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a b s t r a c t

The fundamental goal of this paper aims to bridge the large gap between the shape versatility of

arbitrary topology and the geometric modeling limitation of conventional tensor-product splines for

solid representations. Its contribution lies at a novel shape modeling methodology based on tensor-

product trivariate splines for solids with arbitrary topology. Our framework advocates a divide-and-

conquer strategy. The model is first decomposed into a set of components as basic building blocks. Each

component is naturally modeled as tensor-product trivariate splines with cubic basis functions while

supporting local refinement. The key novelty is our powerful merging strategy that can glue tensor-

product spline solids together subject to C2 continuity. As a result, this new spline representation has

many attractive advantages. At the theoretical level, the integration of the top-down topological

decomposition and the bottom-up spline construction enables an elegant modeling approach for

arbitrary high-genus solids. Each building block is a regular tensor-product spline, which is CAD-ready

and facilitates GPU computing. In addition, our new spline merging method enforces the features of

semi-standardness (i.e.,
P

iwiBiðu,v,wÞ � 1 everywhere) and boundary restriction (i.e., all blending

functions are confined exactly within parametric domains) in favor of downstream CAE applications. At

the computational level, our component-aware spline scheme supports meshless fitting which

completely avoids tedious volumetric mapping and remeshing. This divide-and-conquer strategy

reduces the time and space complexity drastically. We conduct extensive experiments to demonstrate

its shape flexibility and versatility towards solid modeling with complicated geometries and non-

trivial genus.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

The rapid advancement of 3D data-acquisition techniques
gives rise to a wide variety of tremendous 3D volumetric data.
Although many 3D representations (e.g., structured grids or
tetrahedral meshes) exhibit various virtues for solid modeling
and processing, most of these representations are lack of the
compactness of smoothly modeling solid geometry, which is
required for CAE, including both CAGD modeling process and
downstream physical analysis without data conversion. There-
fore, a frequently occurring challenge is how to effectively convert
a discrete complex volumetric data into a compact and contin-
uous spline formulation towards CAE applications.

Our primary goal in this paper is to develop efficient methods
for arbitrary solids undergoing spline transformation. Nevertheless,
we must address the following key challenges. (1) High genus: an
attractive spline representation must accommodate high-genus
solid models with complicated shapes. (2) Local refinement and
ll rights reserved.
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adaptive fitting: for trivariate splines, both structurally complicated
shape models and feature-enriched models need local refinement.
For example, a genus-0 solid bounded by six simple four-sided
B-spline surfaces has originally 6� 10242 control points (DOFs).
The size of DOFs increases drastically to 10243 or even larger when
we naively convert it into a volumetric spline representation. This
exponential increase poses a great challenge in terms of both
storage and fitting costs. It is advantageous to use high resolution
to approximate boundary surface and low resolution for interior
space. (3) Singularity free: a singular point in a volumetric domain is a
node with valence larger than four along one iso-parametric plane
(Fig. 1(a)). Handling singularity with tenor-product splines is
highly challenging in FEM, thus a singularity-free domain is highly
desirable. Unfortunately, singularities commonly exist in many
volumetric domains such as hexahedral meshes and cylinder
(tube) domains. (4) Boundary restriction: It is a basic requirement
for a spline that all blending functions are completely confined
within the parametric domain. (5) Semi-standardness: In a hier-
archical spline, the sum of weighted basis function

PB
i ¼ 1 wiBi

ðu,v,wÞ � 1 holds for all ðu,v,wÞ. It has a broader appeal to both
theoreticians and practitioners.

Recently, much work has been attempted towards the afore-
mentioned requirements while following a top-down fashion.
For example, Wang et al. [1] have proposed a spline scheme
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being built upon a one-piece volumetric poly-cube domains. Poly-
cube is a shape composed of cuboids that abut with each other.
Although this method successfully inherits many attractive prop-
erties, it also exposes all typical difficulties in a top-down scheme.
A one-piece poly-cube domain, together with its 3D embedding, is
not versatile enough to handle highly twisted and high-genus
solid datasets. Creating a poly-cube to mimic the input shape
requires tedious user intervention. The boundary restriction
procedure in the vicinity of gluing regions (Fig. 2, dots/lines) is
extremely complicated. Computationally speaking, the global
fitting is very time consuming which is completely unsuitable
for trivariate splines.

To ameliorate, our framework takes advantage of the bottom-
up scheme. The global domain is first divided into several
components. Then we build tensor-product trivariate splines
separately for each component, and finally glue them together.
Figs. 3 and 4 show the detailed, step-by-step procedure using the
model (called ‘‘g3’’) as an example. Specifically, it includes the
following major phases:

(1) Construct a surface poly-cube mapping: To better support
our divide-and-conquer scheme, we use the technique [2] to
decompose the entire surface model into several components.
Each component is a part-aware surface patch and we map it to
the boundary surface of a cuboid (Section 3). The separate cuboid
mappings are also globally aligned.

(2) Construct a local trivariate tensor-product T-spline on each
cuboid (Section 4). Adaptive fitting is allowed for a better fitting
result.

(3) Merge local cuboids into a single global spline (Section 5).
Note that, the novelty of our merging strategy lies at its compre-
hensive and complete solution to guarantee the desirable proper-
ties: semi-standardness and boundary restriction.
Fig. 1. (a) The singular point in the volumetric domain. (b and c) A poly-cube

domain can mimic the geometry of input and avoid such type of singular point.

Fig. 2. All possible merging types in a poly-cube (from ‘‘Type-1’’ to ‘‘Type-4’’). To

preserve both boundary restriction and semi-standardness, we add extra knots

around the control points on the merging boundary (yellow lines and dots). (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 3. The divide-and-conquer scheme. The system adopts the general triangular mesh

interior volume.
Our new shape modeling framework has the following
significant contributions on both spline theory and practice:
compared with prior top-down strategies, our new divide-and-
conquer approach is more flexible and powerful to handle com-
plex solids with arbitrary topology. Each component can be easily
converted to a trivariate semi-standard regular spline, which is
embraced by industry-standard CAD kernels and facilitates GPU
computing like [3].

At the theoretical level, we develop the theory and algorithm
to merge adjacent trivariate splines together. Through adding
knots and modifying weights, our merging method can enforce
semi-standardness and boundary restriction for all possible mer-
ging types, even after local adaptive refinement.

For solids with homogeneous material, we are capable of
generating trivariate splines from poly-cube surface parameter-
ization directly, thus we avoid complicated interior volumetric
remeshing. Moreover, our divide-and-conquer strategy makes the
modeling and analysis tasks scalable to large-scale volumetric
data, in terms of computation time and space consumption during
the fitting.
2. Related work and background review

Spline-based volumetric modeling and analysis have gained
much attention recently with many applications. For geometric
processing, Song et al. [4] have employed trivariate splines with
non-uniform weights to model free-form deformation. For physi-
cal analysis, Hughes et al. [5] have proposed isogeometric analysis
on surface using bivariate NURBS, and conducting physical
analysis simultaneously. In visualization, Rössl et al. have utilized
as the input. The output trivariate splines interpolate both the input surface and

Fig. 4. Steps to convert the g3 model into a trivariate spline solid.



Fig. 5. The idea of component generation. (a) Decompose the model into T-shapes.

(b) Map each T-shape into four cuboids. (c) Only two merging types exist in the

resulting poly-cube.
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trivariate super splines [6] to model and render multi-dimen-
sional material attributes for solids. We, in this paper, focus on
converting a closed surface bounded region into a trivariate spline
(for readers who are interested in surface-to-bivariate spline, we
refer them to [7,8]). A modeling technique introduced in [9] has
been developed to model skeletal muscle with anisotropic attri-
butes and conduct FEM analysis directly on NURBS solid. Martin
et al. [10] have presented a method to fit a solid model using a
cylindrical trivariate NURBS and support continuum force analy-
sis. However, these existing spline schemes tend to handle only
simple inputs like genus-0 surfaces. For more complicated shapes,
Zhang et al. [11] have proposed the method to convert the long-
branch/bifurcation dominant shapes. Martin et al. [12] have
studied shapes with a symmetry (called ‘‘mid-face’’) structure.
These methods always attempt to transform the model through a
top-down scheme, which inspires us to explore a new method in
a divide-and-conquer fashion.

To better support physical analysis directly on continuous
representations, we concentrate on splines with two desirable
properties: semi-standardness and boundary restriction. The
concept of semi-standardness is founded upon the standard
T-spline technique, which is invented in [13]. It permits T-junc-
tions on its control grid and enables local knot insertion. The
semi-standard T-spline in [14] simplifies the local refinement
method and guarantees that the summation of all weighted
blending functions equals to one everywhere across the entire
parametric domain. The boundary restriction is usually imple-
mented by non-uniform splines. On surface splines, Sederberg
et al. [15] have discussed relations between knot intervals and
subdivision surfaces on arbitrary topology. This idea is further
extended to the T-spline setting [13]. Our new construction
method requires the merging of splines defined over different
local domains. Surface patch merging has been thoroughly dis-
cussed first in [13,16] and later is used in [17], in order to glue the
trimmed region to form a single spline. However, it is far more
complicated to design semi-standard trivariate splines which
demand much more in-depth studies.

Compared with surface splines designed to extract features
(e.g., [7,18]), our trivariate splines mainly focus on finding part-
aware component structures. Besides poly-cube domains, another
commonly used part-aware domain is cylinder (tube) [10]. Martin
et al. in [12] have extended this domain to mimic more complex
shapes. However, in terms of spline construction, the cylinder
(tube) domain inevitably produces singular points along the tube
axis. Handling singularity while enforcing high-order continuity is
extremely difficult in spline research. For surface modeling, Loop
and Scheafer in [19] have given an example of a G2 polynomial
construction with general connectivity to handle singularities. On
the other hand, Peters and Fan [20] have introduced rational
linear maps to replace affine linear atlas and handle singularities
between charts. We observe that poly-cube can use part-aware
cuboids as building block and avoids any singularities. Thus it
serves very well as the trivariate spline domain. It is pioneered in
[21] for seamless texture mapping and can be used as a para-
metric domain for spline construction like in [8]. However,
although poly-cube domain can be constructed in an automatic
fashion like [22,23], in practice, users may have to rely on manual
construction for fine quality control and model refinement. The
main challenges include how to detect and decompose the input
into part-aware components, and connect them in a singularity-
free way.

Conventionally, when converting a surface input to a spline-
ready format, the first step is meshing or remeshing the interior
volume into a tetrahedral mesh [24] or any other format [25].
Then we compute the volumetric parameterization on the
remeshing result. A few recent works [12,26,27] have studied
the volumetric parameterization calculated on the tetrahedral
mesh. They typically start from a surface mapping as the bound-
ary constraint. These interior mapping methods always involve
time-consuming numerical procedures. It would be intriguing to
ask whether we could better embed volumetric mapping step into
our framework.
3. Component generation and T-splines

This section briefly reviews the required surface poly-cube
generation algorithm. We also define the necessary notations for
the rest of the paper. In the interest of understanding, most
illustrative figures about knots are simply shown in 2D layout, as
their 3D generalizations are straightforward.

3.1. Component generation

The starting point of our whole procedure is to generate several
components from the input. We take the general triangular mesh
as the input. Each component surface is part-aware and maps to a
cuboid face. Meanwhile, an appropriate decomposition and map-
ping must obey the following rules. Rule 1: Parameters between
neighboring components are consistent (i.e., we can directly glue
their parameters together as a seamless globally aligned poly-cube
mapping); Rule 2: The decomposition result avoids cube gluing
that could produce singularities like Fig. 1(a).

We remain agnostic as to which method should be used for
such decomposition. However, in order to better enforce these
requirements, we utilize the algorithm [2] for this step. The
algorithm is briefly summarized here as the resulting cuboid-
connecting structure is essential for introducing our spline mer-
ging algorithm. The core idea of the algorithm resides in con-
ducting the topology surgery to get the uniform ‘‘T-shape’’
(Fig. 5(a)), then maps each one to four cuboids. The resulting
poly-cube has very simple cuboid connections and obeys both
Rule 1 and Rule 2, with a fully automatic generation procedure.
Fig. 6 visualizes our algorithm.

Step 1: We first construct an abstract graph to encode the
model topology. We take shape diameter functions [28] to detect
prominent component-aware branches. Upon a completed detec-
tion, we construct a topology abstraction graph G (Fig. 7(a)): each
node represents a detected branch and we add an edge between
two nodes if two corresponding branches are immediate neigh-
bors. If a branch has a handle, we add into the graph an edge with
both ends on the same node to form a loop.

This topology abstract graph now becomes an ideal tool to
decompose the model and obey Rule 2. To achieve this, we split
and remove the nodes in the graph (i.e., re-segment and merge
the branches) to get all nodes’ degree nr3:
�
 For each branch with a torus, we generate the shortest handle
path [29] and cut along the path.

�
 For each branch with n boundaries (node degree n43, like

Fig. 7(b)), we choose two boundaries (a pair with the closest



Fig. 7. Illustration of T-shape decomposition. (a) Encode the topology by an

abstract graph. (b) Reduce the node degrees. (c) The resulting T-shapes.

Fig. 6. Illustration of component generation. (a) The g3 model. Color encodes the

topology structure. (b) T-shapes. (c) All T-shapes are converted to four cuboids.

(4) The ‘‘poly-edges’’ (preimage of cuboid edges, dark lines) guarantee globally

aligned poly-cube mapping. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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distance) and then generate a bounding loop as in [30]. We cut
along the loop, generating a 3-boundary and a ðn�1Þ-boundary
branch. We iteratively execute this step until all resulting
branches have three boundaries.

�

Fig. 8. Counter-example of boundary restriction. (a) A ‘‘Type-1’’ merging in a 2D

layout. (b) The blending function’s supporting region (green box) crosses the

boundary. The supporting region is determined by tracing rays (yellow lines). (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
For each branch with 1 or 2 boundaries (like a ‘‘tube’’ shape),
we merge the short branch into a connected 3 boundary
neighbor. We also split a ‘‘tube’’ into two if its axis is too long.

Each resulting branch with three boundaries is geometrically
similar to a volumetric ‘‘T’’ (‘‘T-shape’’), thus we can easily map it
to four cuboids and avoid violating Rule 2.

Step 2: In order to transform a T-shape to four cuboids, we
trace curves on every T-shape. These curves cut each T-shape into
four patches (Fig. 6(c)). The resulting patch may include several
cutting boundaries and we fill them by [31], converting the patch
into a closed genus-0 surface. Each patch is bounded by 12 curves
and they will be mapped onto the cuboid domain edges. (Thus we
call these curves ‘‘poly-edges’’, like grey lines in Fig. 6(d).) Note
that the poly-edges between two connected patches are aligned.
Their parameters on the common boundary are identical, thus we
avoid violating Rule 1.

Step 3: We map each patch to a cuboid surface (Fig. 4(b)). We
first map the 12 poly-edges onto cuboid edges. Then we use this
mapping as the constraint and compute three harmonic equations
Du¼ 0, Dv¼ 0, Dw¼ 0. In practice, we solve every equation on
the discrete triangular mesh by mean value coordinates [32].
We also locally modify the coordinates along boundaries between
two connected patches to keep the parameters aligned and
consistent.
Advantages: Compared with the conventional poly-cube map-
ping method like [21], our construction is specifically suitable for
the divide-and-conquer strategy and spline construction. (1) The
conventional method always generates an integral poly-cube
domain to mimic the whole shape at first. Then we have to
decompose this integral domain into small pieces for applying the
divide-and-conquer strategy. In contrast, our method directly
uses a small set of connected local cuboids, each of which
represents a geometrically meaningful patch (e.g., part-aware).
This property is particularly suitable for highly twisted/non-axis-
aligned/high-genus models (e.g., the g3 model). More impor-
tantly, we can use the divide-and-conquer technique directly on
our resulting poly-cube without further decomposing the domain.
(2) Our method can also reduce the number of cuboids, and
control the merging types efficiently: as shown in Fig. 5(c), it only
generates ‘‘Two-cube’’ and ‘‘Type-1’’ (Fig. 2(a)) merging, thus it
simplifies the merging requirement.
3.2. Trivariate T-splines

To better prepare readers for the better understanding of the
following algorithm, we briefly define the volumetric T-spline
representation. (The surface T-spline formulation is detailed in
[14].) Also we give the detailed explanation of ‘‘Semi-standard-

ness’’ and ’’Boundary Restriction’’ as follows.
We use TðV,F ,CÞ (or simply T) to denote a control grid domain,

where V,F , and C are sets of vertices, faces, and cells, respectively.
Given T, a trivariate T-spline can be formulated as

Fðu,v,wÞ ¼

PB
i ¼ 1 wipiBiðu,v,wÞPB

i ¼ 1 wiBiðu,v,wÞ
, ð1Þ

where ðu,v,wÞ denotes parametric coordinates, pi is a control
point, W and B are the weight wi and blending function Bi sets.
Each pair of /wiBiS is associated with a control point pi. Each
Biðu,v,wÞAB is a blending function:

Biðu,v,wÞ ¼N3
i0ðuÞN

3
i1ðvÞN

3
i2ðwÞ, ð2Þ

where N3
i0ðuÞ, N3

i1ðvÞ and N3
i2ðwÞ are cubic B-spline basis functions

along u,v,w, respectively.
In the case of cubic T-spline blending functions in Eq. (1), the

univariate function N3
j for each blending function Bi is constructed

upon knot vector Rj
¼ ½rj

�2,rj
�1,rj

0,rj
1,rj

2�, where Rj is a tracing ray
parallel to the control grid (see Fig. 8(b)): Starting from a knot
k¼ r0

0,r1
0,r2

0, we can trace to r0
1 and r0

�1, which are the very first
intersections when the ray RðtÞ ¼ ðr0

07t,r1
0 ,r2

0Þ comes across one
cell face. Naturally, we define the parameter of a control point as
the central knot of the knot sequence for the control point.



Fig. 9. (a) Top: Boundary restriction is illustrated on a 1D domain, with six

‘‘boundary knots’’ (or called ‘‘bd-knots’’, [0,0,0] and [5,5,5]) and two ‘‘boundary

control points’’ (or called ‘‘bd-control-points’’, blue dots) inserted. (a) Bottom:

Boundary-restricted control grid in a 2D layout. (b) All possible bd-control-points

around one central point. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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To support downstream CAE applications, our spline frame-
work has the following requirements:

Semi-standardness:
PB

i ¼ 1 wiBiðu,v,wÞ � 1 holds for all ðu,v,wÞ in
Eq. (1), so that the evaluation of spline functions and their
derivatives is both efficient and stable. Eq. (1) can be rewritten as

Fðu,v,wÞ ¼
XB
i ¼ 1

wipiBiðu,v,wÞ: ð3Þ

Boundary restriction: We require that blending functions of all
control points are strictly confined within parametric domain
boundaries. Unfortunately, achieving this requirement is not
trivial, especially around the cuboid merging regions. Fig. 8 shows
a counter-example. A standard control point’s blending function
(green box), without confinement procedure, tends to intersect
with the boundary. In CAE-based force analysis, it means the
strain energy ‘‘escapes the border’’, which might lead to an abrupt
bend, twist, and flip-over phenomena in experiments. In the
follow sections, we usually use ‘‘central points’’ for the control
point/knot with an unconfined blending function, since the
confinement procedure is mainly through adding extra knots/
control points around the central point. However, even we design
the additional knots carefully and successfully confine the blend-
ing function, we still have to recompute all control points’
weights around the knots-adding region, otherwise we will break
the semi-standardness around this local region.
Fig. 10. The bd-control-point distributions around a central point on the corner/

edge/face vertex, respectively.
4. T-spline construction for each component

The construction of trivariate splines on each component is
very critical in our divide-and-conquer method. Two major goals
are involved in this step. Besides constructing T-splines preser-
ving desirable features, we have to satisfy the necessary require-
ment in each component in anticipation for merging. We propose
the following procedure to satisfy both goals:

Step 1. Construct a boundary restricted control grid.
Step 2. Perform the meshless fitting to determine locations of

all control points.
Step 3. Subdivide the control grid via local refinement itera-

tively. Perform fitting again in each iteration for a better fitting
result.

Step 4. Modify the control grid around merging boundary after
each subdivision iteration in anticipation for merging.

4.1. Boundary-restricted control grid

In order to construct a control grid, we first divide the cuboid
block into cells by grid coordinates. The grid coordinates along
k-axis are denoted as

Sk ¼ ½s
k
1,sk

2, . . . ,sk
nk
�, k¼ 1;2,3,

where nk is the resolution of rectilinear grid along k-axis and each
value in Sk is the normal subdivision of cuboid parameter along
k-axis. The tensor-product of S1,S2,S3 divides the block into
ðn1�1Þ � ðn2�1Þ � ðn3�1Þ cells and gives rise to a point-based
spline on n1 � n2 � n3 control points.

However, this naive spline construction leads to open bound-
ary and violates the requirement of boundary restriction. To
improve, we replicate the non-uniform knots at both ends of
Sk to restrict the blending functions within the domain (see
Fig. 9(a)top): We add 3 extra knots, called boundary knots

(bd-knots), at the end of domain to restrict the boundary. The
knot set is expanded:

Sk ¼ ½s
k
1,sk

1,sk
1,sk

1,sk
2, . . . ,sk

nk
,sk

nk
,sk

nk
,sk

nk
�:
We also add one extra boundary control point (bd-control-point)

(blue dots), on the bd-knot outside the last control point on the
boundary. Fig. 9(a)bottom extends it to a 2D domain, and its
extension to the 3D domain is in the same pattern. Our spline
definition achieves: (1) now every blending function in each
domain is confined within the domain boundary; (2) only bd-
control-points’ blending functions influence the cuboid boundary,
so our following fitting method can rely on this usable property.

In order to represent the bd-control-points conveniently, we
can arrange them into a 3� 3� 3 grid around the central point as
Fig. 9(b) (recall that the central point is the control point with an
unconfined blending function). These 27 possible knots share the
same parameters as the central point. It is only designed to
explicitly record topological relations of these control points in
preparation for efficient spline merging. After adding bd-control-
points to the 3D control grid, each central point on the corner/
edge/face has 8/4/2 control points, respectively (Fig. 10). This
special bd-control-point representation is uniquely suitable for
handling the spline merging as shown in Section 5.
4.2. Meshless fitting

Our input only includes a control grid and a group of surface
sample points extracted from the surface patch (already mapped
to a cuboid domain surface). The challenge consists in designing



Table 1
Refining NR by inserting k into knot vector ½r0 ,r1 ,r2 ,r3 ,r4� generates two basis

functions NR1
and NR2

.

k R1 R2

r0 rkor1 ½r0 ,k,r1 ,r2 ,r3� ½k,r1 ,r2 ,r3 ,r4�

r1 rkor2 ½r0 ,r1 ,k,r2 ,r3� ½r1 ,k,r2 ,r3 ,r4�

r2 rkor3 ½r0 ,r1 ,r2 ,k,r3� ½r1 ,r2 ,k,r3 ,r4�

r3 rkrr4 ½r0 ,r1 ,r2 ,r3 ,k� ½r1 ,r2 ,r3 ,k,r4�
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a fitting method for solids without interior volumetric parame-
terization or remeshing.

Step 1: Boundary fitting. We first determine the positions of
bd-control-points only. Recall that only bd-control-points pb

i

influence the cuboid surface sample points. Therefore, we can
determine their positions by minimizing the following equation
w.r.t. surface sample point vb

j :

argmin
Xm
j ¼ 1

JFðf�1
ðvb

j ÞÞ�vb
j J

0
@

1
A ð4Þ

)
@

@pb
i

Xm

j ¼ 1

ðFðf�1
ðvb

j ÞÞ�vb
j Þ

2,

where F denotes the spline function as Eq. (1) and f�1
ðvb

j Þ the
parameters of vb

j in the cuboid. The above equation can be
rewritten in matrix format as in the least squares method:

1
2PT BT BP�VT BP¼ 0, ð5Þ

where B is the matrix of blending functions Bij ¼ I3�3Biðf
�1
ðvb

j ÞÞ, V
and P denote the vectors of surface sample points vb

j and
bd-control-points pb

i , respectively. This equation determines
bd-control-points and they serve as the constraint in the next
interior fitting step.

Step 2: Interior fitting. Let u in the set U be the interior
parametric value. Each ui ¼ ðu,v,wÞ is the interior parameter
triplet in the tensor-product parametric grid ðu0,u1, . . . ,un0

Þ�

ðv0,v1, . . . ,vn1
Þ � ðw0,w1, . . . ,wn1

Þ. Theoretically, we have the fol-
lowing harmonic equation w.r.t. interior control points pin

j :

argmin
Xm
i ¼ 1

Z
Oi

Jr � rFðuiÞJ du

 !
ð6Þ

)
@

@pin
j

Xm
i ¼ 1

Z
Oi

ðDFðuiÞÞ
2 du¼ 0,

where Oi is an infinitesimal parametric volume around ui. Similar
as [33], the above minimized energy

R
Oi
JDFðuiÞJ can be approxi-

mated by the following formulation:

Xm

j ¼ 0

wijFðujÞ ¼ 0, wij ¼

1, i¼ j,

� 1
6 , ujANbrðuiÞ,

0 others,

8><
>: ð7Þ

where Nbr includes six immediate neighbors of ui in the tensor-
product parametric grid. We substitute Eq. (7) into Eq. (6), which
can be solved by the least squares method similar to Eq. (4).
During computing we set already-known pb

i as constraints and
get all other control point positions.

Global alignment: Although we execute volumetric fitting sepa-
rately on every cuboid, our fitting technique still guarantees global
alignment of interior fitting results. Recall that we already obtain the
identical surface parameters between cuboids before fitting, since
we generate globally aligned poly-edges (i.e., cuboid edges). There-
fore, two cuboids minimize precisely the same energy in Eqs. (4) and
(6) on the boundary, leading to the equivalent fitting results.

4.3. Cell subdivision and local refinement

If the fitting results do not meet a user-decided satisfactory
fitting error threshold on each cuboid, we can always perform
subdivision over such a cell: It is split along 3-axis and divided
into eight sub-cells naturally. Our iterative refinement stops
when the updated fitting error is lower than the threshold.

The challenge is how to preserve the semi-standardness during
subdivision. Sederberg et al. [14] have proposed a feasible approach
to refine blending functions on surface patch. We generalize this
technique in our 3D control grid. Let R¼ ½r0,r1,r2,r3,r4� be a ray-
tracing knot vector and NRðuÞ denotes the corresponding cubic
B-spline basis function. If there is an additional knot kA ½r0,r4�

inserted into R, N can be written as a linear combination of two
B-spline functions:

NRðuÞ ¼ c1NR1
ðuÞþc2NR2

ðuÞ: ð8Þ

Two knot vectors R1, R2 are shown in Table 1, c1 and c2 are two
weights that can not exceed 1:

c1 ¼min
k�r0

r3�r0
,1

� �
, c2 ¼min

r4�k

r4�r1
,1

� �
:

Since the blending function of B is the tensor product of N along
3-axis, we can also formulate the refined blending functions along
one axis:

Bi � c1Bi1þc2Bi2: ð9Þ

The procedure of our 3D subdivision and local refinement
consists of following steps. The input is a queue of cell Qc.

Step 1: Subdivide cells in Qc and insert the new vertices into
the domain T, and update T to Tn.

Step 2: For all pairs of blending functions /wiBiS, wiAW,
BiAB, compute its new knot vector Rn (see Section 3). Then,
�
 If the Rn includes the knot which does not exist in Tn, insert a
new vertex on that knot into the domain Tn.

�
 If the Rn is more refined than R, compute the refinement Bi ¼

c1 � Bi1þc2 � Bi2. Insert the new blending functions /wi �

c1Bi1S and /wi � c2Bi2S into the control grid. Delete the old
pair /wiBiS.

Step 3. Repeat the last step until no new knot vector in Rn.
Collect all blending functions on the same control point and use
the total weight as its new weight.

The above procedure can handle refinement and knot extraction
on a complicated 3D control grid automatically. Note that unlike [14],
we perform spline fitting again after each refinement iteration to
update control point positions. This is mainly because our goal of
refinement is to seek a more accurate fitting result. In contrast, the
refinement in [14] aims to keep the shape unchanged.

4.4. Boundary modification

Boundary modification is necessary for our semi-standard
T-spline component, because of the fundamental difference
between standard B-spline and our merging strategies. Fig. 11
intends to visually show the difference. It illustrates the 1D
merging method introduced in [13] on our boundary-restricted
grid. For a C2 merging, three control points on one component will
be merged with three control points on the other component to
form a joint new spline. However, the procedure does not take the
associated weights into consideration. In standard B-spline, all the
weights are uniform. However, in semi-standard T-spline, it is
possible that two corresponding soon-to-be-joined control points
have different weights. As a result, the semi-standardness around
the merged regions will break down. Therefore, we have to add



Fig. 11. Two cube merging in 1D layout. Two control points are combined to form

one new control point (4, 5 and 6).

Fig. 12. Boundary modification. (a) Original ‘‘To-be-merged’’ control points (in the

green box). (b) Subdivision all cells along the boundary, according to Proposition 3.

The green box covers updated ‘‘To-be-merged’’ control points. (c) and (d)

‘‘Modification zone’’ (green box) of (a) and (b). According to Proposition 2, cell

subdivision (by green dots) outside ‘‘Modification zone’’ does not violate ‘‘Bound-

ary requirement’’ (Proposition 1). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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extra requirement about weights to make these control points
ready for merging.

Definition 1 (To-be-merged control point). For a control point, if
its blending function includes bd-knots around merging bound-
ary, we say this control point is a ‘‘To-be-merged’’ control point
(for example, Fig. 12(a and b) in a 2D layout).

Definition 2 (Modification zone). For any cell in the control grid,
if one of its eight vertices is ‘‘To-be-merged’’ control point for one
boundary, we say this cell is in the ‘‘Modification zone’’.

A merging-ready spline must have the following properties:

Proposition 1 (Boundary requirement). The weights of all ‘‘To-be-

merged’’ control points on this boundary must equal to one, such that

we can merge two splines and the resulting spline still preserves

semi-standardness (see proof in Appendix [34]).

To guarantee that all ‘‘To-be-merged’’ control points’ weights
equal to one, we need to be able to recognize if a local subdivision
breaks the above rule or not:

Proposition 2. Any cell subdivision outside ‘‘Modification zone’’

never violates Proposition1 (see proof in Appendix [34]).

After detecting the potential violation, we can properly handle
it using the following proposition:

Proposition 3. If we subdivide all boundary cells around merging

region at the same time, the new ‘‘To-be-merged’’ control points still
guarantee ‘‘Boundary requirement’’ and their weights all equal to one

(see proof in Appendix [34]).

Based on the above propositions, we propose our modification
procedure as follows. The input is the newly refined control grid
with new subdivided cell set Cnew.

Step 1: For each boundary, assign the cell set CT as ‘‘Modifica-
tion zone’’. For any cell with one vertex as a ‘‘To-be-merged’’
control point, we add this cell into CT .

Step 2: For each boundary, detect if there is any new sub-
divided cell in the ‘‘Modification zone’’:
�
 Cnew
T

CT ¼ |. According to Proposition 2, the refined grid
preserves the standardness on the boundary, so no further
processing.T

�
 Cnew CT a|. Modify the boundary according to Proposition 3:

Subdivide all cells on the boundary to satisfy ‘‘Boundary
requirement’’.

Step 3: Update control point positions. Instead of fitting again
like in Section 4.3, we use the same method as in [14] because we
seek to keep spline shape unchanged in this step.
5. Global merging strategies

In our framework, the decomposed components can be merged
in various different merging types. Here we develop algorithms to
handle different types of merging. As we discussed in Section 3.1,
our domain only includes ‘‘Two-cube’’ merging (Section 5.1) and
‘‘Type-1’’ merging (Section 5.2). Also, we seek to handle more
complicated conventional poly-cube domains, including all other
types of merging in Fig. 2 (Section 5.3).

5.1. ‘‘Two-cube’’ merging

Merging of 3D components can be simply illustrated by 1D
merging. In 1D merging, each boundary parameter corresponds
to a new position after merging. For example, in Fig. 11, the
bd-control-point with parameter 5 corresponds to a new para-
meter 6. The control point corresponding to nðnZ2Þ original
control points simply takes the average position as its new
position. Similarly, the merging of two cuboids includes the
following steps.

Step 1: Boundary modification. If bd-knot intervals of two
components are different, subdivide the cube boundary using the
procedure in Section 4.4 iteratively until they share the same knot
interval (Fig. 13(a)). Step 2: Merging control points. Correspond
the original control point to the new control grid. As shown in
Fig. 13(a)Right, we merge each column along the merging direc-
tion as 1D case. Step 3. Computing control point positions. Each
new control point p0 corresponds to nðnr2Þ original control
points pi. The new control point position is computed by
p0 ¼

Pn
i pi=n.

5.2. ‘‘Type-1’’ merging

The goal of is to merge three cuboids into one control grid, like
Fig. 2(a). We can still use the ‘‘Two-cube’’ merging technique to
treat most merging regions. But we have to design special
confinement method to handle the central points on the yellow
dot/lines. Fig. 14(b) shows the extra bd-control-points we add
around the central point on the yellow lines. For the yellow dot,
we add additional eight bd-control-points around it to confine it
into the surface boundary, as shown in Fig. 14(c).



Fig. 14. ‘‘Type-1’’ merging: (a-b) The 3-D distribution of bd-control-points around

the central point on the yellow lines/dot in Fig. 2(a). (c) To preserve semi-

standardness, bd-knots (blue dots and red crosses) and an auxiliary knot (green)

are added. Then we can use local refinement algorithm to compute new control

points’ weights. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 15. Confinement effect of ‘‘Type-1’’ merging. (a) The 2D layout of a refined

control grid, with added bd-control-points (blue dots) around the central point

(green box). (b-d) For each parameters (green cross), we highlight all control

points (yellow points) that influence this parameter. The violation like Fig. 8 is

completely eliminated. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 2
Look-up tables. Row 1: an index table for 27 possible br-control-points in Fig. 9.

Row 2: weights for ‘‘Type-1’’ merging in Fig. 15(b) (weights in parentheses

correspond to additional eight control points in Fig. 15(c)). Row (3–5): weights

for ‘‘Type-2,3,4’’ merging.

Indices

7 8 9 16 17 18 25 26 27

4 5 6 13 14 15 22 23 24

1 2 3 10 11 12 19 20 21

Type-1

– – – – – – – – –

1 1 – 17

18

35

36

1 8

9

17

18

1

(1) (1) – 17

18

� �
35

36

� �
(1) 8

9

� �
17

18

� �
(1)

Type-2

26

27

53

54

1 53

54

107

108

1 1 1 –

53

54

107

108

1 107

108

209

216

17

18

1 1 –

1 1 1 1 17

18

8

9

– – –

Type-3

20

27

22

27

8

9

22

27

95

108

17

18

8

9

17

18

1

22

27

95

108

17

18

95

108

25

27

35

36

17

18

35

36

1

8

9

17

18

1 17

18

35

36

1 1 1 –

Type-4

26

27

53

54

1 53

54

107

108

1 1 1 –

53

54

107

108

1 107

108

215

216

1 1 1 –

1 1 – 1 1 1 – – –

Fig. 13. ‘‘Two-cube’’ merging. (a) Left: Subdivide the bottom cuboid and insert

new control points (green dots) to keep the same knot intervals. Right: Merge

along the merging direction. (b) The merged control grid. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 15 illustrates the confinement effect. Fig. 15(a) shows a
confined 2D control grid in 2D layout. The extra bd-control-points
(blue dots) are inserted around the central point. Fig. 15(b–d)
showcase its advantage: unlike Fig. 8, for any chosen parametric
position, none of its control points penetrates the boundary to
influence the chosen position.

Preserving semi-standardness: Now we still have another chal-
lenge. Simply adding these extra control points would violate the
semi-standardness property. To preserve semi-standardness, we
also modify weights in this newly merged control grid structure.
The weight can be computed as follows (see Fig. 14(a)): (1) before
adding bd-knots around the central point, we add an auxiliary
control point (green dot) at the corner. Now we locally have a
standard rectangular control grid with weights all equal to one
initially; (2) Insert the designed bd-knots (blue knots and red
crosses in Fig. 14(a)) to the grid; (3) Inserting knots triggers
the local refinement procedure to recompute the weight of
each control point. Note that after refinement, the auxiliary
point does not affect regions inside boundary anymore. There-
fore, it is ‘‘transparent’’ and free to be deleted from the spline
representation.

Besides preserving semi-standardness, our weight modifica-
tion technique also has advantage for pre-computation. The
weight computation only depends on the initial knot interval of
merged control grid. Thus, we can pre-compute this step and
build a look-up table for speedup. Table 2("Indices") shows the
indices of control points around the central point (the same as



Fig. 17. ‘‘Two-cube’’ merging for the kitten model. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 18. ‘‘Type-1’’ merging for the Beethoven model. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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indices in Fig. 9(b)). Table 2("Type-1") shows the corresponding
weights for all control points in Fig. 14(a) (the numbers in
parentheses correspond to additional control points in Fig. 14(b)).

To summarize, ‘‘Type-1’’ merging includes the following steps.
The first three steps are the same as ‘‘Two-cube’’ merging. Step 1,
modify boundary; Step 2, merge control points; Step 3, compute
control point positions; Step 4, insert extra bd-control-points as
shown in Fig. 14(a and b) (We assign the position of the control
point on the central point to these new inserted control points);
Step 5, modify weight (change the weight of these bd-control-
points by checking the look-up table (Table 2("Indices"))).

5.3. ‘‘Type-2,3,4’’ merging

The above two merging algorithms (in Sections 5.1 and 5.2) are
already functionally sound when handling the merging of all
components in our divide-and-conquer framework, because these
are the only two merging types in our T-shape based poly-cube.
Without being limited to just that, Our ambitious goal is to handle
any shape of poly-cube domains. We offer several more powerful
merging operations, which are designed to merge the compo-
nents like ‘‘Type-2,3,4’’ in Fig. 2(b–d). Once again, in order to
enforce the boundary restriction, we need to insert extra
bd-control-points. For the central points on all yellow lines in
Fig. 2(b–d), they are just ‘‘Type-1’’ merging, so we use the same
merging method as shown Fig. 14(a). For the central points on
3 yellow dots, we design the extra bd-control-points, as shown in
Fig. 16, to preserve boundary restriction.

To guarantee semi-standardness, we recompute the weight
using the same method in Section 5.2 as follows. First, we add
auxiliary control points, expanding given control grid around the
central point to a complete cube-like grid. Second, we insert the
designed bd-control-points and perform local refinement to
compute the new weight for each control point. Their look-up
tables are documented in Table 2.
6. Implementation issues and experimental results

Our experimental results are implemented on a 3 GHz
Pentium-IV PC with 4 Giga RAM. Our first experimental results
(Figs. 17 and 18) show the application of ‘‘Two-cube’’ merging by
considering the kitten and Beethoven model as the datasets.
These are the only merging types that exist in our component
generation framework. For ‘‘Type-2,3,4’’ merging types that do
not exist in our framework, we design a special screw driver
model and domain to demonstrate the power of ‘‘Type-2’’ mer-
ging (Fig. 19). In terms of poly-cube construction, we recognize
that ‘‘Type-2’’ merging is very popular to handle the input with
long branches. Yet, ‘‘Type-3,4’’ merging cases rarely exist even in
the most conventional poly-cube domains. Geometrically speak-
ing, they are more suitable to mimic highly concave shapes. We
use the dark T-junction lines to show control grid knots and use
Fig. 16. The 3D distribution of bd-control-points in ‘‘Type-2,3,4’’ merging. The

central points are on the yellow dots in Fig. 2(b–d). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 19. ‘‘Type-2’’ merging for the screw driver model. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
different colors to represent different merging types. Red/Blue/
Yellow marks all ‘‘to-be-merged’’ control point knots in three
merging cases, respectively. We also have a close-up view to show
the interior fitting result, demonstrating smoothness around the
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merging region. The yellow marks on the control grid highlight the
ill-points.

In the second group of experimental results (Figs. 4, 21–23),
we integrate all merging types together to handle the models
with high-genus and complex bifurcations, including the eight
(genus 2), g3 (genus 3), rockarm, and wrench (genus 1 with
bifurcations) models. We first display their component generation
results. Then we show a spline model for one local component
and the final spline results with a close-up view to highlight the
interior fitting and merging regions. Fig. 20 also visualizes
components’ T-shape/poly-cube structures in a more efficient
way. We use the same color cuboid to represent one component
Fig. 20. The divide-and-conquer structures of the rockarm/wrench/g3 model. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 21. The eig

Fig. 22. The rock
and the edges to show the cuboid connections. Each green box
covers cuboids from the same T-shape. This structure clearly
demonstrates that only ‘‘Two-cube’’ and ‘‘Type-1’’ merging are
functionally sound in our framework.

In Table 3, we document numbers of control points and fitting
error. T-spline can significantly reduce the number of control
points. The fitting results are measured by RMS (‘‘root-mean-
square’’) errors which are normalized to the dimension of corre-
sponding solid models. Meanwhile, we demonstrate the interior
fitting quality in a close-up view of each model. Also, the table
illustrates that adaptive refinement is necessary for trivariate
splines, even on a simple surface input model. It is desirable to
use high resolution with more DOFs to approximate boundary
surface and low resolution with fewer DOFs for volume interior.
For example, in the kitten/Beethoven model, if we naively use the
B-spline scheme with hierarchical refinement, their control points
will increase to 3718/4850, respectively. In the last experiment
(Fig. 24), we apply our technique to convert the fertility model,
with the noisy surface, into a trivariate spline and remesh it into a
smooth result. The poly-edges (gray-lines) decompose the fertility
model into components. Note that poly-edges are aligned every-
where so our local parameters are consistent globally.

Away from extraordinary points, our spline achieves C2 every-
where, except that duplicate knots on the boundary will lower the
continuity order. On the boundary, we have duplicate knots along
one iso-parametric direction. These knots lower the continuity
order along its own iso-parametric direction only but we still
have C2 along the other two iso-parametric directions for tensor-
ht model.

arm model.



Table 3
Statistics of various test examples: Nc, # of control points; RMS, root-mean-square

fitting error (10�3). ‘‘bv1’’, ‘‘bv2’’, ‘‘ra’’ and ‘‘sd’’ represent the Beethoven (low and

high resolution), rockarm, and screwdriver models.

Model Nc RMS Model Nc RMS

Eight 2058 1.63 Wrench 3756 2.3

Kitten 2840 3.32 g3 2976 1.74

bv1 1001 1.8 bv2 3273 1.36

ra 4582 3.75 sd 1261 1.65

Fig. 24. Mesh smoothing: We convert the fertility model to a trivariate spline

model and remesh it into a smooth result. Three figures show the components

(with poly-edges), the globally aligned parameters, and the remeshing result (with

the interior cutout view), respectively.

Fig. 23. The wrench model.

Table 4
Comparison between our splines and general splines: space required by fitting;

time to compute derivatives of basis functions; Nc, and number of cuboids.

Model Our method General method

Space B0 (s) Nc Space B0 (s) Nc

Kitten 116 802 2.38 1 300 688 4.53 8

Eight 24 714 2.25 6 174 124 4.35 15

g3 18 952 2.17 16 314 832 4.23 46
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product construction. Furthermore, in order to preserve boundary
restriction, we have to add duplicate knots around the corner and
sacrifice smoothness only on the corner. For ‘‘Type-1’’ merging,
we have to add two extra duplicate knots along two directions,
leading to C0 on this corner. Yet we still keep C2 along the third
direction. For ‘‘Type-2,3,4’’ we add two extra knots along all
directions so we get C0 on the corner. Away from these corners,
our volume are C2 everywhere.

Top-down vs. Divide-and-conquer schemes: In Table 4, we
compare the performance between our divide-and-conquer fra-
mework with general T-splines using single integral domain in a
traditional top-down approach. The most prestigious advantage
of our divide-and-conquer framework is to easily handle models
with bifurcations/highly twisted-shape/high-genus. For example,
a poly-cube like Fig. 1 designed using a top-down scheme is very
complicated, with 46 cuboids and they are connected in various
types, to mimic the shape of the g3 model. The poly-cube
construction also requires tedious manual design. By comparison,
its divide-and-conquer domain (Fig. 20) includes only 16 cuboids
with two certain merging types. Second, we also compare the
required spatial consumption between our divide-and-conquer
scheme and the top-down scheme. In general, our memory cost is
reduced to 1=ns, where ns is the number of cuboids. Third, we
compare the computation of B0 between semi-standard T-splines
and rational T-splines. We record the computation time on 104

samples for each model. The result shows that our method is
at least twice as fast as rational T-splines. This is because the
computation avoids division operation completely (see the dif-
ference between Eqs. (1) and (3)).
7. Conclusion and future work

In this paper, we have presented a novel framework to construct
trivariate splines with arbitrary topology. Because of the divide-and-
conquer scheme, our framework can naturally handle solid objects
with high genus and complex bifurcations. We decompose the input
surface model into several part-aware components so that we can
fit each component. The proposed spline scheme supports local
refinement and the global trivariate T-splines satisfy the attractive
properties of semi-standardness and boundary restriction. These
novelties have a broad appeal to both theoreticians and engineers
working in the shape modeling and its application areas.

These modeling advantages naturally prompt us to explore its
unchartered potential in the context of isogeometric analysis for
computer-integrated engineering. Since our framework supports
a regular spline structure, GPU-enabled scientific computing and
image-driven shape processing become more desirable towards
the design of more efficient algorithms. This framework can also
be generalized by increasing the dimension of control points to
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model not only geometry but also other physical attributes
simultaneously.
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