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Restricted Trivariate Polycube Splines for
Volumetric Data Modeling

Kexiang Wang, Xin Li, Bo Li, Huanhuan Xu, Hong Qin

Abstract—This paper presents a theoretical volumetric modeling framework to construct a novel spline scheme called restricted
trivariate polycube splines (RTP-splines). The RTP-spline aims to generalize both trivariate T -splines and tensor-product B-
splines, with a special emphasis on using solid polycube structure as underlying parametric domains and strictly bounded
blending functions within such domains. Volumetric RTP-splines are uniquely constructed in a top-down fashion, through four
major steps: (1) extending the polycube domain to its bounding volume via space filling; (2) building B-spline volume over the
extended domain with restricted boundaries; (3) inserting duplicate knots through adding anchor points and performing local
refinement; and (4) removing exterior cells and anchors. Besides local refinement inherited from general T -splines, our RTP-
splines have the following attractive advantages: (a) naturally modeling solid objects with complicated topologies/bifurcations as
a one-piece continuous representation without domain trimming/patching/merging, (b) guaranteed semi-standardness [1] so that
the functions and derivatives evaluation is very efficient, (c) restricted support regions of blending functions, preventing control
points from influencing other nearby domain regions that stay opposite to the immediate boundaries. These features are strongly
desirable for certain applications such as isogeometric analysis. We conduct extensive experiments on converting complicated
solid models into RTP-splines, and demonstrate the proposed spline to be a powerful and promising tool for volumetric modeling
and other scientific/engineering applications where multi-attribute datasets are prevalent.

F

1 INTRODUCTION
Volumetric data of massive size are now available in a wide
variety of scientific and research fields, because of the rapid
advancement of modern data acquisition technologies. A
frequently occurring problem is how to convert acquired
3D raw data of discrete samples into a continuous rep-
resentation upon which simulation and analysis processes
can be efficiently developed and accurately computed. The
majority of traditional solid modeling techniques during the
past four decades have been established upon the following
theoretic foundations: constructive solid geometry (CSG),
boundary representation (B-reps), and cell/space decom-
position. Most of these representations lack the ability of
smoothly modeling solid geometry, which is required by
modern engineering design in order to directly apply phys-
ical simulations on modeled solids, without the necessity of
expensive remeshing of finite-element structure and shape
data conversion between discrete and continuous repre-
sentations and between linear finite elements and higher
piecewise splines in 3D. In practice, real-world objects
(directly acquired via the scanning process) have complex
geometries and non-trivial topologies. Therefore, construct-
ing efficient representations for general solid objects in
favor of physical simulation and engineering design remains
to be a very challenging task. Trivariate simplex splines [2]
have been developed to model multi-dimensional, material
attributes of volumetric objects. However, computing blend-
ing functions and their derivatives on simplex splines is
not straightforward and inefficient, compared with NURBS
and tensor-product B-splines. Also, how to place boundary
knots to avoid numerical degeneracies remains an open
problem. Trivariate simplex splines are defined over an
unstructured tetrahedral grid, which can be easily obtained

from triangular meshes by certain mesh generation soft-
wares such as Tetgen [3]. Although solid object of complex
topologies and geometries can be modeled by trivariate
simplex splines upon such unstructured grids, the majorities
of simulation solvers have preferences on structured grid.
This is because, low-quality tetrahedral meshes usually
cause large simulation errors or numerical instability. Mo-
tivated by current industrial practice in various engineering
design and analysis systems, we focus on designing a
volumetric spline modeling framework based on structured
grid domains.

In the framework of isogeometric analysis proposed
by [4], [5], trivariate tensor-product B-splines/NURBS are
directly used for modeling smooth geometry, material at-
tributes, and physical simulation of solid objects simulta-
neously. Martin et al. [6] convert a solid femur mesh to a
cylindrical trivariate B-spline by parameterizing the model
into a solid cylinder. Due to the topological limitation of the
cylinder domain, the constructed trivariate tensor-product
splines can not model solid objects with bifurcations and
arbitrary topologies, without enormous efforts in patch glu-
ing/trimming, and imposing smoothness constraints along
patch boundaries. Furthermore, local refinement required in
level-of-detail modeling is not supported by tensor-product
splines because basis function refinement will introduce
many superfluous control points across the entire domain.
As an extension to NURBS, T-splines [1], [7] solve this
problem on semi-regular grid domains. To the best of our
knowledge, no work has generalized T-splines for three
dimensional, multi-attribute data and directly applied them
to volumetric geometry and data modeling.

Directly generalizing T-spline surface to volumetric data
is not straightforward. A general T-spline function defined
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over a bivariate domain can be formulated as

F(u, v) =

∑n

i=1 wipiBi(u, v)∑n

i=1 wiBi(u, v)
(u, v) ∈ R

2, (1)

where pi are control points associated with weights wi,
and Bi(u, v) denote basis functions. With this definition,
two pieces of T-spline patches can be stitched together by
blending boundary basis functions, and we form a new T-
spline that can preserve smoothness across the boundary.
Trivariate T-splines inherit such nice features, and T-splines
defined on polycube volumetric domains can be similarly
constructed by gluing a group of T-spline cubes. However,
the calculation of this T-spline function and its derivatives
requires to divide blending functions by the sum of all
the contributed ones. This will make the evaluation com-
putationally inefficient. Recently, Semi-standard T-splines
introduced in [1] guarantee

∑n
i=1 wiBi(u, v) ≡ 1 in Eq (1)

across the entire domain. In this setting, the computation
of F(u, v) and its derivatives can be much more efficient.

Fig. 1. Extra support regions. On a concave domain, if
the supporting box of a blending function intersects with the
domain boundary (e.g., boxes of v1 and v2), extra control
points (e.g., in red regions) could contribute to the function
blending unnecessarily.

However, how to construct a semi-standard T-spline,
especially over non-trivial parametric domains, is a chal-
lenging problem. Another issue is that, conventional T-
splines are defined with floating boundaries, i.e., the support
regions of blending functions may go beyond the domain
boundaries. Such a floating-boundary scheme upon a poly-
cube domain will cause control points to unnecessarily con-
tribute to extra domain regions. Two examples are shown
as red-regions in Figure 1. This might cause geometric
inconsistencies in modeling underlying solid objects, and
in physical simulations. Therefore, it is ideal to have a
trivariate spline inherit from T-splines, that (1) is defined
within the largest visible region inside the domain, and (2)
has the property of semi-standardness. Such novel splines
will greatly facilitate direct modeling and physical simu-
lations of arbitrary solid objects with complex geometries
and sophisticated topologies. The spline constructed in this
paper has these properties, and we call it the Restricted
Trivariate Polycube Spline (RTP-spline).

This paper presents a framework of RTP-splines con-
struction and the data conversion of volumetric models to
this spline representation. It has major contributions:

• A new spline (RTP-spline) scheme is uniquely formu-
lated over a polycube domain, with blending functions

restricted inside the domain boundaries. The RTP-
splines also have the following advantages: (1) It is
capable of local refinement; (2) Computing RTP-spline
functions and their derivatives is much more efficient
than that on traditional T-spline surfaces; (3) The
polycube domain enables natural modeling of arbitrary
solid objects, since low distortions and few singularity
points are introduced in volumetric parametrization
when the domain mimics the geometries and topolo-
gies properly; (4) The restricted boundaries of the
RTP-spline ensure the physical modeling and simu-
lation adhere to geometry of underlying objects.

• We develop a novel framework to construct RTP-
splines in an effective top-down fashion.

• We construct RTP-splines on several volumetric mod-
els with both geometry and synthesized textures (to
mimic material properties), which demonstrates that
our RTP-splines can model not only geometry but also
multi-attribute fields within an unified paradigm.

The remainder of this paper is organized as follows. We
review the related literature in Section 2, then introduce
preliminaries and define necessary notations in Section 3.
The methodology of RTP-spline construction is illustrated
in Section 4. The entire process of converting discrete
volumetric data into the spline representation is then ex-
plained in Section 5. We demonstrate experimental results
in Section 6 and conclude the paper in Section 7.

2 RELATED WORKS
Research on spline-based volumetric modeling has gained
much attention recently. 4D uniform rational cubic B-spline
volume is used to constructively model FRep solids defined
by real-valued functions [8]. The method presented in [9]
represents and specifies physical attributes across a trivari-
ate NURBS volume. However, it is more desirable in engi-
neering design to have an integrated modeling framework
that represents geometry, material attributes, and conducts
simulations simultaneously. Trivariate NURBS are used to
model skeletal muscle with anisotropic attributes [4], on
which NURBS-FEM analysis is directly conducted. Martin
et al. [6] present a method based on volumetric harmonic
functions to parameterize a volumetric solid to a solid cylin-
der in order to fit a single trivariate B-spline to geometric
data and model simulation attributes. A modeling technique
based on triangular simplex splines [2] is developed to
model and render multi-dimensional, material attributes for
solid objects with complicated geometries and topologies.

The splines proposed in this paper are founded upon
the T-spline technique [7]. T-splines are a generalization
of NURBS, but permits T-junctions on its control mesh
and enables local insertion of additional knots without
introducing superfluous control points. A local refinement
method is proposed in [1], [10] to simplify NURBS surfaces
to T-spline representations by removing superfluous control
points. The merge of B-spline patches defined over different
local domains for getting a single T-spline representation on
the manifold domain is thoroughly discussed in [11].
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Bazilevs et al. [12] propose an isogeometric analysis
framework based on T-splines. Its main focus is on planar
T-splines for surfaces, and volumetric T-splines are only
briefly mentioned without offering any technical details.
Generalized trivariate T-splines (whose control points are
associated with weights) are employed by [13] to model
free-form deformation fields. For the purpose of shape
metamorphosis, 3D level sets represented by T-splines are
adopted in [14]–[17] for its efficiency. This is because, the
distribution of T-spline control points can be made adaptive
to the geometry of the morphing objects.

Our work relies on the construction and parameteri-
zation of a polycube domain. The parameterization on
polycubes originated for seamless texture mapping with
low distortion [18]. Polycubes serve as nice parametric
domains because they approximate well the geometry of
the model and possess great regularity. A polycube mapping
can be constructed either manually [18]–[20] or automat-
ically [21], [22]. Based upon specially-designed surface
parametrization, [19] builds manifold bivariate T-spline
over a polycube that can handle models with arbitrary
topology. A few recent works [23]–[28] study the param-
eterization of a solid object to canonical domains such as
spheres, polycubes, star-shaped volumes, etc. Volumetric
parameterizations typically start from any given surface
mapping, and parameterizing volumetric data onto a solid
polycube domain serves as an important pre-processing step
for the conversion of any solid model to RTP-splines.

3 PRELIMINARIES AND NOTATIONS

In this section, we introduce the general algorithm to con-
struct trivariate T-spline with duplicate knots on a regular
box domain, review the theory of basis function refinement,
and define necessary notations for the rest of the paper.

3.1 Trivariate T-splines with Duplicate Knots

Fig. 2. A vertex vi can have at most 27 anchors placed on
3 × 3 × 3 virtual grids. The central one (red) is the master
anchor and the rest (black) are sub-anchors.

Defined on a grid structure that allows T-junctions (or
T-mesh), the T-spline proposed in [7] is a generalization
of non-uniform B-splines (or NURBS). When considering
a simple cube domain, the definition of T-spline surfaces
can be straightforwardly extended to three dimensions and

generate trivariate T-splines on T-lattice grids, where “T-
junctions” are referred to the intersections between faces
and/or lines.

Let T (V , C,F) denote a rectilinear grid structure that
permits T-junctions, where V , C, and F are sets of vertices,
cells, and faces, respectively. K ⊆ V×{−1, 0,+1}3 denote
a set of anchors attached to the vertices. At most 27 anchors
are allowed at each vertex, and they can be imagined to
be organized on a 3 × 3 × 3 grid of infinitesimal size,
as shown in Figure 2. We require that each vertex has a
master anchor at the center of the local grid, while the
others are optional and called sub anchors. In the rest of
the paper, we denote an anchor at vi as ki(α,β,γ), in which
the triplet (α, β, γ) indicates a unique nodal position on the
local grid. Given vi = (v0i , v

1
i , v

2
i ), all the corresponding

anchors ki(α,β,γ) share the same coordinator (v0i , v
1
i , v

2
i ) in

parametric space. To distinguish these anchors for T-spline
construction, we define k̄i(α,β,γ) = vi + (α, β, γ)ε as the
coordinator of vi(α,β,γ) in construction space, where ε is
an infinitesimal with respect to the minimal cell size. In
the rest of this paper, we sometimes represent an anchor
by a simpler notation kj , where j indicates the index of
kj(α,β,γ) in K.

Given T and K, a trivariate T-spline can be defined as

F(u, v, w) =

∑|B|
i=1 piBi(u, v, w)∑|B|
i=1 Bi(u, v, w)

(u, v, w) ∈ R
3, (2)

where (u, v, w) denotes 3D parametric coordinates, pi are
control points, and B = {Bi(u, v, w)} is the collection of
blending functions. Each Bi(u, v, w) is a tensor-product of
three B-spline basis functions, written as

Bi(u, v, w) = N3
i0(u)N

3
i1(v)N

3
i2(w), (3)

where N3
i0(u), N3

i1(v) and N3
i2(w) are defined along u,

v, and w directions, respectively. In the case of cubic T-
spline, the univariate function N 3

ij is constructed upon the
knot vector Ξj

i = [ξji0, ξ
j
i1, ξ

j
i2, ξ

j
i3, ξ

j
i4], which is deduced

from T and a collection of anchors K.

Fig. 3. Knot vectors are derived from a T-lattice associated
with a set of anchors (dots). The knot vector from ka is
[0, 0, 1, 2, 2] in +u direction, where 2 repeats twice because
L0 intersects once with the rightmost boundary. The knot
vector from kb toward −w direction has 0 repeated three
times because L1 intersects nothing from T or K except kb.
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We refer the knot vector in construction space by notation
Ξj
i = [ξ̄ji0, ξ̄

j
i1, ξ̄

j
i2, ξ̄

j
i3, ξ̄

j
i4] for the rest of the paper, unless

mentioned otherwise. In the case of cubic T-splines, each
blending function must be associated with an anchor, which
coincides with the middle knot of its three knot vectors.

To infer knot vectors from a T-lattice is parallel to that for
T-mesh, except that the searching is conducted in construc-
tion space. Starting from an anchor k̄ = (ξ̄0i2, ξ̄

1
i2, ξ̄

2
i2), ξ̄

0
i3

and ξ̄0i4 are found by shooting a ray L(t) = (ξ̄0i2+t, ξ̄1i2, ξ̄
2
i2)

into construction. ξ0i3 and ξ0i4 are the corresponding co-
ordinate values at the first two intersections where L(t)
comes across either an anchor or a face in F . If L(t)
does not make two intersections before shooting outside
T , the last coordinate value is repeated, e.g.ξ0i3 = ξ0i4 or
ξ0i2 = ξ0i3 = ξ0i4 (see Figure 3). The knots in other directions
are determined in a similar fashion.

3.2 Refinement of B-spline Functions
To refine blending functions on trivariate T-splines, we need
to review the knot insertion algorithm for univariate B-
spline functions. Let Ξ = [ξ0, ξ1, ξ2, ξ3, ξ4] be a knot vector
and N(ξ) denote the cubic B-spline basis function defined
on it. If there is an additional knot k ∈ [ξ0, ξ4] inserted
into Ξ, N(ξ) can be written as a linear combination of two
scaled B-spline functions as

N(ξ) = c1N1(ξ) + c2N2(ξ), (4)

where c1, c2 and knot vectors for N1(ξ) and N2(ξ),
determined by the rules in Table 1.

4 CONSTRUCTING RTP-SPLINES

The construction of RTP-splines includes four major steps
(see Figure 4): (1) extending given polycube P domain
to a box domain, (2) building trivariate B-splines with
restricted boundaries, (3) introducing duplicate knots by in-
serting additional anchors, and performing local refinement
to separate interior and exterior blending functions, and
(4) producing RTP-splines by removing structures/anchors
outside P . These steps are discussed in the following four
subsections respectively.

4.1 Extending Polycubes to Bounding-Boxes
Following the notations introduced in Section 3.1, on the
trivariate T-spline domain, let P = (VP , CP ,FP ) be a
given polycube structure, where VP , CP and FP denote
vertices, cubes and cell faces respectively. In order to extend
P to a box volume with rectilinear grids, P should not
have T-junctions or intersections between its cell faces.
Our parametric polycube domains (see Section 5.1) do not
contain T-junctions. If other polycube mapping methods are
used to construct the parametric domain and the generated
domain has T-junctions, then we can always eliminate them
simply by splitting the cells across the domain, through the
extended planes of these intersecting cell faces. Now P
can be extended to its bounding-box domain T (V , C,F) by
filling in some solid cuboid structures G = (VG, CG,FG),
where VG = V − VP , CG = C − CP , FG = F − FP .
G represents the exterior structure of P and we call its

domain the ghost region. Note that there is a rectilinear
grid embedded in the space of T , and the grids coordinates
in k-axis direction are represented by

Sk = [sk1 , s
k
2 , . . . , s

k
nk
] k = 1, 2, 3

where nk is the resolution of rectilinear grid along k-axis.

4.2 Building the B-spline Volume with Restricted
Boundary
With the bounding box domain T constructed, it is not
difficult to construct a trivariate tensor-product B-spline
from the rectilinear grid structure on T by using S1, S2

and S3. We must augment Sk to have a valid B-spline
definition that covers the entire domain T . One method is
to add extra knots outside the domain region, generating a
floating-boundary scheme. In this paper, we duplicate the
knots at both ends of Sk in order to restrict the B-spline
blending function within the domain T , i.e., Sk turns into

Sk = [sk1 , s
k
1 , s

k
1 , s

k
1 , s

k
2 , . . . , s

k
nk−1, s

k
nk
, sknk

, sknk
, sknk

]

in which 3 extra knots are added to each end. Therefore,
the trivariate tensor-product B-spline defined on T is for-
mulated as

F(u, v, w) =

n∑

i=1

piBi(u, v, w) (u, v, w) ∈ R
3 (5)

where n = (n1 + 2)× (n2 + 2)× (n3 + 2) is the number
of control points, and Bi(u, v, w) are blending functions
defined in Equation (3).

Alternatively, we can obtain F by constructing blend-
ing functions similar to T-splines (Section 3.1, instead
of computing them from 3 global knot vectors. We let
S = {s01, s

0
1 + ε, . . . , s0n0

− ε, s0n0
}× {s11, s

1
1 + ε, . . . , s1n1

−
ε, s1n1

}×{s21, s
2
1+ε, . . . , s2n2

−ε, s2n2
} and choose the anchor

set K = {ki(α,β,γ)

∣∣k̄i(α,β,γ) ∈ S }, then build blending
functions associated with each anchor. K contains sub
anchors that only exist at corner, edge, and face vertices
(see their configurations in Fig 5(a)). These sub anchors
guarantee partition-of-unity of F and limit the influential
regions of blending functions within the domain T .

4.3 Local Refinement and Anchor Insertion
Let internal and ghost blending functions refer to the
blending functions associated with anchors in P and G
respectively. In this section, we seek to refine existing
blending functions with knot insertion and local refinement,
so that the resulting internal and ghost blending functions
are isolated and restricted boundary forms along the surface
of P . More precisely, our goal is to enforce the following
rules to the blending function set:

(i) No ghost blending function influences any part of the
polycube domain.

(ii) Semi-standardness is preserved on the internal blend-
ing function set even if G and all the ghost anchors
are removed.

(iii) No internal blending function influences any region
outside the polycube domain if G and all the ghost
anchors are removed.
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TABLE 1
Refinement of N(ξ) by inserting k into knot vector [ξ0, ξ1, ξ2, ξ3, ξ4], which generates two basis functions N1(ξ)

and N2(ξ), scaled by c1 and c2 respectively.

k c1 c2 knot vector of N1(ξ) knot vector of N2(ξ)

ξ0 ≤ k < ξ1
k−ξ0
ξ3−ξ0

1 [ξ0, k, ξ1, ξ2, ξ3] [k, ξ1, ξ2, ξ3, ξ4]

ξ1 ≤ k < ξ2
k−ξ0
ξ3−ξ0

ξ4−k

ξ4−ξ1
[ξ0, ξ1, k, ξ2, ξ3] [ξ1, k, ξ2, ξ3, ξ4]

ξ2 ≤ k < ξ3
k−ξ0
ξ3−ξ0

ξ4−k

ξ4−ξ1
[ξ0, ξ1, ξ2, k, ξ3] [ξ1, ξ2, k, ξ3, ξ4]

ξ3 ≤ k ≤ ξ4 1 ξ4−k

ξ4−ξ1
[ξ0, ξ1, ξ2, ξ3, k] [ξ1, ξ2, ξ3, k, ξ4]

Fig. 4. Overview of 4-step RTP-spline Construction Pipeline. (1) Extend polycube domain to its bounding-box; (2) build
B-spline volume with bounded boundaries, (3) insert anchors and refine blending functions, (4) remove exterior regions.

(a) (b)

Fig. 5. (a) Knot configuration at corner, edge and face ver-
tices for restricted boundaries. (b) Examples of extraordinary
corners on a polycube.

To achieve this goal, we systematically add new anchors
in two steps. First, add sub-anchors at the polycube bound-
ary vertices (Section 4.3.3). Second, keep inserting sub-
anchors to refine those blending functions that violate the
above rules, until there exist no violations. Adding new
sub-anchors ultimately introduces duplicate knots into knot
vectors, which serves for two purposes: (1) reducing the
influential region of a blending function and (2) degenerat-
ing the continuity of a blending function to C0 at desired
places (Section 4.3.2). Moreover, as new anchors may
lead to disagreements between existing blending functions
and underlying knot vectors implied by T and new K,
an algorithm (Section 4.3.1) is necessary to resolve these
inconsistencies after new anchors have been inserted.

4.3.1 Local Refinement of Blending Functions
We need to introduce an algorithm to update blending
functions B accordingly, once there occurs any change
in the anchor set K and/or the domain structure T . The
refinement algorithm proposed in [1], [10] is designed for
surface editing, the primary goal of which is to preserve the

shape of a T-spline surface whenever new control points
are inserted. In this paper, we extend this algorithm to 3D
and enhance it to support trivariate T-spline with duplicate
knots. By interpreting the B-spline volume previously ob-
tained as a general trivariate T-spline, we can rewrite its
representation from Equation 5 to

F(u, v, w) =

∑|B|
i=1 wipiBi(u, v, w)∑|B|
i=1 wiBi(u, v, w)

(u, v, w) ∈ R
3 (6)

where wi is the weight associated with each blending
function Bi. Note that the T-spline so far is essentially a B-
spline volume:

∑|B|
i=1 wiBi(u, v, w) ≡ 1 for any (u, v, w)

and wi = 1 for any i.
Let K∗ denote the updated anchor set and

T ∗(V∗, C∗,F∗) be the new grid structure after vertex
insertion or cell splitting. Given K∗, T ∗, W and B,
Algorithm 1 generates new blending function set B∗ and
new weights W∗ accordingly, along with updated K∗ and
T ∗.

In Algorithm 1, the superscript indicates the index of the
original blending function from B, with which a variable
is associated, and the subscript indicates the index of the
associated central anchor. For example, Bt

i is a blending
function associated with anchor ki and originates from the
t-th blending function from B. The star superscript indicates
that the variables are obtained from the modified domain
T ∗, e.g., Ξ∗

i denotes the knot vectors deduced from T ∗ and
centered at k∗

i (i.e., the three middle knots of Ξ∗
i coincide

with k∗
i ).

The basic idea of Algorithm 1 is as follows. First, we
decouple blending functions from T and K. Then, by
either inserting new anchors or refining basis functions
(Section 3.2), we keep resolving the inconsistencies be-
tween B and the local knot vectors implied by K∗ and
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Algorithm 1: small Refinement of trivariate T-spline
blending functions in support of duplicate knots.
Input: T ∗(V∗, C∗,F∗), K∗, B and W .
Output: T ∗, K∗, B∗ and W∗

s.t.
∑|B∗|

i=1 w∗
i B

∗
i ≡

∑|B|
i=1 wiBi

1 Q ⇐ {(wi
i , B

i
i) : wi ∈ W , Bi ∈ B}

2 while ∃(wt
i , B

t
i ) ∈ Q : Ξt

i 6= Ξ∗
i in parametric space

do
3 forall the (wt

i , B
t
i ) ∈ Q do

4 infer the knot vectors Ξ∗
i centered at k∗

i from
T ∗

5 if Ξt
i = Ξ∗

i in parametric space then
6 Ξt

i ⇐ Ξ∗
i

7 else if Ξ∗
i is more refined than Ξt

i then
8 insert a knot of Ξ∗

i not existing in Ξt
i into

Ξt
i, add the relative anchor and do the

refinement: Bt
i = c1B̃t

j + c2B̃t
i

(Section 3.2)
9 w̃t

j ⇐ wt
i · c1; w̃t

i ⇐ wt
i · c2

10 Q ⇐ Q−{(wt
i , B

t
i )}∪{(w̃

t
j , B̃

t
j), (w̃

t
i , B̃

t
i )}

11 else if Ξt
i indicates an anchor kj(α,β,γ) /∈ K∗

then
12 K∗ ⇐ K∗ ∪ kj(α,β,γ)

13 if kj(0,0,0) /∈ K∗ then
14 K∗ ⇐ K∗ ∪ {kj(0,0,0)}
15 V∗ ⇐ V∗ ∪ {vj} // Insert a

new vertex
16

17 end if
18 end if
19 end forall
20 forall the c ∈ C∗ do
21 if vertices on the edges of c form an

axis-aligned plane that splits c into c1 and c2
then

22 C∗ ⇐ C∗ − {c} ∪ {c1, c2} // divide c
into c1 and c2

23

24 end if
25 end forall
26 end while
27 B∗ ⇐ {Bi : (w

t
i , B

t
i ) ∈ Q}

28 W∗ ⇐ {wj =
∑

∀(wt
j
,Bt

j
)∈Q wt

j}

T ∗. A cell splits into half if there are vertices on its
edges forming an axis-aligned plane. Finally, any blending
functions arising from different refinements but having
equivalent knot vectors in parametric space are merged into
a single one with their weights being summed.

Note that any blending function introduced by Algo-
rithm 1 must center at a certain anchor, but not vice versa,
i.e., there could be anchors not associated with any blending
functions. Moreover, the new T-spline after refinement is
still semi-standard, because the denominators in Equation 6

remain unchanged in Algorithm 1, due to

wt
iB

t
i ≡ wt

i · c1B
t
j + wt

i · c2B
t
i ≡ w̃t

jB̃
t
j + w̃t

iB̃
t
i

4.3.2 Modifying Blending Functions with Anchor In-
sertions
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Fig. 6. Examples of eliminating violations against rules (i)(ii)
in the case of cubic B-spline basis functions. Suppose x = 0
is the boundary and the ghost region covering (0,∞) in (a),
N0 represents an internal basis against (ii). After two extra
knots 0 are inserted,N0 is refined to N1 and N2 which comply
with rule (ii); In (b) where the ghost region covers (−∞, 0),
ghost basis N0 violates the rule (i). After refinement with
insertion of duplicate knots, it is replaced by N1 and N2 in
ghost blending functions. Thus, no violation against (i) exists.

The anchor operation is our fundamental tool to modify
existing blending functions of trivariate T-splines in order
to get rid of all violations against rules (i), (ii) and (iii).
As blending functions of trivariate T-splines are tensor-
products of three univariate cubic B-spline bases, let’s
expose this method in 1D by using two examples given
in Figure 6. In Figure 6(a), N0 = N [−2,−1, 0, 1, 2]
represents an internal basis which apparently violates rule
(ii). If two extra knots 0s are inserted, N0 is refined into
two internal bases N1 = N [−2,−1, 0, 0, 0] and N2 =
N [−1, 0, 0, 0, 1], one ghost basis N3 = N [0, 0, 0, 1, 2], such
that N0 = 2

3N1 +
2
3N2 +

2
3N3 according to the refinement

algorithm in Section 3.2. Now once the ghost region is
gone, N1 and N2 change to N∗

1 = N [−2,−1, 0, 0, 0]
and N∗

2 = N [−1, 0, 0, 0, 0] respectively and we still have
N0(u) =

2
3N

∗
1 (u) +

2
3N

∗
2 (u) on u ∈ [−2, 0], as shown in

the bottom of Figure 6(a). Therefore, the violation against
(ii) is successfully eliminated. Figure 6(b) depicts a scenario
where N0 = N [−3,−2,−1, 0, 1] in violation of rule (i)
overlaps with the domain region at [0, 1]. By inserting two
duplicate knots at 0, we may replace N0 with two resulting
ghost bases N1 and N2, both of which abide with the rule
(i). For the case of trivariate T-splines, knot insertions are
replaced by anchor insertions conducted on T-lattice, and a
much more complex refine algorithm (see Section 4.3.1) is
employed instead.
4.3.3 Anchor Insertions on Polycube Boundary
It’s easy to see that the blending functions associated with
those master anchors either on, or adjacent to the interfaces
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between P are G are in violation of rule (ii). Therefore, we
need to insert sub-anchors to boundary vertices. The basic
idea is analogous to that in Section 4.2 where sub-anchors
are added on the surface of a box domain to ensure its
restricted boundary. However, a variety of corner types may
be found on polycube surfaces (see Figure 5(b)), thus we
have to handle all of them for proper anchor insertions. To
exhaust all possible corner types, then choose sub-anchors
to insert is tedious and inefficient. Instead, we developed a
general algorithm to determine which sub-anchors to be
inserted at arbitrary boundary vertex. Given a boundary
vertex vi, we first add the master anchor to it, along with
all the sub-anchors that lie within the domain of T in
construction space. Then the sub-anchors lying within the
domain of P in construction space are colored red, and
the others are blue. If there exists ki(−α,β,γ) ∈ K for all
ki(α,β,γ) ∈ K and color(ki(−α,β,γ)) = color(ki(α,β,γ)) for
α ∈ {−1, 1} β, γ ∈ {−1, 0, 1}, we delete {ki(±1,β,γ)}
from K, that is, the sub-anchors on the 1st and the 3rd layers
in 0-axis direction of the 3×3×3 grid at vi match in color
pattern, they are deleted from K. Then this operation is
performed similarly in the other directions. The intuition of
this method is to generate C0 continuities at the boundaries
with as few sub-anchors as possible, in order to keep the
smoothness along the other directions. An example is given
in Figure 7 in which sub-anchors are inserted at a boundary
vertex on a 2D mesh. After all the required sub-anchors
are added at the interface between P and G, Algorithm 1
is then applied to generate a new set of blending functions
and a new set of weights.

Fig. 7. Inserting sub-anchors to a boundary vertex. Red
dots denote anchors inside P and blue ones are those in G.
As the color patterns on the leftmost and rightmost grid layer
match, all sub-anchors on both layers are removed.

4.3.4 Other Anchor Insertions

Section 4.3.3 has resolved most violations against rules
(i) and (ii) arising from the blending functions that are
associated with the master anchors close to the polycube
boundary. Nevertheless, there are still other violations left.
They can be categorized into four types as follows

1) (see Figure 8(a)) Ghost blending functions associated
with sub-anchors violate rule (i). For example, the
support region of the blending function associated
with ki(1,0) (the other index is omitted for concise-
ness reason) overlaps with P . A pair of anchors
ka(1,1) and ka(1,−1) can be added to reduce the

support region to the boundary while no further vio-
lations being introduced. The violation arising from
kj(1,−1) is treated in the same fashion. In the case
of kk(1,1), only 1 sub-anchor kk(1,−1) is required to
eliminate the violation.

2) (see Figure 8(b)) Internal blending functions associ-
ated with sub-anchors violate rule (ii). For example,
removal of the ghost region and ghost anchors will
cause the changes in the shape of the blending func-
tion associated with ki(1,0) because its knot vector
goes into the ghost region. Similar to case 1, ka(1,1)

and ka(1,−1) can be added to cut off the blending
function from outside. Only one anchor insertion
is necessary to resolve the violation arising from
kj(1,−1). Even though the new blending functions
after refinement still covers nearby ghost region,
it doesn’t violate rule (ii) anymore. This has been
explained in Section 4.3.2 (Figure 6(a)).

3) (see Figure 8(c). We illustrate four different separate
cases together in (c). Thus we consider the existence
of only one blue anchor each time.) Ghost blending
functions near a convex corner of P violate rule (i).
For example, in spite of its knot vectors being apart
from P and any internal anchors, the blending func-
tion associated with ka(0,0) still influence the internal
corner region. To remedy this violation, two sub-
anchors kc(1,0) and kb(0,1) are added to the extended
surfaces of the convex corner, shrinking the support
region of the blending function centered at ka(0,0) via
refinement to separate it from P . Similarly, kc(1,0)

and kb(−1,1) are added for ka(−1,0), kc(1,−1) and
kb(0,1) for ka(0,−1) and kc(1,−1) and kb(−1,1) for
ka(−1,−1).

4) (see Figure 8(d). There are also four independent
cases presented in (d).) Internal blending functions
near a concave corner of P violate rule (iii). This
type of violation is similar to case 3 except that the
domain region and the ghost regions are interchanged
and the purpose of eliminating this kind of violations
is to ensure restricted boundary of P .

Once new sub-anchors are inserted for all violations,
we apply the refinement algorithm given in Section 4.3.1
and obtain new sets of blending functions, weights and
anchors along with the updated T-lattice structures. Since
extra anchors may be introduced by the refinement, we
have to search for new violations and resolve them again.
These two steps are repeated until no violation is found.
We notice in our experiment that it only takes one or two
iterations in practice to eliminate all violation cases. On
the other hand, the proposed anchor insertion method is
guaranteed to terminate due to the fact that no vertex is
added during refinement, and there are only a finite number
of sub-anchors that can be added to T . In the worst case,
each cube of T turns into a small Bézier volume.

4.4 Generating RTP-spline Function
By removing G and all ghost anchors from K, we ob-
tain a RTP-spline, a single-piece smooth function, defined



8

(a) (b) (c) (d)

Fig. 8. Violation cases. The blue dots represent the associated anchors of violating blending functions. The anchors added
to remedy the corresponding violations are colored red. (a) and (c) show the violation cases against rule (i); (b) shows the
cases against rule (ii); (d) shows the cases against rule (iii). Note that in (c), we illustrate four independent violation cases in
one figure. In (d), we also show four independent cases.

over a polycube domain P . Our anchor insertion method
guarantees that the resulting RTP-splines have a restricted
boundary. Furthermore, the refinement algorithm proposed
in Section 4.3.1 ensures semi-standardness of the obtained
RTP-splines from the original B-spline volume. Since the
denominator remains 1 over the entire domain P , we can
rewrite Equation 6 in a simpler formulation:

F(u, v, w) =

|B|∑

i=1

wipiBi(u, v, w) (u, v, w) ∈ R
3 (7)

5 MODELING SOLID OBJECTS
It is a challenging task to build single-piece and smooth
spline representations for arbitrary solid objects, especially
for those with bifurcations and high genus. This section
addresses how to construct a RTP-spline for a given solid
model. In this work, an input solid model is represented
as a dense tetrahedral mesh M = {V , T }. Its geometry
and other material attributes are discretely represented on
vertices V , and are interpolated linearly within each tetrahe-
dron of T . Note that our volumetric mapping algorithm is
a meshless method with a closed-form mapping representa-
tion, and it works for other volumetric data representations
such as point clouds and voxel grids. Therefore, the entire
RTP spline construction pipeline can be easily generalized
to handle other volumetric data input formats.

We first construct a polycube P following the geometry
and topology of M and compute a volumetric mapping
f : P → M (see Section 5.1), then construct a RTP-spline
function F(u, v, w) over the polycube domain P (with the
algorithm proposed in Section 4), and finally fit it to a group
of data point chosen from M .

5.1 Parameterization on Polycube Domains

Computing volumetric parameterizations is an important is-
sue for the RTP-spline construction. Tensor-product trivari-
ate splines usually need to be defined over a parametric
(box) domain, and the quality of the parameterization can
affect the fitting efficacy of splines. Therefore, we choose
to use the polycube parametric domain which possesses

great regularity while well approximates the geometry of
the original object.

A volumetric parameterization of a solid model M
embedded in R

3 on a polycube P is a bijective mapping
f : P → M,P,M ⊂ R

3. The polycube P can be
constructed either manually [19], [20], [29] or automatically
[21], [22]. These techniques also provide the boundary
mapping g from the polycube boundary surface (denoted as
∂P ) to the boundary of M (∂M ). We use such a surface
mapping g : ∂P → ∂M as the boundary condition of
f . The volumetric parameterization is then defined as the
seeking of a harmonic energy minimizer:

{
∆f(x) = 0 x ∈ P,
f(x) = g(x) x ∈ ∂P.

where ∆ is the 3-dimensional Laplace operator, defined for
each real function f in R

3 as

∆f = ∇ · ∇f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

∆f = 0 for f = (f1, f2, f3) is equivalent to ∆f i = 0
in all the i = 1, 2, 3 coordinate directions. We compute
the volumetric polycube mapping using the method of
fundamental solutions (MFS) [24], [30]. We recap the basic
algorithm here and refer more details to [24].

Based on the maximum principal of harmonic func-
tions, critical points of harmonic functions exist only on
the boundary. Furthermore, function values in the interior
region of P are fully determined by the boundary values
f(x),x ∈ ∂P and can be computed by Green’s functions.
Specifically, the real harmonic function value f(x) can be
computed as the integration of its boundary values and the
kernel function (i.e. fundamental solutions associated with
the 3D Laplacian operator ∆). The kernel function of ∆
has the following formula:

K(x,x′) =
1

4π

1

|x− x′|
,

which matches the electrostatistics. In other words, solving
a harmonic function can be converted to designing a
specific electric field determined by an electronic particle
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system, whose electric potential mimics f and shall satisfy
the boundary condition g on ∂P .

The computation pipeline is to first place a set of charge
points {qs} outside the domain qs ∈ ∂P̃ , P ⊂ P̃ ⊂ R

3.
Then we conduct a boundary fitting which solves the charge
distribution {ws} on these points {qs}. The harmonic
function f(x) is represented using the MFS equation:

f(x,W,Q) =

Ns∑

s=1

ws ·K(x, qs),x ∈ P, qs ∈ ∂P̃ ,

where f is guaranteed to be harmonic, and we only need to
enforce the boundary condition on ∂P . For the boundary
fitting, we sample Nc collocation points on the domain
boundary ∂P to set up the constraint equations. If we
have Ns charge points and Nc collocation points, for a real
harmonic function f (e.g. on an individual axis direction)
we only need to solve an Ax = b linear system where A
is an Nc×Ns matrix. The system can be efficiently solved
by a truncated Singular Value Decomposition [24], [31].

The parametrization of a general solid model on its adap-
tive polycube domain can get lower distortion than that on a
single box domain, since the polycube can be constructed to
have the same topology and similar geometry as the model.
Actually, in RTP-spline construction, the parameterization
without fully conformality and equivolume-property does
not bring too much trouble to the volume fitting, as long
as the overall parametrization mapping is continuous and
smooth. Therefore, the current parameterization is efficient
and sufficient, i.e. the shape (angle) distortion and volume
distortion of our volumetric mapping are satisfactory.

Along two directions, we will also explore volumetric
mapping techniques for parameterization with higher qual-
ity: (1) we can use more complicated/general parametric
domains such as manifold domains (directly represented
by tetrahedral meshes), polytubes [29], and so forth, which
may more flexibly approximate the shape and yield lower
distortion. However, on such domains it becomes more
challenging to construct regular splines providing same fa-
vorable features of RTP-splines. (2) the current volumetric
mapping is fully determined by the boundary constraint,
i.e., the polycube surface mapping [19]. We can reduce
the distortion by conducting relaxation of boundary surface
mapping [32], now driven by the volumetric mapping
distortion. However, this makes the mapping computation
a nonlinear optimization which is inefficient.

5.2 RTP-spline Volume Fitting

Given f : P → M , we evenly select a group of points U =
{u1,u2, . . . ,um} from the polycube parametric domain p,
hence their counterparts in the real world domain are X =
{xi = f(ui), i = 1, . . . ,m}. The problem of fitting the
RTP-splines F(u, v, w) resorts to minimizing the following
equation using U and X , with respect to control points pi

m∑

i=1

(F(ui)− xi)
2 (8)

Alternatively, it can be represented in format of

1

2
PTBTBP−XTBP (9)

in which Pj = pT
j , Xi = xT

i , and Bij = I3×3Bi(uj).
This is a typical least square problem, and we solve it for
P using the optimization package MOSEK( [33]).

If the fitting results don’t meet the requirement, we can
improve them by refitting after adaptively subdividing cells
where large fitting errors occur. Each cell from P can
be split into two, four or eight smaller ones, depending
on its aspect ratio. Once vertices, faces, and cells are
added, Algorithm 1 is employed to refine existing RTP-
spline and introduce additional degree-of-freedom for better
fitting. Note that Algorithm 1 is originally devised to work
on a box domain, it can be however straightforwardly
applied to RTP-splines defined on polycube domains, with
a minor revision. That is, whenever a new boundary vertex
is added, we have to insert a few sub-anchors in addition
to the master anchor by following the way described in
Section 4.3.3, in order to preserve the restricted boundary
on the resulting RTP-splines.

Compared with the number of degrees of freedom
(DOFs) in the optimization problem (Equation 8), U nor-
mally contains a much greater number of parametric points
evenly distributed inside the polycube domain. So the
optimization problem is well-posed and the resulting linear
equations form a nondegenerate system. If there are too
many subdivisions, the increased number of DOFs may lead
to degenerate systems. In this case, we will first enlarge U
by adding more points on the parametric domain near where
subdivisions take place and then recalculate X .

6 RESULTS AND DISCUSSION

TABLE 2
Statistics of Volume Fitting.

Data # Control RMS Error Timing
Models Points Points ×10−3 (seconds)
Bimba 35511 4543 1.20 31.21
Kitten 60144 3820 1.27 44.53

2-Torus 26384 2888 3.69 20.65
Hand 1502700 9035 0.554 1150
Head 472122 12880 0.291 422.4

Beethoven
(1st level) 103361 1001 1.80 67.79
(2nd level) 103361 3283 1.34 80.78
(3rd level) 103361 14699 0.718 123.28

A system consisting of volumetric parametrization, RTP-
spline construction and data fitting is implemented in C++
and the experiments are carried out on a 3GHz Pentium-
IV PC with 4G RAM. Our experimental data include
solid models of Bimba, Beethoven, eight (genus 2), kitten
(genus 1), hand (5 bifurcations) and head (with brain
excavated), which are represented as tetrahedral meshes.
We successfully convert them into representations of single-
pieced smooth RTP-splines by using the method proposed
in this paper. The experimental results are given in Fig. 11.
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TABLE 3
Computational costs in calculating blending functions and their derivatives : RTP-splines VS general T-splines. The time

includes total computation spent on blending functions values and their derivatives at all sample points. The blending
functions used in comparison are defined as B̂i(u, v, w) = wiBi(u, v, w) for RTP-splines, and

B̂i(u, v, w) = wiBi(u, v, w)/
∑|B|

j=1
wjBj(u, v, w) for T-splines respectively.

Model Sample Points Polycube Spline General T-spline
B̂(u, v, w) B̂′(u, v, w) B̂′′(u, v, w) B̂(u, v, w) B̂′(u, v, w) B̂′′(u, v, w)

Bimba 2512 0.18s 0.6s 1.12s 0.35s 1.14s 2.62s
Kitten 23076 1.61s 5.21s 9.59s 2.95s 9.75s 23.1s

2-Torus 9768 0.71s 2.42s 4.36s 1.37s 4.43s 10.2s

This step of the RTP-splines construction is efficient and
usually takes only a few seconds, which consists of deduc-
ing knot vectors, building blending functions, calculating
weights and initializing necessary data structures. In all
our experiments, this step takes at most 6 seconds (for the
Beethoven model at level 3). In contrast, fitting RTP-splines
to volumetric datasets is more computationally expensive.
The statistics of volumetric fitting are documented in Ta-
ble 2, where the data points are parameterized on polycube
domains, the fitting qualities are measure by RMS errors,
and the fitting errors are normalized to the overall sizes of
solid models. From Table 2, we find that the volumetric
fitting of the RTP-splines can be finished efficiently and
yield reasonable results. In addition, RTP-splines enable
local subdivision of cells over desired regions to improve
fitting qualities. As shown in the Beethoven model: the
initial error is 1.80 × 10−3 without subdivisions and is
reduced to 7.18 × 10−4 after two levels of subdivisions.
The geometric details of the Beethoven model are also
gradually revealed with the increasing level of subdivision
(see Figure 10).

RTP-spline is semi-standard and hence computing blend-
ing functions and their derivatives on it is much more
efficient than on traditional T-splines. To prove this, we
compared the computational cost on the models Bimba,
Kitten and two-hole torus in both kinds of spline rep-
resentations. To ensure the fairness in the comparisons,
we use the same source codes of RTP-splines to compute
blending functions and derivatives for traditional T-splines,
by including calculation of denominators. The comparison
results given in Table 3. As a result, the costs of the
calculations of B̂, B̂′, and B̂′′ using traditional T-splines
are roughly reduced by 47%, 46%, and 58% respectively
if RTP-splines are used instead.

We can model other attributes in addition to geometry
in RTP-splines by increasing the vector sizes of control
points. In one of our experiments, we synthesize a scalar
field on the head model, and then successfully recover
a single RTP-spline representation of both the geometry
and scalar values as shown in Figure 12. Two kinds of
scalar fields are involved in the experiment. One is the
distance field to both the head surface and the brain
surface inside (see Figure 12(d)). The fitting results for the
distance field and the corresponding fitting error map are
demonstrated in Figure 12(e)(f) respectively. Note that the
fitting errors shown here are also normalized RMS errors as

the distances are related to the model geometry. The other
type of scalar field is a synthesized procedure 3D texture,
generated using the fractal sum of Perlin noise [34] as
T (p) =

∑4
i=1

1
i
noise(ip),p ∈ R

3)(see Figure 12(g)). In
the experiment, the value of T (p) varies from 0.8 to −1.33.
And the absolute RMS fitting error to T (p) is 7.3× 10−4

(see Figure 12(h)(i)).

Fig. 9. The RTP-spline function is considered as a deforma-
tion function describing the transformation from a polycube to
a solid objects. The Jacobians of the deformation gradients
are shown in the above pictures, showing the smoothness of
the derivatives of the splines.

As a RTP-spline function is continuously and smoothly
defined over a polycube, we can evaluate any properties
that depends on function values and derivatives anywhere
over the domain. If we interpret the RTP-spline function F

obtained from data fitting as a deformation from a polycube
to the shape of the fitted solid model, the deformation
gradient tensor is G = F ⊗ ∇ and its Jacobian det(G)
measures the volume changes produced by the deforma-
tion. In Figure 9, the Jacobian values for the hand and
Bimba model are directly evaluated from function value
and derivatives of F and there are no abrupt jumps in color
due to the smoothness and continuity of RTP-splines.

Linear Independence of Blending Functions. In this
paper, we use the term RTP-spline blending functions
instead of basis functions because whether they are linearly
independent is not clear. It has been proven in [35] that
linear independence is not guaranteed for general T-splines.
It’s also pointed out that [35] linear independence can
be inherited from a coarse T-mesh after a sequence of
refinement only if in each step we insert anchors following
certain constraints. However, a similar conclusion has not
been revealed on T-lattices for trivariate T-splines, so the
linear independence property of RTP-splines remains open.
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Presence of linear dependence will not severely impact
RTP-splines fitting, which is posed as a linear least square
problem. Intuitively, if the refinement in Section 4.3.1
introduces no sub-anchors in addition to those selectively
inserted in Section 4.3.3 and Section 4.3.4, degeneracy
will not happen. It is still desirable to explore linear
independence property of RTP-splines, and/or to have an
adaptive modification scheme on RTP-splines construction
to ensure linear independency, which is required in certain
applications such as isogeometric analysis.

Fig. 10. Adaptive Fitting of Beethoven (from top to bottom:
fitting with 0, 1 and 2 levels of subdivisions).

7 CONCLUSION

In this paper we have proposed the concept and construction
algorithm of RTP-splines and presented an effective frame-
work to transform volumetric data (both geometries and
associated attributes of solid objects) into representation
of RTP-splines. Because of the topological flexibility of
the polycube domain, RTP-splines can naturally model
solid objects with bifurcations and high genus as a single
piece smooth function with a restricted boundary, while
ensuring lower parametrization distortion in comparison
with traditional splines defined over standard box domains.
Our algorithm guarantees that the initially-constructed RTP-
splines are semi-standard, so that it enables the efficient
computation of spline functions and their derivatives, with-
out any division overhead. The proposed RTP-spline sup-
ports local refinement, and a refinement algorithm has been
developed to preserve the semi-standardness on the RTP-
splines undergoing anchor insertion and local subdivision.
The particular restricted boundary requirement of RTP-
splines prevents control points from affecting domain re-
gions spanning across nearby boundaries.

We demonstrate the efficacy of our RTP-splines as a
powerful solid modeling tool in various experiments. This
unified paradigm enables the transformation from discrete

solid models (represented by tetrahedral meshes) into con-
tinuous RTP-spline representations, accurately modeling
both geometry and possibly multi-dimensional attributes.

One unclear property of the RTP-spline is its linear
independence, we will explore the constraints during the
RTP-spline construction that ensures it. When the linear
independence problem is solved, we would also like to ex-
plore the isogeometric analysis founded upon RTP-splines.
Moreover, the particular polycube domains of RTP-splines
can be naturally decomposed into a set of regular structures,
which will enable GPU-friendly computing and image-
based geometric shape processing.
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Fig. 11. From left to right, original solid models represented by tetrahedral meshes, polycube domains of RTP-splines, and
hexahedral meshes rendered from RTP-spline functions. (The edges of the hand tetrahedral model are omitted on purpose
due to their extraordinary numbers.)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. Fitting results for the head model associated with synthesized scalar field (red denotes high value while blue denotes
low value). (a) polycube in parametric domain, (b,c) are the volumetric meshes reproduced from fitted RTP-splines, (d)
synthesized distance field texture, (e) texture generated from the fitted RTP-spline, (f) fitting error map, where the maximum
error is 0.92∗10−2 and the average is 6.0∗10−4 ; (g) texture synthesized as a Perlin noise function. (h,i) show the fitting errors
and the error map respectively. The maximum fitting error for noise texture is 0.066 and the average is 7.3 ∗ 10−4.


