etc.). First of
all, our algorithm projects origin instances onto a diffusion s-
pace. In the diffusion space, distance between anomalies and
normal instances will be magnified, which makes the density
of anomalies even less and therefore more salient compared
with those in the original space. However, the perfect d-
iffusion maps are usually unreachable. Oftentimes anoma-
lies are hard to be totally distinguished from the normal
instances that are not too far away. To better set anoma-
lies apart from the nearby normal instances, we innovatively
apply a weighted Laplace umbrella operator on the project-
ed diffusion space, called Local Anomaly Descriptor (LAD).
With the novel LAD which bridges the gap between global
and local properties, we can not only obtain intrinsic lo-
cal density information, but also take the quantity of sim-
ilar instances into consideration. Therefore the representa-
tion is more reliable than original attribute distribution, and
more informative since it covers a sufficiently large neighbor-
hood for each instance. Furthermore, LAD provides reason-
ably stable performance as the scaling parameters vary (the
neighborhood size k and Gaussian scaling parameter σ).

In this paper, we employ heat kernel to build the diffu-
sion maps, which offers a statistical description on random
walks. However, the pivotal techniques of our algorithm are
fundamentally different from the current existing data min-
ing research based on heat kernel theory [15] or other similar
diffusion methods [6] [30] [29]. Our proposed LAD has dis-
tinctive uniqueness on balancing local and global properties,
and its advantage on both performance and robustness on
real world datasets for anomaly detection.

1.1 Related Work
According to the most classical definition by Hawkins [12],

an anomaly is “an observation which deviates so much from
the other observations as to arouse suspicion that it was
generated by a different mechanism”. However, it is far from
trivial to define the quantitative scope of “other observation-
s”. As Figure 1(a) illustrates, global anomalies (in yellow)
are those with global minimum neighborhood density, and
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(a) Synthetic Dataset Example
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(b) LOF Score (k = 10)
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(c) IForest Score (nt = 100, ρ = 4000)

Figure 1: 1(a) Synthetic dataset with normal instances (blue), global anomalies (yellow), and local anomalies
(red and green); 1(b) LOF score with k = 10; 1(c) IForest score. The anomalousness are visualized as height
bar over all the instances. We can see that both LOF and IForest fail to totally distinguish local anomalies
from normal instances.

distinct with respect to (almost) the entire dataset. While
local anomalies (in red and green) are those with local min-
imum neighborhood density, and distinct with respect to
instances in their local neighborhood. Profoundly speaking,
local anomalies can be thought of as a generalization of glob-
al anomalies, as global anomalies will typically also be local
anomalies, but not vice versa [7].

In implementation, kNN-based algorithms such as LOF [4]
and LDOF [39] define anomaly if its distance (usually in
Euclidean space) to its k-th nearest neighbor (kNN) is large
relative to the distances of its neighbors to their own k-
th nearest-neighbors. Recent research [7] extended LOF to
high-dimensional dataset by using random projection. Two
major drawbacks of these approaches are: (1) they tend to
miss local anomalies (Figure 1(b)) since it is not peculiar
that kNN distances of local anomalies are similar to their
normal instance neighbors’; (2) it is of extreme importance
to determine the value of k, because k can not be too small
to avoid statistical error. In other words, we need to en-
sure that for each instance, especially those forming micro-
cluster of anomalies, it does intend to use a neighborhood
size which is large enough to include more normal instances
than anomalies. However, too large k will lead to miss some
genuine anomalies. In Section 6.2 we will show that LOF is
statistically vulnerable by analyzing the sensitivity of k.

Instead of detecting anomalies based on average neighbor-
hood distance, recent approaches such as IForest [19] [20]
and Mass [36] are to separate the anomalies from normal
instances with their unique attribute distribution. A rep-
resentative anomaly definition [19] in the aforementioned
papers states that anomalies should have “attribute-values
that are very different from those of normal instances”, and
at the same time are“minority consisting of fewer instances”.
Therefore these approaches have the capacity to handle anoma-
lies with different attribute distribution compared with nor-
mal instances [18]. Nonetheless, these approaches may fail
to detect some local anomalies when their attributes have
similar distribution with some normal instances’. From Fig-
ure 1(c) we can see that, even though IForest did a good
job on global anomaly detection, it fails to distinguish lo-
cal anomalies (green and red instances in Figure 1(a)) from
the “boundary” instances in the normal instance clusters
(blue instances in Figure 1(a)). The reason is that, these

anomaly detectors partition instances mainly based on ob-
servable attributes, or more precisely, the attribute distribu-
tion in original data space. Therefore it will fail miserably
when the anomaly distribution becomes far less discrimina-
tive by sharing similar attribute range/distribution pattern
with parts of the normal instances. In Figure 2 we can see
that some anomalies have overlapped distribution on the
first four eigenvectors with normal instances in Ionosphere
dataset (a popularly used dataset for anomaly detection [19]
[13] [23]). Such overlapping also appears at nonclassical mul-
tidimensional scaling as well. So, this problem indeed exists
in some real world datasets.

A few techniques [1] tried to find an approximation of the
data using a combination of attributes that capture the bulk
of the variability in the data, and then detect anomalies on
the projected space. This kind of approaches adopted by
spectral techniques is to determine manifold subspaces in
which the anomalous instances can be easily identified [5].
However, the existing algorithms are based on techniques
such as isometric feature mapping (ISM) and locally linear
embeddings (LLE) [1] which are highly sensitive to density-
varying data distribution [16] [37].

1.2 Motivation
Motivated by the aforementioned problems, we re-define

anomaly as follows:

Definition: Anomalies are those instances with (1) local
minimum neighborhood density and (2) small quan-
tity compared with normal instances.

To capture anomalies under such definition, we consider the
heat equation in diffusion theory, which has intrinsic rela-
tionship with manifold reconstruction and built-in robust-
ness of scaling parameters [15]. The reason why we resort to
manifold space is that normal instances usually lie on some
low dimensional manifold structures in high density regions,
moreover, the anomalies deviate from the normal instances
which makes them even more discriminative. Diffusion dis-
tance is based on Markov matrix which is a stochastic matrix
representing random walks on graph [22], it can consider up
to t steps out of all the possible paths bridging any two
instances, which makes it more robust than Euclidean and
geodesic distance [6] [16] [37]. However, different from the
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Figure 2: Histogram of anomaly (red) and normal instance (blue) on the first four eigenvectors (*) of
Ionosphere dataset (a popular benchmark dataset for anomaly detection [19] [13] [23]). Some anomalies have
overlapped distribution with parts of normal instances and therefore it is nontrivial to separate them only
by simple attribute distribution. *Since the dataset is high-dimensional, dimension reduction is required to
provide a concise illustration. Although eigenvectors do not necessarily show full distribution of the original
data, it tends to show certain patterns of partial dimensions in the original space.

current diffusion-related research with the goal of clustering
[30] [29] [15], diffusion mapping for anomaly detection has
crucial requirement for connecting similar instances and at
the same time avoiding excessive-connection. To our best
knowledge, this diffusion-based utility on anomaly detection
has never been explored yet.

In this paper, we propose Local Anomaly Descriptor (LAD)
which offers a natural mechanism to express intrinsic neigh-
borhood density information through heat diffusion process.
To offer a solution to the inherent problem from the perspec-
tive of heat diffusion, LAD provides a meaningful trade-off
between local and global manifold awareness by applying
a weighted Laplacian umbrella operator. Experiments show
that LAD is immediately useful for a wide variety of anoma-
ly detection applications.

1.3 Contribution
This paper articulates a novel unsupervised anomaly de-

tection algorithm which is intrinsic, informative, and robust
to scaling parameters with the following contributions:

(1) We quantitatively characterize local density information
based on heat diffusion theory (Section 2) and anisotrop-
ic Gaussian kernel (Section 3). This method is both
intrinsic and informative in that, it has a more local-
ly adaptive scope of manifold-aware neighborhood and
therefore can very well satisfy the first property of the
above definition in Section 1.2 more insightfully and in-
trinsically compared with the existing algorithms.

(2) In order to take the amount of similar instances into
account (the second property of the above definition in
Section 1.2) which can better separate local anomalies
from normal instances, we explore the use of weight-

ed umbrella Laplacian operator (Section 4) which can
bridge the gap between local and global information.

(3) We systematically evaluate the proposed algorithm with
several closely-related baseline algorithms on a number
of benchmark datasets (Section 6). Our algorithm shows
not only better average performance but also more sta-
ble results than the other popular algorithms. Moreover,
our algorithm affords robustness for parameter selection-
s (neighborhood size and Gaussian scaling parameters).

2. HEAT KERNEL SIGNATURE BASED ON
DIFFUSION SPACE

Our proposed work is strongly inspired by heat diffusion
theory [14] in that it can provide information intimately re-
lated to local density. Heat theory can be interpreted as the
transition density function of Brownian motion [33], which
is the most fundamental continuous time Markov process.
Laplace operator is intimately related to heat diffusion, con-
necting geometry of a manifold with the properties of the
heat flow. Using the discrete Laplace operator, the heat
equation can be simplified, and generalized to matrix opera-
tion over spaces with an arbitrary number of dimensions. In
practice the heat equation is often associated with random
walk graph Laplacian [6], Lrw. Random walk is a stochastic
process which randomly jumps from vertex to vertex. Heat
equation therefore can be defined by

∂Ht
∂t

= −LrwHt, (1)

where Ht = e−tLrw is the heat kernel on Riemannian mani-
fold M and t is the time scaling parameter [11]. For Lrw =
ψ′λψ (ψ and λ are the eigenvectors and eigenvalues of Lrw
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(a) HKS with IGK(t = 1)
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0

0.5

1

 

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) HKS with IGK(t = 10)
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(c) HKS with AGK(t = 1)
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(d) HKS with AGK(t = 10)
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(e) LAD (t = 1 and k = 10)

Figure 3: HKS score with IGK (Isotropic Gaussian Kernel) and AGK and LAD score of the synthetic dataset
in Figure 1(a). We can see that LAD is the most sensitive to both global and local anomalies.

), the heat kernel can be re-formulated as follows:

Ht(i, j) =

N∑
p=1

[e−λptψp(i)ψp(j)], (2)

where Ht(i, j) represents the amount of heat being trans-
ferred from i to j in time t given a unit heat source at i.
The scaling parameter t in heat kernel is used to control the
transitive connectivity: small t makes the loosely-connected
graph into slightly stronger connection within t connection-
s, while large t makes the graph tend to be more strongly-
connected.

In 2009, Sun et.al [33] proposed a concise form given by
the heat kernel from one instance to itself

HKSt(i) = Ht(i, i) =

N∑
p=1

[e−λptψ2
p(i)], (3)

which is called Heat Kernel Signature (HKS). The physical
meaning of HKS is the amount of heat each instance keeps
within itself in time t. The property of heat diffusion
process states that heat tends to diffuse slower at
instances with more sparse neighborhood and faster
at instances with denser neighborhood. Therefore
HKS can intuitively depict the local density of each
instance (the first property in our anomaly defini-
tion). Besides, HKS also has the following properties which
make it a very lucrative candidate for local density measure-
ment: 1) it is intrinsic to the local manifold structure; 2) it is
informative since it contains density information about the
whole neighborhood in t scale; and 3) the probabilistic in-

terpretation of heat diffusion can well support the stableness
of HKS against small perturbation in the neighborhood.

However, Heat equation is assumed to build on the un-
derlying manifold. But in most applications, the underly-
ing manifold is unknown. In practice, HKS is usually built
on isotropic Gaussian kernel (IGK) on observed space. Al-
though graph Laplacian normalizations [6] based on sim-
ple IGK on observed space can recover manifold structure
to certain extent, non-uniformly sampled instances tend to
show unpreserved density distribution on the reconstructed
manifold. HKS on IGK will fail to reveal local density faith-
fully in such reconstructions. Figure 3(a) and 3(b) shows
the performance of HKS on anomaly detection with t = 1
and t = 10 based on simple IGK and random walk graph
Laplacian normalization. When t = 10 (Figure 3(b)) the
heat is extremely easy to dissipate, which blends both local
and a few global anomalies into normal instances. Mean-
while many marginal instances of the two normal instance
clusters stand out due to the fact that the HKS on IGK
fails to show manifold-aware properties. When t = 1 (Fig-
ure 3(a)), although the short period of heat dissipation has
salient effect on global anomalies, HKS on IGK still fails
to distinguish local anomalies from normal instances on the
boundary area of normal clusters. Therefore an alternative
way is indispensable to build better manifold-aware affinity
matrix. One of the most preferable candidates is anisotropic
Gaussian kernel (AGK) [31] [32].

3. ANISOTROPIC GAUSSIAN KERNEL
In this section we integrate anisotropic Gaussian kernel

(AGK) [31] into HKS to achieve better manifold reconstruc-
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tion. In Figure 4 we can see the 70 nearest neighbors of
red instance when using IGK (Figure 4(a)) and AGK (Fig-
ure 4(b)), which shows that the intra-manifold distances are
much shorter than the inter-manifold by using AGK. To
further support this idea, in Figure 3(c) and 3(d) we show
that anomaly detection can directly benefit from the use of
AGK. In Figure 3(d) with t = 10, the global anomalies are
highlighted even though the local anomalies are latent (com-
pared with Figure 3(b)). This is because if the manifold is
well reconstructed, global anomalies should be separated far
away from normal instances even with large t scale. Further-
more, in the small scope of t = 1 (Figure 3(c)), both local
and global anomalies can be detected, which illustrates that
with the support from AGK, HKS is capable of revealing
the density information of the intrinsic manifold structure.
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Figure 4: 70 nearest neighbors (in green) of red in-
stance on IGK (a) and AGK (b), which shows that
AGK has better manifold-aware property than IGK.

In the rest of this section we briefly introduce AGK on the
observed space Y that approximates the isotropic Gaussian
kernel on the underlying manifold X. The idea is to approx-
imate the Euclidean distance between instances x(j) in the
manifold space X using covariance matrix C = JJT where
J is the Jacobian matrix [31] and the instances yj = f(xj)
in the observable space Y . Let x, ε be two instances in the
manifold space X and y = f(x), η = f(ε) be their map-
ping to the observable space Y . Let g : Y → X be the
inverse mapping of f : X → Y , that is, g(f(x)) = x and
f(g(y)) = y, ∀x ∈ X, ∀y ∈ Y . Expanding the functions
x = g(y) in a Taylor series at the instance y gives

εi = xi + Σjgi(j)(y)(ηj − yj)

+
1

2
Σklgi(kl)(y)(ηk − yk)(ηl − yl) +O(‖ η − y ‖3).

(4)

where gi(j) = ∂gi
∂yj

. Therefore,

‖ε− x ‖2= Σijkgi(j)(y)gi(k)(y)(ηj − yj)(ηk − yk)

+
1

2
Σijklgi(j)(y)gi(kl)(y)(ηj − yj)(ηk − yk)(ηl − yl)

+O(‖ η − y ‖4).

(5)

A similar expansion can be built at instance η and the av-
erage of these two equations can be produced as

‖ ε− x ‖2=

1

2
(η − y)T [(JJT )−1(y) + (JJT )−1(η)](η − y)

+O(‖ η − y ‖4),

(6)

given that the Jacobian of the inverse g is the inverse of
the Jacobian J (a detailed description of calculation can

be referred to [31]). So we can construct the anisotropic
Gaussian kernel

AGK(yi, yj) = e
{−
‖J−1(yi)(yi−yj)‖

2+‖J−1(yj)(yj−yi)‖
2

σ2
}
, (7)

where i, j = 1, ..., N .
AGK has the desired attributes that it is separable, and

its first (nontrivial) eigenfunctions are monotonic functions
of the independent parameters [32]. It also has been proved
that the eigenvectors of AGK reveal the independent com-
ponents [31]. HKS, built on such approximation, can better
capture the manifold structure of data as shown in Figure
3(c) and 3(d), which is difficult or even impossible to achieve
by using IGK or other similar techniques.

4. LOCAL ANOMALY DESCRIPTOR
Although HKS on AGK has the capability to offer desir-

able local density information, it is of importance to select
the right time scaling parameter t, which provides a trade-off
between the effects of local and global information. However,
it is hard to get the “best of both worlds” with single setting
for this parameter. Even with better manifold reconstruc-
tion, if t is large the heat is still easy to dissipate regardless of
normal instances or local anomalies, although not for global
anomalies, which is shown in Figure 3(d). This is because
with large t scale, the distance between local anomalies and
the normal instances around them would still be close. So
local anomalies cannot retain their heat. On the other hand,
if t is small, the heat diffusion runs for only a short period
of time, and the resulting anomalousness are usefully local,
but almost carry the same value for instances with similar
density inside a very restrained neighborhood, which is the
major reason why it sometimes assimilates local anomalies
into some normal instances. In Figure 3(c) we can see HKS
assigns similar scores to the local anomalies and some of the
boundary normal instances. Intuitively speaking, HKS on
AGK still fails to take the amount of similar instances into
account with off-the-sweet-spot t setting.

In order to handle the above problem, we propose to use
the umbrella operator [35] [8] to consider the quantity of sim-
ilar instances in neighborhood by bridging the gap between
global and local properties. The main motivation for using
this operator is to compute the average difference between
a point (xi) and its k neighbors (nb(i, k)).

∆xi =
∑

xj∈nb(xi,k)

Wi,j(xj − xi), (8)

where Wi,j is the weight between xi and xj . If we use
AGK(i, j) for Wi,j , then we may define the Local Anomaly
Descriptor (LAD) for a point i as follows:

LAD(i) = HKSt(i)−
1

k
Σj∈nb(i,k)HKSt(j)·AGK(i, j). (9)

The geometric meaning of LAD is illustrated in Figure 5
where we measure the difference between a single HKSt(i)
and its neighborhood’s average HKSt(j) value. Note that
the heat kernel signature value is always positive and it
means the degree of global anomaly level and thus LAD(i)
indicate the level of both global and local properties.

If an instance is globally anomalous, its HKS would be
already high enough to discriminate itself to the other in-
stances. While it is locally anomalous, its HKS is likely to
be similar to some normal instances’ with similarly sparse
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Figure 5: Illustration of Local Anomaly Descriptor
which calculates weighted average of neighbor differ-
ences. It is one of the ways taking into consideration
the neighborhood structures [35].

neighborhood. However, the amount of similar instances,
if it is taken into account, can serve to recognize the local
anomalies from normal instances. Since local anomaly only
has a small amount of neighbors with close HKS, but nor-
mal instances, on the other hand, have more such neighbors.
LAD has a very lucrative property in considering the
amount of similar instances (the second property in
our anomaly definition): with similar intra-cluster
density, AGK tends to assign larger affinity value to
two instances inside a larger manifold/cluster, and
less value to those inside a smaller manifold/cluster,
and much less value to those not inside the same
manifold/cluster [31]. So even though k is not large e-
nough to include the whole appropriate neighborhood, LAD
can still capture the information related to the amount of
similar instances.

The benefits of LAD in comparison with HKS can be
seen in Figure 3(e), which shows the LAD score of synthetic
dataset (Figure 1(a)). Note that HKS with AGK possesses
good global properties for long enough time (t = 10 in Fig-
ure 3(d)) and good local properties for small time (t = 1 in
Figure 3(c)), but not both. Nevertheless, Figure 3(e) shows
that our proposed LAD has a penetrating awareness on both
global and local anomalies primarily because of the power
of our proposed umbrella operator.

We now justify the LAD utility by briefly documenting
its theoretic connections with a few existing methods, which
also lays a solid foundation for LAD’s attractive properties
in practical use.

Biharmonic Operator. HKS itself is directly derived
from the Laplace operator and its eigen-decomposition, so
that HKS is intrinsically a second-order property relevant
to the Laplace’s equation. The aforementioned derivation of
LAD can be intuitively related to the biharmonic process,
because the Laplace operator is essentially applied twice (to
compute both HKS and its umbrella operator of HKS). It
provides a good balance in the sense that it decays slowly in
small cluster around the source instance and fast enough to
be structurally inherent in dense areas. This specific “bal-
ancing” is intimately derived from the biharmonic equation
with properties such as local support, global informative,
and shape-aware [17].

Signal Processing. LAD also has strong connection to
signal processing . In lowpass filtering, the divergence of
a sample from its average neighborhood is the easiest way
to pinpoint those inconsistent instances if the desired signal
has significant high frequency content. As in traditional sig-
nal processing [35], it is possible for LAD to quantify the

frequency response by computing an adjoining sum of the
Laplacian operator in its immediate vicinity. As a result,
this enables LAD to distinguish between normal instances
and inconsistent instances (anomalies) with greater preci-
sion.

kNN-based Approaches. kNN-based methods [4] [7]
[39] approach local density for each instance using its neigh-
borhood information. Like LAD, they require scaling pa-
rameters to capture a reasonably large neighborhood, and
the density information is based on this prescribed local re-
gion. However, kNN-based methods has strictly local con-
text in that they simply fix the neighborhood size with k.
In contrast, LAD employs locally adaptive neighborhood
size directly benefited from the physics-inspired properties
of heat diffusion. Moreover, Euclidean distance in kNN-
based methods is a pair-wise local quantity, while heat k-
ernel used in LAD considers all the possible paths between
two instances within time t, therefore LAD is more stable
than kNN-based methods.

Attribute-based Approaches. Attribute-based meth-
ods [19] [20] [36] try to compute local density by adding up
a sequence of values from an attribute-based function [36],
equivalent to a kernel density function such as heat kernel.
The global instance distribution is based on each attribute
and how deviated each instance is from the other instances
in that specific attribute, which indeed is more informative
than kNN-based approaches. However, the strong empha-
sis on attribute distribution along its dimension is also a
“double-sided sword”: on the one hand it is much faster
without any distance calculation, on the other hand, such
distribution based on attributes still fails to consider local
anomalies.

Diffusion-based Clustering. Some recent research [30]
[29] [15] proposed the unified probabilistic clustering ap-
proach based on diffusion map. By integrating all time s-
cales of kernel function into one single term, this kind of
techniques completely removes the time scaling parameter
of diffusion dissipation, therefore it has the built-in robust-
ness to data perturbation and scaling parameter modifica-
tion [15]. However, as a side-effect, this process of “integra-
tion” assimilates local anomalous instances into normal in-
stance clusters since the excessive-diffusion tends to connect
everything together. LAD, in sharp contrast, is built upon
kernel function with small time scale and weighted umbrella
operator instead of integrating all scales together. Therefore
it avoids the above-mentioned excessive-connection problem.

5. ALGORITHMIC FRAMEWORK
After investigating some attractive properties of LAD, it

now sets a stage for us to introduce a novel anomaly detec-
tion algorithm, which is sensitive to both global and local
anomalies. Let X be a matrix of size n×m, where n is the
number of instances and m the number of dimensions, our
framework is detailed in Algorithm 1. This algorithm under-
goes a kind of data warping process by using AGK (Step 1)
and Laplacian Random Walk normalization (Step 2). Then
we perform the eigen-decomposition (Step 3) and construct
HKS for each instance (Step 4). Equation 9 is used as the
last step to compute Local Anomaly Descriptor for the final
measurement of anomalousness.

In Step 4, we adopt the notation in [10] by normalizing the
time scale t ← t/(2λ1) to achieve scale invariance. Hence-
forth, with little abuse of notation, heat diffusion time in
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Algorithm 1: LocalAnomalyDescriptor(X, σ, t, k)

Input: Input data X ∈ Rn×m; σ the Gaussian scaling
parameter; t the time scaling parameter; k the
neighborhood size

Output: LAD score for each instance
1 Construct anisotropic Gaussian kernel W using

Equation 7 and σ;
2 Construct Laplacian random walk normalization on W ;
3 Compute generalized eigenvectors ψ(i) and

corresponding eigenvalues λi, i = 1, 2, ..., n. ;
4 Construct Heat Kernel Signature in time scale t using

Equation 3 ;
5 Compute Local Anomaly Descriptor using Equation 9

with Heat Kernel Signature and anisotropic Gaussian
kernel in the k neighborhood for each instance ;

our paper will actually denote t/(2λi), where λi is the first
non-trivial eigenvalue.

Regarding computational complexity, eigen-decomposition
(Step 3) is the most time-consuming step, which will dom-
inate our computation. There are many iterative methods
to conduct eigenvalue decomposition, but in general finding
the eigenvalues reduces to matrix multiplication by comput-
ing a symbolic determinant, which gives a running time of
O(n3 + n2log2n) [24]. An alternative way of estimating the
heat kernel Kt = e−1LrwD−1 is to use a partial sum of infi-
nite series with

e−tLrw = Σ∞i=0
(−tLrw)i

i!
. (10)

This method would be especially attractive for small values
of t, since only a few terms would be needed to obtain an
accurate estimation of e−tLrw [2].

6. EXPERIMENTAL ANALYSIS

6.1 Experimental Setup
Dataset. To demonstrate the performance of our pro-

posed method, we evaluate our algorithm on nine UCI bench-
mark datasets including three medical datasets (WDBC,
Pima, and Arrhythmia), three biological datasets (Ecoli,
Yeast, and Abalone), and three physics datasets (Glass,
Ionosphere, and Magic), whose statistics are summarized in
Table 1. All these data have been popularly used in anoma-
ly detection research (related references for each dataset
are listed in Table 1). Anomalies in some of the datasets
(WDBC, Pima, Arrhythmia, etc.), although carrying a large
number of instances, have scattered and sparse distribution
(Figure 6). Therefore the anomalies in these datasets should
be treated as a combination of many small anomalous clus-
ters instead of one or a few normal clusters with high density
[7] [23], which has nothing inconsistent with our definition
about anomaly in Section 1.2. Such diverse combination of
data is intended for our comprehensive studies. In the data
preprocessing step, all nominal (including binary) attributes
or attributes with missing value are removed.

Baselines. We choose six states of the art competitors
in three categories to show the outstanding performance of
our proposed LAD. For kNN-based algorithms, we choose
Local Outlier Detection (LOF) [4] and Local Correlation In-
tegral (LOCI) [25]. Specially, LOCI provides an automatic,
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Figure 6: Anomalous instances in green (37.3%) are
more scattered and sparse than normal instances in
blue (62.7%) in WDBC dataset (shown with the first
three eigenvectors). Therefore these anomalies, al-
though have a large amount of instances, should be
treated as many small abnormal clusters.

data-dictated cut-off to determine whether an instance is
an anomaly based on probabilistic reasoning. For attribute-
based methods, we include IForest [19] and Mass [36]. For
manifold-based methods, we refer readers to two differen-
t manifold-based techniques in [1] including locally linear
embeddings (LLE), and isometric feature mapping (ISM),
followed by LOF to obtain anomalousness measurement.

Evaluation Metrics. Since we have the ground truth
of labels for each data, we compare our anomaly detection
results with labels. Due to space limitation, AUC (Area un-
der Receiver Operating Characteristics Curve) is used as the
only listed evaluation metric in this paper because it is com-
monly used to evaluate anomaly detectors and it is cut-off
independent. Detailed definition of AUC can be referred to
[21]. In our paper we also show that our LAD has the most
robust and stable performance for all the datasets by using
macro paired t-tests [41] against each competitor respective-
ly. Note that a score of macro paired t-tests (p-value) should
be no more than 0.05 to be considered statistically signifi-
cant.

Parameters. Our proposed algorithm has three scaling
parameters, namely Gaussian kernel scaling parameter σ,
time scaling parameter t, and the size of neighborhood k.
We set t = 1 which makes our proposed LAD capable of
depicting local minimum density. As the default setting for
most of the other algorithms, we fix σ = 1 and k = 10 for the
experiments in Table 2 and 3. But the LAD robustness to
the change of these two parameters will be shown in Figure
7. For LOF we try k = 10, 25, 50 for all the datasets.
Since in practice, single setting of k for LOF may introduce
statistical errors [25]. As for LOCI, we set k = 10 and
k = 50 due to its instinctive stability on k which comes from
a multi-granularity deviation factor [25]. Radius coefficient
is set as α = 0.5 in LOCI, which is the same to their paper
[25]. As for IForest, even though in their paper [19] Liu
et al. claimed that a small sub-sampling size ρ provides
high AUC and a further increase of ρ is not necessary, in
practice when ρ increases, anomalies in-between data groups
will become more detectable by IForest [18]. To conduct
safe and fair comparison, we set ρ = 4000 and the number
of trees nt = 100 since they are the recommended settings
in the authors’ technical report [18]. Similarly, in Mass we
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Table 1: Statistics of our evaluation datasets.
Dataset # Instance # Attribute % Anomalies(classes) References

1 WDBC 569 29 37.3% (malignant) [39] [23]
2 Pima 768 8 34.9% (positives) [19] [23]
3 Arrhythmia 452 279 45.0% (abnormal) [7] [19] [23]
4 Ecoli 336 7 2.7% (omL,imL and imS) [13] [23]
5 Yeast 1484 8 3.7% (vac, pox and erl) [23] [27]
6 Abalone 4177 7 8.0% (age < 5 or > 15) [23] [26]
7 Glass 214 9 4.2% (tableware) [13] [23]
8 Ionosphere 351 34 35.9% (bad) [19] [13] [23]
9 Magic 19020 10 35.2% (hadron) [23]

Table 2: Comparison of LAD and other four popular methods (with different k for LOF and LOCI) on nine
datasets using AUC metrics. The bold-faced numbers indicate the best method on a particular dataset; the
numbers in parentheses indicate the ranks of our LAD. Average is the average of performance across all the
datasets respectively. A ∗ indicates a p-value of 5% or lower and ∗∗ indicates a p-value of 1% or lower in the
statistical significance test for performance comparison w.r.t. LAD.

Dataset LOF(k=10) LOF(k=25) LOF(k=50) LOCI(k=10) LOCI(k=50) Mass IForest LAD

WDBC 0.5874 0.6192 0.7784 0.7573 0.8119 0.7974 0.7760 0.8864 (1)
Pima 0.4847 0.5270 0.6003 0.5946 0.6089 0.5812 0.6630 0.6936 (1)
Arrhythmia 0.7419 0.7547 0.7482 0.7482 0.7483 0.6363 0.7456 0.7558 (1)
Ecoli 0.8260 0.8614 0.8454 0.8641 0.8549 0.7699 0.8754 0.8692 (2)
Yeast 0.4159 0.6253 0.5986 0.6076 0.6035 0.5712 0.6159 0.6183 (2)
Abalone 0.5724 0.6056 0.6525 0.6932 0.7058 0.6923 0.7466 0.7398 (2)
Glass 0.7474 0.7008 0.7528 0.7480 0.7593 0.8922 0.6933 0.8612 (2)
Ionosphere 0.9064 0.8709 0.7982 0.8512 0.7923 0.8269 0.8467 0.9240 (1)
Magic 0.6420 0.6804 0.6970 0.5672 0.6825 0.6984 0.7506 0.7516 (1)
Average 0.6582∗∗ 0.6939∗∗ 0.7190∗∗ 0.7146∗∗ 0.7297∗∗ 0.7184∗∗ 0.7459∗ 0.7889 (1)

set the number of mass estimation ne = 100 and the sub-
sampling size as #instance of dataset. On the other hand,
IForest and Mass are based on random sub-sampling which
makes their performance very unstable. In an attempt to
get more stable results, for each dataset we run 30 times for
both IForest and Mass and use the average AUC in the final
comparison. For LLE and ISM, we conduct experiments
on size of neighborhood k = 10, 50 and 100 with the best
number of dimensions d in [2, 30] respectively, in order to
compare their performance and robustness in k.

6.2 Algorithm Performance Comparison
In this section we evaluate our proposed LAD and the oth-

er six anomaly detection algorithms. Table 2 documents the
anomaly detection comparison result (in AUC and p-value)
of LAD and other four popular algorithms: LOF, LOCI,
Mass, and IForest. While the manifold-based methods com-
parison including LLE and ISM (all followed by LOF), and
our proposed LAD are also listed in Table 3.

In Table 2 LAD shows the best average performance (0.7889)
across all the datasets. For each dataset LAD has the best or
very close to the best performance. Specifically, LAD is the
top-ranked one for all the three medical datasets and has al-
most unbeatable performance for the three physics datasets.
Although LAD ranks the second among all the methods on
the three biological datasets. The AUC score are actually
very close to the best one (no more than 0.008 difference
in AUC). As for Glass dataset the AUC score of our LAD
(0.8612) is still comparable to the best one (0.8922) by Mass,
meanwhile beats the third best (LOCI with k = 50) for more

than 13%. IForest shows the second best (0.7459) average
performance of real datasets, which supports the argument
that it is able to take both global and local contexts into
consideration [18]. This is different from kNN-based meth-
ods (LOF and LOCI) which only concern with instance-wise
local context. Compared with LOF, LOCI performs robust-
ly when k varies. It ranks the third (0.7297) when k = 50
and fifth (0.7146) when k = 10. This moderately stable
performance comes from the built-in concept of a multi-
granularity deviation factor. LOF, although has the third
best score (0.7190) when k = 50, shows seriously unstable
performance as k changes, which can be explained as follows:
LOF is based on a direct normalization of anomaly scores for
a very limited neighborhood. Although Mass (0.7184) only
keeps the fourth record, it has the fastest computation speed
compared with the other competitors, especially LAD.

Table 3 shows performance of three different manifold-
based algorithms. Generally, LAD evidently outperform-
s the other methods with average AUC 0.7889. In terms
of stability, although LLE has similar average score with
k = 10, 50 and 100, it shows fluctuation for some datasets
especially Ecoli, Glass and Ionosphere. Part of the reason
comes from that LLE assumes the data manifold is suffi-
ciently smooth and densely sampled that it is locally ap-
proximately linear, while this is not the true story for many
real world datasets. Similarly, ISM’s AUC score varies as
k changes in several datasets (Ecoli, Yeast, Glass etc.). It
is because ISM is highly vulnerable to the local data per-
turbation since the embedding given by the ISM tends to
recovers the geodesic distances between points on the man-
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Table 3: Comparison of LAD and other two manifold-based methods (with different k) on nine datasets using
AUC metrics. The bold-faced numbers indicate the best method on a particular dataset; the numbers in
parentheses indicate the ranks of our LAD. Average is the average of performance across all the datasets
respectively. A ∗∗ indicates a p-value of 1% or lower in the statistical significance test w.r.t. LAD.

Dataset LLE(k=10) LLE(k=50) LLE(k=100) ISM(k=10) ISM(k=50) ISM(k=100) LAD

WDBC 0.7572 0.7561 0.8517 0.5903 0.6359 0.6942 0.8864 (1)
Pima 0.5183 0.5815 0.6270 0.5234 0.5925 0.5546 0.6936 (1)
Arrhythmia 0.5564 0.6174 0.6234 0.5694 0.5878 0.6184 0.7558 (1)
Ecoli 0.9205 0.8709 0.5739 0.6259 0.7934 0.8406 0.8692 (3)
Yeast 0.5994 0.6289 0.6464 0.4924 0.5802 0.5965 0.6183 (3)
Abalone 0.5764 0.6054 0.6039 0.5520 0.6637 0.6513 0.7398 (1)
Glass 0.8385 0.6797 0.7100 0.5453 0.6607 0.7957 0.8612 (1)
Ionosphere 0.6125 0.4526 0.4731 0.4444 0.4188 0.4837 0.9240 (1)
Magic 0.5638 0.6152 0.6010 0.5742 0.5981 0.6328 0.7516 (1)
Average 0.6603∗∗ 0.6453∗∗ 0.6344∗∗ 0.5464∗∗ 0.6146∗∗ 0.6520∗∗ 0.7889 (1)

ifold, which is very locally sensitive compared with random
walk [16] [37].

To systematically manifest the robustness of our proposed
LAD on different neighborhood size k and Gaussian scaling
parameter σ, we test our algorithm respectively on a series of
k and σ on seven small datasets: WDBC, Pima, Arrhythmia,
Ecoli, Yeast, Glass, and Ionosphere due to limited space, and
also with the reason that in theory, datasets with smaller
number of instances are more sensitive to the change of k
and σ. Therefore these seven datasets are the more effective
choices to show whether our LAD is robust to these two
parameters. For k our test range is in [10, 100]. As for σ,
the test range is in [0.1, 8], with 0.05 as step size between 0.1
to 1 and 0.5 as step size between 1 to 8. From Figure 7(a)
we can see that our new LAD algorithm has more stable
performance than LOF, LLE and ISM on different k (shown
in Table 2 and Table 3). Similarly, Figure 7(b) shows that
our proposed LAD retains certain level of robustness as σ
changes. The stability of LAD has an inherent relationship
with diffusion maps and random walk.

As for the macro paired t-tests across all the datasets,
compared with LOF, LOCI, Mass, LLE and ISM respective-
ly, LAD has extremely small p-value (less than 1%). Com-
pared with IForest, LAD has p-value less than 5%. This,
once again, proves that our LAD has the most stable av-
erage performance. Overall, LAD outperforms the selected
kNN -based, attribute-based and manifold-based algorithms
in that it is more intrinsic, informative, and manifold-aware.

7. CONCLUSION
This paper has documented an original unsupervised anoma-

ly detection algorithm, called Local Anomaly Descriptor
(LAD), which is based on the physics-inspired diffusion s-
pace and weighted umbrella operator. Compared with the
existing algorithms, our proposed LAD has demonstrated
many important properties such as intrinsic, informative to
local density, and stable to small parameter perturbation.
Together with its more manifold-aware property for the goal
of anomaly detection, we expect it to be useful for any type
of data distribution. Nonetheless, much more extensive ex-
periments are still required to validate this conjecture, which
is part of our near-future research. Another direction is to
investigate the possible connection with global structure and
pattern mining such as clustering and feature classification.
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Figure 7: LAD robustness on different k and σ.
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