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Learning Robust Similarity Measures for 3D Partial Shape Retrieval
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Abstract In this paper, we propose a novel approach to learn-
ing robust ground distance functions of the Earth Mover’s
distance to make it appropriate for quantifying the partial
similarity between two feature-sets. First, we define the ground
distance as a monotonic transformation of commonly used
feature-to-feature base distance (or similarity) measures, so
that in computing the Earth Mover’s distance, the algorithm
could better turn its focus on the feature pairs that are cor-
rectly matched, while being less affected by irrelevant ones.
As a result, the proposed method is especially suited for
3D partial shape retrieval where occlusion and clutter are
serious problems. We prove that when the transformation
satisfies certain conditions, the metric property of the base
distance is sufficient to guarantee the ground distance is a
metric (and so is the Earth Mover’s distance), which makes
fast shape retrieval on large databases technically possible.
Second, we propose a discriminative learning framework
to optimize the transformation function based on the real
Adaboost algorithm. The optimization is performed in the
space of the piecewise constant approximations of the trans-
formation without making any parametric assumption. Fi-
nally, extensive experiments on 3D partial shape retrieval
convincingly demonstrate the effectiveness of the proposed
techniques.
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1 Introduction

Content-based information retrieval (CBIR) has received an
emerging research interest in the past decade. [27,32,41].
At the same time, as a new type of multimedia, 3D models
have been widely used in virtual reality, computer anima-
tion, computer aided design and the entertainment industry.
The need for easily organizing and reusing the fast growing
number of available 3D models has prompted a new trend
of research on 3D model retrieval. However, most previous
work has only focused on searching for 3D models that are
globally similar to a query shape [12,34,42]. Obviously, this
is a severe restriction in many practical scenarios since par-
tial similarity is more pervasive among 3D shapes. For ex-
ample, in the 3D imaging process, not only is the foreground
object of interest pictured, but also a lot of background clut-
ter is recorded. As a result, when such images are compared,
it is important to ignore the unrelated background informa-
tion robustly. Besides, because of the occlusions and/or lim-
ited visual fields of the 3D range scanners, different range
images could only be partially overlapped in general, which
is another instance of partial shape similarity. In 3D model
retrieval, correctly identifying those partial shape similari-
ties will provide us with newer and more valuable informa-
tion.

To address this problem, it is important to investigate the
fundamental principles for correctly evaluating the partial
similarity between 3D shapes. First, we have to introduce a
suitable feature representation. Since an ideal partial simi-
larity measure should be robust to clutters and occlusions,
global shape descriptors are obviously out of consideration.
Instead, it is more appropriate to employ a set of local shape
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Fig. 1 Feature set comparison with irrelevant and missing features:
Left: feature set 1. Right: feature set 2. Irrelevant features are in the
dashed regions; features of the foreground objects are inside the small
circles. One relevant feature is missing in set 2.

descriptors to represent a 3D object, where each descriptor
characterizes a local shape part around a basis point. In this
way, it is reasonable to expect some of these local shape
descriptors are unchanged in the presence of clutter and oc-
clusion, due to their localized nature. This invariance pro-
vides us with valuable partial similarity cues for discrimi-
nation. Accordingly, it enables robust shape recognition and
3D partial shape retrieval. As a result, we represent each 3D
model by a set of localized features, which is referred to
as the bag-of-features representation. Now, the main tech-
nical challenge has reduced to the problem of developing
a robust similarity/distance measure for two sets of shape
signatures. However, the problem is still not trivial. This is
because: 1) There is no a priori correspondence between the
local shape signatures in two sets; 2) As mentioned earlier,
irrelevant features as to the interested shape parts may ap-
pear, while some relevant features might be missing; 3) For
part-in-whole 3D shape retrieval, it is necessary to define a
robust similarity measure when the partial shape’s feature
set is much smaller than that of the full shape’s. From now
on, for the ease of presentation, we will interchangeably use
the word “feature” to denote a shape signature. A schematic
illustration of the technical challenges is shown in Fig. 1.

To tackle these difficulties, one might hope to first spec-
ify the subset of features that are relevant to the object of
interest before feature set comparison, which assumes a pre-
segmentation of the 3D scene implicitly. In fact, in image
analysis, many previous approaches [3,4,20,24] rely on such
an assumption. However, up to now, automatically segment-
ing the contents of 3D shapes, images and videos [47] is
still considered to be an open problem. Besides, it is also
impractical to produce such segmentations manually for the
unlimited and ever growing numbers of 3D shapes.

In contrast to previous methods, our approach does not
require a pre-segmentation of the 3D shapes. As it will not
be affected by a moderate amount of irrelevant and/or miss-
ing features, the method is able to work on the raw feature-
set representation of un-segmented 3D shapes directly. Specif-
ically, to meet the needs of partial similarity based retrieval,

we propose to define the ground distance of the Earth Mover’s
distance as a monotonic transformation of commonly used
base distance/similarity measures. Harnessed with a well de-
fined ground distance between two features, the Earth Mover’s
distance could turn its focus on the reliable feature pairings
across two sets, while ignoring those irrelevant and redun-
dant features that are isolated from stable feature matches.
Besides, we also propose a discriminative learning approach
to optimizing the transformation function to obtain the best
ground similarity measure for a particular task. As a result,
the proposed method has a high degree of flexibility and it
could potentially be applied to a broad spectrum of applica-
tions.

The main contributions of this paper are three-folds: First,
we propose a new, flexible transformational mechanism to
define the inner feature-to-feature ground distance measure
for the Earth Mover’s distance. Specifically, the ground dis-
tance is converted from common distance/similarity mea-
sures by applying a monotonic transformation. Here, we list
a number of criteria that such transformations should com-
ply. Second, we propose a supervised learning algorithm for
optimizing such transformations based on the real Adaboost
algorithm, which helps us avoid the need of manual specifi-
cation. The results reveal an interesting fact that most trans-
formations learnt have a sigmoid-shaped profile. Third, the
proposed method is applied to develop a novel 3D partial
shape retrieval system without explicit shape alignment. The
scalability issue is also addressed technically by proving the
transformation preserves the desirable metric property under
some moderate conditions. We also obtained a deeper under-
standing of previous approaches to quantifying feature-sets
similarity in the proposed new framework. Finally, we con-
duct extensive experiments to demonstrate the effectiveness
and robustness of our approach to 3D partial shape retrieval.

The rest of the paper is organized as follows: Section 2
reviews related work. The construction of the transforma-
tional mechanism for defining robust ground distance func-
tion in the Earth Mover’s distance and an analysis of its
properties are introduced in Section 3. Section 4 presents
an algorithm for learning the ground distance measure by
optimizing the transformation function based on Adaboost.
The experimental results on 3D partial shape retrieval are
reported in Section 5. Finally, we conclude this paper and
discuss possible further research directions in Section 6.

2 Related Work

In recent years, 3D objects retrieval has received a consid-
erable amount of research interests from people working
on computer graphics, computer vision and multimedia. A
common approach to this problem is to represent the overall
shape of a 3D model using a global shape descriptor. Then,
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the similarity search can be performed efficiently in the de-
scriptor space. It is generally expected that the shape de-
scriptor is invariant to the free rotations of a 3D model. Oth-
erwise, each 3D model should be normalized to a canonical
coordinate system before the shape descriptor is applied for
feature extraction. One of the first global shape descriptors is
shape distributions [34], where a Monte-Carlo algorithm is
employed to draw random points on a 3D shape uniformly.
Then, the distribution of the Euclidean distances between
two point samples is proposed as the D2 shape signature.
Another method is to represent a 3D shape using a group of
spherical functions [12,44]. By applying the spherical har-
monic transformation, rotational invariant features can be
extracted by computing the energies at each l-frequency of
the spherical harmonic expansion. An experimental compar-
ison of some global shape descriptors can be found in [8]
and please refer to [42] for a comprehensive survey of algo-
rithms for 3D shape retrieval.

These global shape descriptors are computationally very
efficient for shape comparison. However, they could not be
applied to evaluate the partial similarity between 3D shapes.
A direct approach to tackle this problem is to try to align
two shapes to detect their overlapped parts. However, the
computational complexity far exceeds the requirements of
performing online shape retrieval. Moreover, the alignment
of deformable shape parts is a challenging problem itself.
To this end, a number of alignment-free methods have been
proposed for 3D partial shape retrieval [13,27,28,38]. All
these methods use a collection of local shape descriptors to
characterize the detailed shape of a 3D model. In particu-
lar, [13,28] model the spatial distributions of local features
in the three-dimensional space while [27,38] do not. More-
over, the original local shape features are used in [13] while
a codebook strategy is employed in [27,28,38] to simplify
the feature representation and similarity computation.

The codebook strategy is also termed as the bag-of-words
paradigm in image analysis [27,41,47], where a representa-
tive set of local features is pre-computed via a clustering al-
gorithm to form the codebook. In this manner, the need for
matching two sets of local features is reduced to compar-
ing two frequency histograms of the clusters in a codebook.
Though this approach is very intuitive and easy to imple-
ment, it has two main limitations. First, by clamping features
to the indices in a codebook, fine-grained information in the
original features is totally lost. Second, the codebook is ap-
plication dependent. It is unclear whether a codebook gen-
erated from one database could be used for shape retrieval
on another database.

Other 3D partial shape retrieval methods based on origi-
nal local shape descriptors include [14,39,43]. Specifically,
in [39], the authors used local spherical harmonic descrip-
tors to characterize the local shape region around a point.
Shape retrieval is performed by matching a local shape de-

scriptor of the query to its closest partners in the feature-
sets of database models. The retrieval performance, which
is quantified using the DCG score, reflecting the distinctive-
ness of the descriptor on the query shape. [14] propose a
new local shape descriptor and develop algorithms to com-
pose low-level descriptors to high-level salient features for
partial shape matching, where the geometric hashing algo-
rithm is used to compute the alignments between different
shapes using a voting approach. In [43], three different ap-
proaches to representing a 3D model as a weighted point set
is discussed and a variant of the Earth Mover’s distance is
used to measure the similarity between two sets. Though
these approaches have their attractive properties, none of
them is very suited for 3D partial shape retrieval. In [39],
only a single local shape descriptor is used to represent the
query shape, which is not appropriate to depict relatively
large shape regions. In [14], the shape alignments should
be explicitly computed, which is rather time consuming. Fi-
nally, since the point-set representation is not rotationally
invariant in [43], a global PCA pose normalization proce-
dure is required, which is not robust in the case of partial
shape retrieval.

For partial shape matching algorithms based on the struc-
tural information, in [5], the authors constructed rooted trees
using the spectral decomposition of 3D shapes. Then, shape
matching and comparison is performed via graph match-
ing using a dynamic programming algorithm. In [9], the
curve-skeleton of 3D models is first extracted using a vec-
tor field based approach. Then, the correspondence between
curve segments is computed by iteratively computing the
Earth Mover’s distance and the transformation. And in [6],
the authors represent the structure of 3D shapes using ex-
tended Reeb graphs, where each node of the graph is asso-
ciated with a geometric descriptor to characterize the local
shape properties. Then, graph matching algorithms are used
to extract common sub-graphs to identify the partial simi-
larity between two shapes. The main problem with these ap-
proaches is the high computational complexity. Besides, it is
unclear to what extent the graph matching algorithms are ro-
bust to large-scale shape changes, clutter and occlusion. For
the method in [9], if the initial transformation is far from
optimal, the algorithm may converge to a poor solution.

Since our approach essentially computes the partial sim-
ilarity between two feature sets, we also review related work
in this aspect. Specifically, to establish the correspondence
of features across two sets, the simplest greedy approach is
to match each feature to the nearest one from the other set
[32]. Once the feature pairing is established, it is possible to
take the maximum (the Hausdorff distance [35]), the mini-
mum, or average (the “average linkage” in [19]) distances
between the feature pairs as the feature-set distance. The
main drawback of this approach is the allowance of unbal-
anced one-to-many feature matches.
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By imposing the mass conservation constraint in feature
matching, the Earth Mover’s distance (EMD) [36] gets over
the drawback of greedy feature matching above. Essentially,
based on a pre-defined feature-to-feature ground distance,
the EMD distance computes the minimum cost of moving
one set of features to the other set. However, with an ill-
defined ground distance, the EMD distance may generate
problematic feature pairings and yield very poor retrieval
results. To avoid this problem, in this paper, we systemat-
ically investigate the question of how to define an appropri-
ate ground distance for making the EMD distance be a good
partial similarity measure.

In the case that the ground distance is Euclidean, a space
embedding method [15,21] is proposed to approximate the
Earth Mover’s distance for reducing its computational com-
plexity. It works by partitioning the feature space hierarchi-
cally and perform feature matching from the finest level to
the coarsest level. In each hierarchy, the number of matched
features is counted and each one is associated with a cost
proportional to the bin size. The unmatched features are left
to the next level. Finally, the total cost is computed by sum-
ming over all hierarchies. It approximates the Earth Mover’s
distance within a multiplicative constant factor. Since the
factor is proportional to the dimensionality of the feature
space, the Euclidean embedding method is not accurate for
high-dimensional features.

In high resemblance to the Euclidean embedding method,
the pyramid match kernel (PMK) [16] computes the similar-
ity between two feature sets by replacing the distance cost
for each feature pairing with a similarity score, which is in-
versely proportional to the space partition granularity in that
hierarchy. It is shown that PMK is better for measuring par-
tial similarities. However, like the embedding method, the
PMK is also not suited for matching high dimensional fea-
tures except a recent variant proposed by us [29].

Although uniform space partitioning suffers the curse of
dimensionality problem, it is shown empirically that the hi-
erarchical bag-of-words approach generalizes well to highly
dimensional features [17]. Furthermore, the embedding meth-
ods implicitly assume that feature matches are formed in a
Euclidean space, which is not quite realistic for some im-
age/shape signatures [25,26].

3 The Transformational Mechanism for Defining
Robust Ground Distance

In this section, we introduce the technical details of the pro-
posed transformational mechanism for defining the ground
distance in the EMD distance. First, for the ease of problem
analysis, we present an equivalent, dual optimizing criterion
and link it to the original EMD distance. Instead of minimiz-
ing the total cost of transporting a set of features to the other
set, in the dual formulation, we maximize the total excited

similarities of matching two sets of local features. Specifi-
cally, a transformation mechanism is proposed to map com-
mon (base) distance/similarity measures to the ideal ground
similarity measure in the dual formulation. The key benefit
and flexibility of our approach owe to this transformational
function, which is able to help the EMD distance get rid of
irrelevant features and focus on relevant ones. To facilitate
designing such functions, we propose a number of key prop-
erties that an ideal ground similarity measure should satisfy.
Finally, we prove that under certain conditions, the transfor-
mation could well transfer the metric property of the base
distance to the ground distance, which in turn implies the
EMD distance is also a metric when the mass of feature sets
is equal. This is important to make our proposed algorithm
scalable to large databases. After presenting the technical
route of our method, we compare it with related approaches.

3.1 The Dual Formulation of EMD and the Transformation
Mechanism

Suppose there are two feature sets, P = {(pi, ui)} and
Q = {(qj , vj)}, pi and qj are the i-th and j-th feature in
the two feature sets, and ui and vj are their weights. Our
problem is to compute a score which quantifies the distance
or similarity of P and Q. It is expected that an ideal partial
similarity measure for P and Q will have a certain degree of
resistance to outlier and/or missing features.

For the ease of analyzing partial similarity measures, we
introduce an equivalent, dual formulation of the EMD dis-
tance [36](termed “partial similarity measure” and PSM for
short), which is defined as the maximum total excited simi-
larities when a set of features is transported to the other set
of features:

PSM = max
F ′={fij}

∑
i,j

fijsij∑
i,j

fij
, (1)

with the following constraints:∑
j

fij ≤ ui,
∑
i

fij ≤ vj , fij ≥ 0,

∑
i,j

fij = min

∑
i

ui,
∑
j

vj

 .

(2)

Note that this criterion is not a new contribution itself,
but it greatly enhanced our intuition about how to define
good partial similarity measures. Similar to the terminology
of the EMD distance, here si,j is defined as the ground sim-
ilarity between two features (pi, qj), which is induced from
a base distance (or base similarity) measure d(pi, qj) by a
monotonic transformation function si,j = F (d). And fi,j is
the weight that the i-th feature of P transports to the j-th
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feature of Q . The four conditions are the mass conserva-
tion constraints that must be satisfied in solving the supply-
demand transports, which dictates that: 1) For each feature,
the sum of transported weights must be smaller or equal to
its own weights. 2) The smaller feature set must be fully
transported to the other set. 3) The feature transports {fi,j}
must be non-negative.

Here, we note that the dual PSM formulation is very sim-
ilar to the original EMD [36] distance. Specifically, the four
constraints are exactly the same. However, there are two
differences. First, in PSM, we maximize the similarity be-
tween two feature-sets rather than minimizing their distance
in EMD. This is more intuitive and straightforward in detect-
ing partial similarities across two sets. Second, a monotonic
distance transformation is added in the PSM formulation,
which offers great flexibility in specifying the ground simi-
larity si,j . In fact, we only expect the base distance (or simi-
larity) d(pi, qj) computes an approximate affinity for feature
pairs, e.g., which feature pairs are matched better than other
feature pairs. The exact value of the ideal ground similar-
ity si,j may not be linearly related to d(pi, qj), but could
be linked by a non-linear transformation function. Here, our
basic idea is that it would be much easier to decide the rel-
ative order of the distances (or similarities) between feature
pairs, rather than the exact values.

Here, our key contribution is the introduction of the trans-
formation mechanism for flexibly defining the ground simi-
larity measure. As we shall prove below, the PSM formula-
tion is equivalent to the EMD distance and the ground sim-
ilarity measure in PSM is related to the ground distance in
EMD. Therefore, the transformation mechanism also pro-
vides a new, powerful way to specify the ground distance
of EMD. To make a comparison of using and not using the
transformation in EMD, in this paper, we will only map a
base “distance” d(pi, qj) to the ground similarity in PSM,
so the transformation function si,j = F (d) is monoton-
ically decreasing, as similarity is reversely related to dis-
tance. However, it would be straightforward to use a base
similarity measure (and here the transformation function would
be monotonically increasing). Now, we prove the dual PSM
formulation is equivalent to the definition of the original
EMD distance.

Define the ground distance GD(pi, qj) in EMD as:

GD(pi, qj) = A− si,j , (3)

where A is the tight upper bound of the ground similarity
s , which guarantees that the ground distance GD(pi, qj)
being non-negative. Now, we show the corresponding Earth
Mover’s distance:

EMD = min
F ′={fij}

∑
i,j

fijGDij∑
i,j

fij
, (4)

with GD(pi, qj) as its ground distance and the same con-
straints in (2), is equivalent to the PSM formulation (1).
Specifically, by unraveling the definition of GD in (3), we
have:

EMD = A− max
F ′={fij}

∑
i,j

fijsij∑
i,j

fij
= A− PSM. (5)

Now it is clear that the feature transports {fi,j} which
minimizes the EMD formulation (4) will maximize the PSM
formulation (1), and the sum of PSM and EMD is a con-
stant A. As a result, we can always solve PSM by optimiz-
ing its corresponding EMD formulation. Despite that the
two formulations are equivalent, viewing the optimization
problem as maximizing the similarity across two feature sets
will help us explore which desirable properties that an ideal
ground similarity measure should have.

3.2 Properties of Robust Ground Similarity Measures

As introduced above, the ground similarity measure si,j , is
computed by transforming the base distance d(pi, qj) through
the function si,j = F (d). Before proceeding ahead, we will
study how to design an ideal ground similarity measure si,j
in order to make the resulting PSM robust to missing and
outlier features. We will show that the transformation mech-
anism is a powerful way to generate an appropriate ground
similarity measure for 3D partial shape retrieval. Here, I will
list the desirable properties of a good ground similarity and
explain why.

(1) The ground similarity score should be non-negative.

Suppose that two 3D shapes have a similar part. If the
ground similarity between two features can be negative, then
the dissimilar parts of the two objects could contribute an
overall negative score which may cancel the positive score
from the similar part of the objects. In that case, we are not
able to discover the similarity between the two objects from
the overall score.

(2) The ground similarity should be a monotonic decreasing
function of the corresponding base distance.

(3) The ground similarity should approach zero when the
base distance approaches infinity.

This is because a partial similarity measure should re-
flect the strength of the similar part of two 3D shapes, while
being undisturbed by their dissimilar parts. Otherwise, if the
ground distance is also not bounded, like the base distance,
the EMD would be largely determined by the distinct parts
of two objects. For example, suppose that feature pairs will
be considered similar if their distances are less than 10. If we
change the very large distance of two distinct features from,
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Using transformation F(x)

Euclidean GD

Greedy Matching

Fig. 2 A Comparison of feature matching schemes. Top: The feature
matching histogram of PSM with a non-linear transformation function
F(x), which correctly pairs nearby features. Middle: The EMD with
the original Euclidean ground distance. Here, short-distance matches
can be affected by long distance matches. Bottom: Greedy matching.
Mass-conservation is violated, and the estimated similarity score can
be too optimistic.

say, 100 to 200, the final similarity score output by PSM (or
EMD) with the transformation function will be nearly invari-
ant, while the distance will change significantly if the base
distance is used directly as the ground distance in EMD.
Also, this property implies that in the EMD formulation, an
ideal ground distance GD will approach the upper bound A
when the base distance becomes very large.

(4) The similarity score should have a (reasonable) upper
bound.

If not, when two exact local features are matched, a huge
similarity score will be excited in PSM. In this case, it is hard
to judge whether the two 3D shapes have a large similar part,
or they have just a few exact feature matches.

With an ideal ground distance/similarity generated by
the transformation, the EMD/PSM formulation could also
produce a better feature matching pattern than the EMD
whose naı̈ve ground distance definition does not satisfy the
properties above. As shown in Fig. 2, three feature matching
schemes are compared. The PSM with the transformation
function F (x) = 1

1+x correctly pairs the corresponding fea-
tures across the two sets. In this case, it is not hard to verify
that PSM will yield a smaller similarity score for any other
feature pairing satisfying the four constraints. However, in
the EMD formulation with a Euclidean ground distance, the
pairing of the closely related features can be severely af-
fected by irrelevant feature matches. This time, the irregular
feature pairing shown in the middle panel of the figure gen-
erates the same EMD distance as the correct feature pair-
ing shown in the upper panel. As a result, the partial sim-
ilarity between the two feature-sets is not identified in this
scenario. In the greedy feature matching scheme, since one-
to-one feature correspondence is not explicitly enforced, the
estimated similarity could be too optimistic: From the lower
panel, we can see that the average distance between feature
pairs is reduced.

3.3 The Analysis of Our Method and Related Approaches

In this section, we discuss the relations of our method with
previous feature set comparison approaches [15–17,21]. As
shown before, the Euclidean embedding [21] methods, in-
cluding pyramid match kernels, could not be directly applied
to high dimensional features, such as spin images for 3D
shapes [23], and SIFT descriptors for 2D images [30].

Furthermore, we have shown in Fig. 2 that using the Eu-
clidean ground distance, the EMD algorithm may produce
poor feature matches. However, both the Euclidean embed-
ding and the PMK methods approximate the feature corre-
spondence in a Euclidean space, although PMK sums up
similarities in the later step. As a result, these approaches
may also suffer from low quality feature matches. In the hi-
erarchical bag-of-words approach [17,33], the feature code-
book is database-dependent, making it a less general ap-
proach to measuring partial similarity.

Since the EMD distance is computationally slow, it could
not be used directly to perform fast partial shape retrieval
on very large 3D model databases. However, as proven in
[36], the EMD distance is a metric when the ground dis-
tance is a metric and the total weights of the two feature
sets are equal. The Lipschitz embedding approach [7] tells
us that when the distance measure between objects is a met-
ric, there exists a embedding of these objects in a normed-
space that approximates their pair-wise distances. After that,
the distance computation can be conducted in the normed-
space very efficiently. More remarkably, the locality sensi-
tive hashing [10] technique could be used to further speed up
the similarity retrieval in a normed-space to sublinear time
complexity. In our approach, we are interested in exploring
under which conditions, the transformation function is able
to preserve the metric property of the base distance to the
ground distance. Fortunately, we obtained the positive result
in Theorem 1.

To complete the proof, we have to assume that the base
distance is a metric and the transformation function s =
F (x) should satisfy an additional property:

(5) The second derivative of the transformation function,
which maps a base distance to the ground similarity in
PSM, is positive.

Note that this is not a stringent requirement. Many trans-
formation functions satisfy this property. For example,F (x) =

1
1+x . Based on the relation between the ground similarity in
PSM and the ground distance in EMD (3), an alternative ex-
pression of this property is that the transformation from the
base distance to the ground distance in EMD should have a
negative second derivative with x.

Theorem 1 If the base distance is a metric; the transforma-
tion function, which maps a base distance to the ground sim-
ilarity of PSM, satisfies the five properties mentioned above;
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and the total weights of two feature sets are equal, then the
corresponding EMD distance is a metric.

As mentioned above, the key steps to prove this theorem
is to show that under these conditions, the transformation is
able to preserve the metric property of the base distance to
the ground distance. Specifically, we have:
Proof. To prove the EMD distance is a metric, we first prove
its ground distance GD is a metric. It is easy to verify that
GD satisfies the following two metric properties:

1) GD(x, y) = 0, iff x = y; (Since A is the upper bound
of the ground similarity)

2) GD(x, y) = GD(y, x).

Now, it suffices to prove the triangle inequity of GD.
Suppose that we have 3 local features A, B, C. Their pair-
wise base distances AB, AC, and BC satisfy the triangular
inequity, since the base distance is a metric: AB + AC ≥
BC,AC +BC ≥ AB,AB +BC ≥ AC.

Without loss of generality, we assume thatAB ≤ AC ≤
BC. As a result, the inequity AB + AC ≥ BC is non-
trivial, while the other two inequities hold naturally. Denote
the corresponding ground distance of AB,AC, and BC af-
ter transformation by AB′, AC ′, and BC ′. We have:

AB′ = G(AB) =

AB∫
0

G′(x)dx,

AC ′ = G(AC) =

AC∫
0

G′(x)dx,

BC ′ = G(BC) =

BC∫
0

G′(x)dx.

(6)

Here G(x) is the mapping from the base distance to the
ground distance GD. Since the second derivative of G(x)
is negative, G′(x) is monotonically decreasing. With this
property, and note AB + AC ≥ BC, it is easy to see that
AB′ + AC ′ ≥ BC ′ hold. And since G(x) preserves order,
AB′ ≤ AC ′ ≤ BC ′, the other two inequities hold naturally.

Now we have proved that the ground distance GD is a
metric. Based on the fact that a EMD distance is a metric
when 1) its ground distance is a metric; 2) the total weights
of two feature sets are equal [36], we have proved that the
EMD distance with the transformation function is also a
metric. Therefore, we could speed up object retrieval in large
databases using metric embedding approaches. �

Note that in part-in-whole and part-to-part retrieval, the
total weights of two feature sets might not be equal. There-
fore, the metric property of the resulting EMD distance is
not guaranteed and the metric embedding approach could
not be used in this case. However, as a rule of thumb, we
could randomly duplicate a few features in a set or adjust the

weights of some features to make the total weights equal.
As we have discussed above, the transformational mecha-
nism greatly enhanced the robustness of the EMD distance
to these artificially added irrelevant features. As a result, the
performance could still be fairly good.

4 Approximate Learning of Distance Transformation
Function

In the PSM formulation, to well discriminate well-matched
features and irrelevant clutter, we need an optimal ground
similarity measure between two features. As shown in Sec-
tion 3, the transformation function is a flexible mechanism to
map a common base distance measure to a desirable ground
similarity measure. However, if we specify the functional
form, as well as the parameters of the transformation manu-
ally, the PSM may not have satisfactory performance. In this
section, we present a novel method to learn the transforma-
tion function under the supervision of human agents, who
offer guidance on similarities between objects (by category
labels or relative comparisons). Not that based on equation
(3), the function also decides how to convert the base dis-
tance to an ideal ground distance in EMD.

The basic idea of learning the transformation function is
to iterate the following two steps:

1) Given the transformation function, we solve the corre-
spondence of local features by maximizing the total sim-
ilarity between two 3D shapes.

2) Given the correspondence of local features between 3D
shapes, we optimize the transformation function to max-
imize the percentage of correct similarity judgments by
PSM.

The first step is trivial. Essentially, we just have to solve
the original PSM optimization criterion (alternatively, the
corresponding EMD distance) itself, that is, to compute how
the features are optimally matched (by solving the demand-
supply transports F = {fij} between two 3D shapes, see
equations (1) and (2)).

Hereafter, we will primarily deal with the second part
of the problem: When the correspondences of local features
are established, how to compute the optimal transformation
function that maximizes the retrieval performance.

Since there is no a priori information about the func-
tional form of the transformation function, it is not appro-
priate to make any parametric assumption in learning. In-
stead, we take a nonparametric approach: The base distance
of local features is discretized into uniform intervals, and the
problem is reduced to compute the corresponding ground
distance GD for each interval, shown in Fig. 3.

Now we describe the proposed approach to learning the
distance transformation function. Our learning scheme is sim-
ilar to the BoostMap approach [1,2]. However, there are two
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Fig. 3 The histogram representation of the distance transforma-
tion function.
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Fig. 4 The feature matching histogram. It counts the total weights
of the feature pairs that fall into each distance interval.

major differences: 1) The objective in this paper is to learn
the distance transformation function of PSM, while theirs
is to learn an embedding in a normed-space for approxi-
mating a computational expensive distance function. 2) We
proposed a new method to guarantee the parameters to be
non-negative in the Adaboost optimization procedure, which
guarantees the monotonicity of the distance transformation
function.

LetA be the set of training multimedia objects.DA(a1, a2)
is the distance measure between objects a1, a2 ∈ A An or-
dinal function is defined as

F̄ =


1, DA(q, a1) < DA(q, a2)
0, DA(q, a1) = DA(q, a2)
−1, DA(q, a1) > DA(q, a2)

. (7)

F̄ has three discrete output values: -1, 0, +1, which is
a quantized version of a continuous function F̃ (q, a1, a2),
defines as:

F̃ = DA(q, a2)−DA(q, a1). (8)

F̃ can be regarded as a real-valued classifier, and we will
employ the real Adaboost learning algorithm [37] to approx-
imate it by a number of weak classifiers.

Our training set S consists of T triplet of objects:

S = ((q1, a1, b1), . . . , (qT , aT , bT )). (9)

For each triplet, a label is attached: If (q, a) belongs to
the same class, while (q, b) belongs to different classes, then
the corresponding label of the triplet is 1, otherwise, the la-
bel is -1. We denote the label of (qt, at, bt) by yt.

As introduced above, the distance between local fea-
tures is discretized into many intervals. As a result, after
solving the feature correspondence between two objects, we
can count the total weights of the feature pairs that fall into
each distance interval. The result is the feature matching his-
togram (FMK) of the two objects, shown in Fig. 4. Note that,
since our learning method is recursive, at first round, the dis-
tance to be discretized is the initial base distance between
local features. At later rounds, the distance to be discretized
could be the ground distance learnt in the last round, or still
the original base distance.

Real-Adaboost algorithm is employed to learn the dis-
tance transformation function. More specifically, we fit the
real-valued classifier F̃ (q, a1, a2) by the additive compo-
sition of its weak classifiers F̃k

′
= ck(q, a2) − ck(q, a1),

where k = 1, . . . ,K, K is the dimension of the feature
matching histogram (FMK), and ck(q, a) is the number in
the k-th dimension of the FMK between objects q and a.

F̃ = DA(q, a2)−DA(q, a1)

=
∑
k

αkck(q, a2)−
∑
k

αkck(q, a1)

=
∑
k

αk[ck(q, a2)− ck(q, a1)]

=
∑
k

αkF̃k
′
,

(10)

where the coefficients A = {αk}, k = 1, . . . ,K are the
outputs of the Adaboost learning procedure. They define a
distance transformation function f , which maps the k-th dis-
tance interval to αk.

Now suppose the learning procedure stops after M iter-
ations. In each iteration, if the discretization is always per-
formed on the ground distance learnt in the last round, the
resulting transformation should be F = fMfM−1 · · · f2f1,
where fm is the transformation learnt in the m-th round, de-
fined by the coefficientsAm. Otherwise, if the discretization
is always performed on the original base distance, then the
resulting transformation function is F = fM .

In practice, we found that 1) when the transformation
function F is monotonic, the feature matching pattern com-
puted using the transformation is not very different to that
of not using the transformation. So there would not be much
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difference in the first step of each learning round. 2) The co-
efficients Am only approximate the transformation function
with a histogram. So it is hard to define the convergence of
the learning procedure strictly. As a result, in our current im-
plementation, we only run one round of the learning process.
However, good results are obtained in this simple setting.

Now we introduce the details of the learning procedure.
It is known that the Adaboost algorithm [37] takes a num-
ber of rounds. At each round, a weak learner is trained with
the weighted version of the original training samples. After
that, each training sample is re-weighted according to the
confidence of being correctly classified by the weak learner.
Briefly, the samples that are falsely classified by the weak
classifier will be assigned to larger weights after this itera-
tion and vice versa. The procedure continues until the testing
error no longer decreases or some pre-determined number of
rounds is reached.

More precisely, at each Adaboost learning round r, a
weight wr,t will be assigned to each triplet (qt, at, bt) , sat-

isfying
T∑
t=1

wr,t = 1. In the beginning, all weights are ini-

tialized equally: w1,t = 1
T .

In the beginning, the composition coefficients of A =
{αk}, k = 1, . . . ,K of the weak classifiers F̃ ′k are set to 0.
At the r-th round, we try to select a weak classifier F̃ ′k∗ from
the pool C = {F̃ ′k, k = 1, 2, . . . ,K} that best minimizes
the overall empirical training error. To quantify this notion,
a measure Zr was proposed [37]:

Zr(F̃ ′k, αk) =
T∑
t=1

wr,t exp(−αkytF̃ ′k(qt, at, bt)). (11)

In (11), r = 1, 2, . . . , R, k = 1, 2, . . . ,K and t ranges
from 1, 2, . . . , T , where R is the maximum number of itera-
tions of the Adaboost algorithm, K is the dimension of the
feature matching histogram, i.e., the number of weak classi-
fier and T is the number of triplets (training data). Generally
speaking, Zr(F̃ ′k, αk) represent the benefit of adding the k-
th weak classifier F̃k

′
with weight αk to the current classifier

composition in minimizing the empirical training error. The
smaller the Zr, the larger the benefit. When Zr(F̃k

′
, αk) >

1, adding F̃ ′k with weight αk actually deteriorates the clas-
sification performance. Therefore, at the r-th iteration, we
choose the weak classifier k∗ with weight α′k∗ : (F̃ ′k∗ , α

′
k∗)

that minimizes Zr:

(F̃ ′k∗ , α
′
k∗) = arg min

(F̃ ′k,αk)∈(C,A)
Zr(F̃ ′k, αk). (12)

The overall Adaboost learning procedure is summarized
in Algorithm 1.

Algorithm 1: The Adaboost algorithm for learning the
distance transformation function.

Initialization:
Set r = 1, αk = 0, k = 1, · · · ,K, w1,t = 1

T , t =
1, · · · , T .
Main loop:
For the r-th iteration,

1) Compute weak classifier F̃ ′k∗ and weight α′k∗ that
minimize Zr(F̃ ′k, αk), i.e.

(F̃ ′k∗ , α
′
k∗) = arg min

(F̃ ′k,αk)∈(C,A)
Zr(F̃ ′k, αk),

where

Zr(F̃ ′k, αk) =
T∑
t=1

wr,t exp(−αkytF̃ ′k(qt, at, bt)).

2) If Zr(F̃ ′k∗ , α
′
k∗) < 1, set αk∗ = αk∗ + α′k∗ ; else

terminate.
3) Re-set the weights associated with the training sam-

ples:

wr+1,t =
wr,t exp(−α′k∗ytF̃ ′k∗(qt, at, bt))

Zr(F̃ ′k∗ , α
′
k∗)

, t = 1, 2, . . . , T.

If r > R, where R is the pre-determined maximum num-
ber of iterations of Adaboost, terminate, else, r ← r + 1

A key step of the process is how to choose α′k∗ , given
F̃ ′k∗ . In their original paper [37], they solve this problem by
setting the first order derivative of Zr over α equal to 0. By
denoting ut = ytF̃

′(qt, at, bt), it is easy to obtain:

Z ′r(α) = −
T∑
t=1

wr,tut exp(−αut). (13)

And they show that under common circumstance (there
exists t1, t2 such that ut1 < 0, ut2 > 0, i.e., the empirical
error is not zero),Z ′r(α) is monotonically increasing and has
one zero point. So we could simply perform a line search to
find the root α′.

However, as shown in Fig. 5, the learnt distance warping
function is zigzagged, i.e., the ground distance is not mono-
tonically increasing with the base distance. This is mainly
due to 1) we only have limited training data; 2) the weights
in different base distance intervals are unbalanced; 3) we
may not obtain a globally optimal solution by the Adaboost
algorithm. On the whole, the ground distance has the trend
to increase with the base distance. However, such zigzagged
functions will generalize poorly beyond training data, i.e.,
the transformation function is overfitted by only focusing
on minimizing the empirical risk, while ignoring the intrin-
stic of the intrinsic property of the transformation function
(monotonicity).
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Fig. 5 The profile of the distance transformation function learnt by the
original Adaboost algorithm. It is zigzagged.

To overcome this drawback, we propose a restricted-
Adaboost learning algorithm with the cumulative feature match-
ing histogram, which guarantees that the resulting transfor-
mation function is monotonically increasing. First, we de-
fine the cumulative feature matching histogram. Let C =
{c1, c2, · · · , cK} denote the original feature matching his-
togram. We define the cumulative feature matching histogram
as E = {e1, e2, · · · , eK} , where

ek =
K∑
j=k

cj , k = 1, · · · ,K. (14)

The corresponding weak classifiers areH ′k = ek(q, a2)−
ek(q, a1), and the additive composition coefficients of these
weak classifiers are B = {βk, k = 1, . . . ,K}, i.e., the
strong classifier is F̃ =

∑
k

βkH̃
′
k. Unraveling this equation,

we obtain:

F̃ =
K∑
k=1

βkH̃
′
k =

K∑
k=1

βk

K∑
j=k

F̃j
′

=
K∑
j=1

F̃j
′
j∑

k=1

βk. (15)

By comparing the above equation with F̃ =
∑
j αjF̃j

′
, we

have:

αj =
j∑

k=1

βk. (16)

Having established this relationship, if we could guaran-
tee that βi ≥ 0 in the Adaboost learning process, then it is
clear that αj is non-decreasing.

To this end, we modified the original Adaboost learning
procedure to find a non-negative β value. Recall that

Z ′r(β) = −
T∑
t=1

wr,tut exp(−βut). (17)
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Fig. 6 The profile of the distance transformation function learnt by
ordinal Adaboost. This time, the function is monotonical.

Here, we test whether Z ′r(0) > 0. If this is true, then
β′ < 0, where β′ is the root of Z ′r(β). (Since under ordi-
nary conditions, i.e. when there exists t1, t2 such that ut1 <
0, ut2 > 0, Z ′r(β) is monotonically increasing and Z ′r(β)→
−∞, when β → −∞; Z ′r(β) → +∞, when β → +∞.)
As we restrict β ≥ 0, the minimum value Zr(β) occurs at
β = 0, because Z ′r(β) > 0, β ≥ 0. So we return β = 0 in
this case.

When Z ′r(0) < 0, it is clear that the root β′ > 0. So we
perform a line search in the range [0,+∞) to find the root
β′ of Z ′r(β).

We tried to apply the restricted Adaboost learning al-
gorithm to our problem. This time, the monotonicity of the
transformation function is guaranteed, as shown in Fig. 6.

We can see from the figure that the distance transfor-
mation behaves like a soft-thresholding function (sigmoid).
This is an interesting result since the soft-thresholding sig-
nal transformation has sound physiological evidence, and it
is widely used in artificial neural networks. Besides, it is
clear that the ground distance no longer increases as the base
distance exceeds some point. In other words, learning from
real-world data indeed validates the proposed “saturation”
property of the ground distance.

In many image/shape recognition tasks, it is necessary
to define a kernel to measure the similarity between two
training/testing instances, so that standard kernel machines,
such as SVMs, could be used directly for classification. The
Gaussian kernel of EMD [48] with a naı̈ve ground distance
has been proposed for object recognition and is empirically
shown to be very successful (though still unknown whether
it satisfies the Mercer’s theorem). We believe that if the pro-
posed transformation function is used in the definition of
the ground distance of the EMD kernel, the performance
of object recognition can be further boosted. Note that the
functional calculus transformation [46] could be used here
to avoid large diagonal entries in the kernel matrix.
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5 Experimental Results

In this section, we test the proposed techniques through ex-
tensive experiments on 3D shape retrieval. The experimen-
tal results suggest that the proposed algorithms have supe-
rior performance in general and are especially suited for 3D
partial shape retrieval tasks. The results also suggest that
the best transformation function for different shape classes
could be quite different. By training such “class specific”
transformation functions, the retrieval performance can be
further improved. This finding also prompts the fact that our
approach is able to incorporate user-feedbacks conveniently.

Table 1 The composition of the PSB-52 database

biplane
airplane

fighter
jet
airplane

human
biped

face
body
part

hand
body
part

ship
see
vessel

head
body
part

aircraft
airplane
glider

1119 1168 118 290 323 1427 340 1267
1121 1170 120 292 325 1429 342 1269
1123 1172 122 295 327 1431 344 1271
1125 1174 124 297 329 1433 346 1273
1127 1176 126 298 331 1435 348 1275
1129 1178 128 299 333 1437 350 1277

- 1180 130 301 335 - - -
Numbers are the indices of the 3D models in the Princeton Shape
Benchmark.

To demonstrate the effectiveness of our algorithm, we
perform three experiments in this section. The purpose of the
first experiment is to gain a deep understanding of the pro-
posed algorithms. As a result, we exhaustively test a large
number of retrieval scenarios and learning strategies to in-
vestigate how the different choices in algorithm design af-
fect the performance in different tasks. For the ease of study,
this experiment is tested on a relatively small database con-
structed on the Princeton shape benchmark. The aim of the
second experiment is to study how the proposed algorithm
generalizes to different and much larger databases. To this
end, we conduct partial-to-partial shape retrieval on the first
200 models of the SHREC 2007 partial matching database
[31]. The results show that without changing the parame-
ters, the EMD distance with the three transformational func-
tions constructed for the previous small database still con-
sistently outperform the EMD with the original Euclidean
distance. The third experiment, however, is to compare the
performance or our approach with the state-of-the-art partial
shape matching algorithms based on structural information
[6,9]. To this end, we use the 30 hybrid query models to re-
trieve the 400 database models in the SHREC 2007 partial
matching track. Here, a similar learning approach to the one
presented in this work is used to obtain a better cross-bin
base distance, which further improves the effectiveness of
our algorithm. The results suggest that the performance of
our algorithm is better than [9] and closely matches that of

[6]. However, it is easy to see that 1) Our algorithm is much
simpler than these graph matching approaches and is prov-
ably well scale-up to large databases (by using the metric
embedding techniques). 2) The proposed method is applica-
ble to a wider range of 3D shape formats, such as meshes
with holes, polygon soups and even oriented point clouds,
while the graph matching algorithms are only tested on wa-
tertight 3D shapes without holes and topology errors. 3) The
local shape descriptor in our approach can be selected ar-
bitrarily. In the current implementation, we only used the
classic spin image descriptor but other more powerful local
shape descriptors can be used later to further improve the
retrieval performance.

Now, let us introduce the first experiment. Our testing
database (termed PSB-52) is composed of 52 3D models in
8 balanced categories manually selected from the Prince-
ton shape benchmark [40]. As shown in Table 1, only the
first 6/7 3D models from each category is included in the
database since we would like the sizes of each classes to be
approximately equal. Although the database is small, some
of the shape classes are hard to distinguish. As a result, it
is still challenging enough to contrast the performance of
different algorithms.

Since we would like to test the effectiveness of the pro-
posed partial similarity measure, in all the three experiments,
each 3D model is represented as a bag of local features with-
out recording their 3D spatial relations. The local features
here essentially denote the spin image shape signatures [23].
Each spin image characterizes the local shape around its
basis point. Therefore, each 3D model is represented as a
set of spin images. For detailed feature extraction steps, we
first sample N = 300 basis points uniformly on the meshes
of each 3D model, using the Monte-Carlo approach [34].
Then, Spin-image signatures [23] are computed at these 300
points using 50000 uniform Monte-Carlo point samples on
the meshes to avoid the affect of irregular mesh tessellation.
The support region for a spin image is set to be within 0.4R
horizontally (on the tangent plane) and vertically (along the
normal) of the basis point, where R is the R.M.S. of the
distances from the mesh points of a 3D model to the shape
centroid (i.e., R is the “radius” of the shape). The resolu-
tion of the spin image signature is set to be 15 by 15. Each
spin image is L1-normalized so that all the 225 bins sum to
a constant 3500.

To summarize, after the feature extraction procedure, each
3D model is represented by a set of 300 spin image signa-
tures, and there is no explicit ordering between them. Each
spin image is itself a 225-dimensional vector. This represen-
tation is much simpler than the graph matching based partial
shape retrieval approaches [6,9]. In the offline preprocess-
ing stage, the features of all 3D models in the database are
calculated and stored. While in the online stage, when a 3D
model is specified as query, we would like to find 3D shapes
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in the database that are most similar to it. This is achieved
by comparing the query model’s feature set with those stored
feature sets. Then, the 3D models in the database are ranked
according to their similarities to the query.

To measure the performance of the retrieval algorithm,
the Precision-Recall plots [40] are evaluated based on the
retrieval results and the ground-truth classification of the
database models. “Precision” is defined to be the fraction of
the retrieved 3D models that have the same category with
the query, while “recall” is the fraction of 3D models of
the query’s category that have been found in the retrieval
process. By this definition, P-R plot measures the complete
sensitivity-specificity tradeoffs of a retrieval algorithm. Due
to its sensitivity to the retrieval performance, the P-R plot is
used in the first two experiments for contrasting different al-
gorithms. In the third experiment, to compare our approach
with the two algorithms [9,6] tested on the SHREC07 par-
tial shape matching track, the Normalized Discounted Cu-
mulated Gain Vector (NDCG) [22] is used for performance
evaluation.

5.1 Global-to-Global Shape Retrieval on the PSB-52
database

We first conduct “Global-to-Global” 3D model retrieval on
the PSB-52 database, i.e., both the query shape and the database
shapes are in their complete-form. Specifically, four differ-
ent distance/similarity measures are tested. The first one is
the “Earth Mover’s distance” with the original Euclidean
distance between spin images as the ground distance without
the transformation function. The latter three instances are
the “Earth Mover’s distance” with three different parametric
transformation functions for ground distance definition. The
parameters are manually specified and have not been tuned
to be optimal. The four transformation functions (that map
the Euclidean base distance to the ground distance in EMD)
are listed below:

1) f(x) = x, i.e. the original Euclidean ground distance;
2) f(x) = a − 1.0

x+b , a = 10.0, b = 0.1, i.e. “reciprocal”
transformation;

3) f(x) = a − exp(−x/b), a = 2.0, b = 100.0, i.e. “ex-
ponetial” transformation;

4) f(x) = a + exp(x−bc )/(1 + exp(x−bc )), a = 2.0, b =
150.0, c = 30.0, i.e. “sigmoid” transformation.

And we note that the EMD solver is set to take 100 iterations
in all the experiments in this section.

The P-R plot corresponding to the four distance/similarity
measures is shown in Fig. 7. From the figure, we can see
that both the three non-linear transformation functions have
better retrieval performance than the Euclidean ground dis-
tance. Later, we will show that the profile of the transforma-
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Fig. 7 A comparison of different distance measures for Global-to-
Global retrieval (with parametric transformation functions): The EMD
distance with EUC: the original Euclidean ground distance; REC: “re-
ciprocal”; EXP: “exponential”; SIG: “sigmoid” transformations. And
we note that the EMD solver is set to take 100 iterations in all the
experiments in this section.

tion function learnt by the Adaboost algorithm and compare
it with the three transformation functions.

Besides, it is worth noting that although the three non-
linear transformation functions outperform the Euclidean ground
distance in this case, the improvement is not very big. This is
because the transformational mechanism is specifically de-
signed for partial similarity based retrieval. To gain a fur-
ther understanding of this result, we compare the retrieval
performances of the four transformation functions for each
shape category. The Discounted Cumulative Gain retrieval
statistics (DCG) [40], is used here for performance com-
parison. In general, larger DCG scores correspond to higher
precision-recall curves.

We could get some detailed observations from Table 2.
First, for the shape classes that the Euclidean ground dis-
tance has a low DCG score, the three non-linear distance
transformations have consistently better retrieval performance.
While for shape classes that EUC has a high DCG score al-
ready, the transformation may not further increase the re-
trieval performance. On average, non-linear transformations
have better retrieval performance over all classes. However,
for some classes, (e.g., hand body part and ship see vessel)
the non-linear transformations actually perform slightly worse
than the Euclidean ground distance. In fact, as we will show
later, the optimal transformation function tends to be quite
dissimilar for different shape classes. So, it is not surpris-
ing that a universal transformation function may not per-
form well on some categories. To this end, we implemented
a class (or query) specific-learning scheme to obtain the op-
timal transformation for a given shape category (or query
object).

Let us take a closer look at this effect. The non-linear
transformations tend to perform better than EUC on shape
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Table 2 A comparison of different distance measures for global-to-global retrieval on different shape classes:

biplane
airplane

fighter
jet
airplane

human
biped

face
body
part

hand
body
part

ship
see
vessel

head
body
part

aircraft
airplane
glider

EMD 0.612 0.619 0.843 0.770 0.868 0.995 0.791 0.521
REC 0.657 0.704 0.879 0.751 0.868 0.987 0.810 0.535
EXP 0.689 0.730 0.880 0.753 0.841 0.979 0.811 0.577
SIG 0.717 0.705 0.877 0.812 0.769 0.959 0.825 0.617

The EMD distance with EUC: the original Euclidean ground distance; REC: “reciprocal”; EXP: “exponential”; SIG: “sigmoid” transformations.
Numbers are the Discounted Cumulative Gain (DCG) scores.

classes with large intra-class variation. This is because two
shapes in one of such classes tend to have some dissimilar
parts, which may induce a number of large feature-to-feature
Euclidean distances. However, for the three non-linear trans-
formations, the “total similarities” between these objects are
less affected. As a result, the non-linear transformations ex-
cel the Euclidean distance on these shape classes.

On the other hand, for shape classes that having little
intra-class variance, the EMD with EUC ground distance
tends to have good retrieval performance since the distances
between objects in the same class are small. This time, al-
though non-linear transformations will also compute large
intra-class similarity scores; it could be more easily affected
by a large inter-class similarity. In other words, when two
objects in different classes happen to have a similar part,
they would produce a false high score. So for these shape
classes, the non-linear transformations might not perform
better than the Euclidean ground distance.

To summarize, the EMD with the original Euclidean ground
distance is sensitive to the discrepancy between objects, while
the transformation functions can make the EMD sensitive to
the similarity among objects. For the task of partial simi-
larity based retrieval, particularly on a large, un-segmented
3D shape database, discrepancy is nearly universal between
these shapes (even from the same class, due to the un-segmented
background), while similarity is mainly limited to the intra-
class shape pairs. So any direct focus on discrepancy will
make us at best find some nearly identical 3D shapes and
fail to get more interesting results in general. However, the
EMD harnessed with the transformation functions is suited
for this task, although some occasional inter-class similari-
ties will slightly affect the retrieval performance. This effect
could be mitigated by learning class specific transformation
functions.

5.2 Part-based Similarity Retrieval

In this section, we consider part-based similarity retrieval.
That is, the 3D shapes in the same class are only partially
similar. This is the common scenario in many CBIR appli-
cations, and is therefore the main focus of this paper. For ex-
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Fig. 8 A comparison of different distance measures for Partial-to-
Partial retrieval (with parametric transformation functions): EUC: the
Euclidean ground distance; REC: “reciprocal”; EXP: “exponential”;
SIG: “sigmoid” transformations.

ample, un-segmented range images contain both foreground
and background parts. Only the former is informative, while
the latter is irrelevant.

To simulate this effect, we designed a new experimen-
tal protocol. The main idea is to randomly extract a surface
patch to represent a 3D model, simulating the occlusion ef-
fect. More precisely, we randomly select an interest point
on the surface of a 3D shape, using the Monte-Carlo sam-
pling technique [34]. Then, we rank the 300 spin image ba-
sis points according to their distances to the interested point.
Only the nearest 150 (50%) basis points are reserved to rep-
resent a 3D shape, while other basis points are discarded,
simulating that roughly half of the shape is occluded ran-
domly. Therefore, when two shapes from the same class
are compared, it is expected that about 25% of the overall
shapes are in correspondence, since they are occluded in-
dependently. We first examine the task of partial-to-partial
shape retrieval, where both the query shape and the database
shapes are using this “occluded” shape representation. This
is a very challenging task, which is as hard as retrieving un-
segmented range images using an un-segmented range im-
age as query, where the foreground takes about 50% of the
area.
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Fig. 8 shows the precision-recall curves for four dis-
tance measures: the EMD with Euclidean ground distance
and three non-linear transformation functions. We can see
that the three transformations consistently perform much bet-
ter than EMD, which demonstrates the obvious advantage
of the proposed approach for 3D partial shape retrieval. Par-
ticularly, the PSM with sigmoid transformation has the best
performance among the four methods. This suggests that the
optimal distance mapping may have the soft-thresholding
characteristics. Later, we will show that the transformation
function learnt by the Adaboost algorithm indeed has the
thresholding characteristic.

To compare with the case of global shape retrieval, we
also present the DCG scores of the four distance measures
on different shape classes in this partial-to-partial retrieval
task, as shown in Table 3. We can see from the table that, in
this case, the transformations perform better than (or as good
as) the Euclidean ground distance on most shape classes.
Contrary to global-to-global shape retrieval, there is no shape
category that the three transformations are consistently worse
than EUC. This intuitively makes sense, as the “simulated
occlusion” feature extraction strategy significantly increases
the intra-class variation, making the similarity-based crite-
rion guided by the transformations excel the discrepancy-
based EMD with the Euclidean ground distance.

Another related retrieval task is “part-in-whole” search,
where a user selects an interested region on a query 3D
shape, and she/he wants to find the database shapes that
contain a similar part to the interested region. In our ex-
periments, we apply the “simulated occlusion” feature ex-
traction strategy to the query 3D model, and use the whole
shapes for the 3D models in the database. Note that the to-
tal weights for the query and a database shape might not
be equal. Two weight assignment strategies are tested here:
Type I: We know each feature of the query shape precisely
corresponds to one feature of a database shape. In this case,
each spin image feature of both the two types of shape is as-
sociated with weight 1/300. So the total weights of the query
are 0.5, and the total weights for a database model are 1.0.
Here, relevant features could match perfectly. Type II: We
do not know the relative feature density on the two types
of shapes. In this case, identical total weights, e.g. 1.0, are
adopted for both of the query and database shapes. In this
experimental setting, the features of the query object are es-
sentially duplicated and many irrelevant feature-matches are
forced in solving the EMD distance.

Fig. 9 shows the precision-recall plot for the Type I case
of “part-in-whole” retrieval. Again, the three non-linear trans-
formation functions perform better than the Euclidean ground
distance. However, the advantages are not as significant as
that of the “partial-to-partial” retrieval case, as there is no
enforcement of forming irrelevant feature pairings.
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Fig. 9 A comparison of different distance measures for Type I part-in-
whole retrieval (with parametric transformation functions): EUC: the
Euclidean ground distance; REC: “reciprocal”; EXP: “exponential”;
SIG: “sigmoid” transformations.
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Fig. 10 A comparison of different distance measures for Type II part-
in-whole retrieval (with parametric transformation functions): EUC:
the Euclidean ground distance; REC: “reciprocal”; EXP: “exponen-
tial”; SIG: “sigmoid” transformations.

Fig. 10 shows the precision-recall plot for the Type II
case of “part-in-whole” retrieval. It is easy to see that the
performance gaps between the transformation functions with
the Euclidean ground distance are enlarged. This suggests
that the proposed distance transformational mechanism is a
powerful way to get rid of the affect of irrelevant feature
pairings. Besides, as discussed in Section 3.3, we can unify
the total weights of different feature sets in order to exploit
the metric property of our approach (Theorem 1) to speed
up retrieval on large databases.

5.3 Learning Distance Transformation Function

Up to now, the functional from as well as the parameters
of the distance transformation functions are specified manu-
ally. We have shown that the three non-linear functions ob-
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Table 3 A comparison of different distance measures for partial-to-partial retrieval on different shape class:

biplane
airplane

fighter
jet
airplane

human
biped

face
body
part

hand
body
part

ship
see
vessel

head
body
part

aircraft
airplane
glider

EUC 0.562 0.647 0.798 0.694 0.734 0.675 0.635 0.501
REC 0.699 0.693 0.831 0.681 0.737 0.738 0.654 0.545
EXP 0.699 0.687 0.821 0.692 0.736 0.766 0.618 0.573
SIG 0.727 0.636 0.836 0.745 0.646 0.756 0.661 0.629

tained consistently better results than the Euclidean ground
distance on partial shape retrieval, which convincingly demon-
strates the effectiveness of the transformation mechanism
and its good generalization property, as the improved per-
formance does not rely on a particular function. However,
it is more interesting to try to learn the transformation di-
rectly from data. In particular, we would like to see what
shape the learnt transformation function looks like. Note
that in this section, our primary focus is to improve the per-
formance of the current retrieval task by exploiting avail-
able distance comparison information. For this purpose, the
learning and testing procedures are conducted on the same
database. This is the case for many practical retrieval tasks
where prior knowledge and/or user feedbacks are available.
However, from the machine learning viewpoint, it is impor-
tant to demonstrate the good generalization property of a
learning algorithm. We will address this issue in great detail
in Section 5.6. The results there suggest that the difference
between the empirical risk and structural risk is often negli-
gible, i.e., the proposed learning algorithm generalizes very
well beyond training data. As a result, the current experi-
mental results also make sense in the generalization context.

We consider two kinds of learning. One is to learn an
all-purpose transformation function for all 3D shapes in a
database, while the other is to learn a class-specific trans-
formation for each shape class, like the query-sensitive em-
bedding approach [2]. In this former learning strategy, the
training set S = {(q1, a1, b1), . . . , (qT , aT , bT )} consists
T triplets of objects, where qt, t = 1, . . . , T are sampled
from all object categories. Without loss of generality, qt, at
belong to the same class, while qt, bt belong to different
classes. In the latter learning strategy, the training set only
consists of the triplets where qt, at belong to a particular
shape class. As a result, in both of the two cases, it is ex-
pected that DA(qt, at) < DA(qt, bt) for an ideal distance
measure, i.e., all the triplets are associated with label 1.

Following the learning method introduced in Section 4,
we initialize the feature matching histogram between two
shapes by solving the EMD with Euclidean ground distance.
Then, the composition coefficientsA = {αk}, k = 1, . . . ,K
are learnt by the restricted Adaboost algorithm. The distance
between two shapes is computed based on the feature match-
ing histogram and the learnt coefficients αk. Strictly speak-
ing, this is not perfect in theory, since the computation of
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Fig. 11 A Comparison of different similarity measures for global-to-
global retrieval. EUC: the Euclidean ground distance; SIG: the “sig-
moid” parametric transformation. Learn1: Learning an all-purpose
transformation function. Learn2: Learning class-specific transforma-
tion functions. PMK: The pyramid match kernel algorithm (the best
performance of using it as a distance or similarity measure is shown
here)

feature matching histogram (based on Euclidean distance)
and the summation of transformed (ground) distances be-
tween feature-pairs in EMD are based on different criteri-
ons. To further investigate this issue, we also test using the
EMD with a parametric transformation function, e.g., sig-
moid, to compute the feature matching histogram, and then
learn the coefficient αk. The results suggest that using a bet-
ter feature matching histogram indeed improves the perfor-
mance of the learning algorithm, which validates the consis-
tency of the proposed framework.

In Fig. 11, we compare the two distance learning meth-
ods for global-to-global shape retrieval by plotting their precision-
recall curves. ”Learn1” denotes the method for learning an
all-purpose transformation function; while ”Learn2” is to
learn a specific transformation function for each category.
For reference, we also reproduce the precision-recall curves
of the EMDs with the Euclidean ground distance (EUC)
and with the sigmoid transformation (SIG). Furthermore, we
also plot the P-R curve of an efficient, state-of-the-art algo-
rithm for feature-sets comparison, the pyramid match ker-
nels (PMK) [18]. We can see that all the three approaches us-
ing the transformation mechanism (SIG, Lean1 and Learn 2)
have better performance than the original Euclidean ground
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Fig. 12 The learnt class-specific distance transformation functions for two classes. Left: biplane airplane class Right: fighter jet airplane.
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Fig. 13 The profile of the all-purpose distance transformation function.

distance (EUC) and the PMK algorithm. Specifically, the
performance of the parametric transformation function (SIG)
is comparable with the all-purpose learning scheme (Learn1),
while the class-specific learning scheme (Learn2) has the
best performance among the five methods. Finally, we would
like to remark that though the PMK compares favorably with
many other feature-sets comparison approaches [18], the main
focus of it is on the efficiency issue. So it’s not surprising
that the PMK has the worst performance among the five al-
gorithms.

Note that the class (query)-specific learning approach
is very flexible. Since user intervention and other types of
knowledge can be conveniently represented as a number of
triplets (each encoding a relative distance comparison), and
the learning is very efficient, the transformation function can
be tuned dynamically in light of new knowledge.

In Fig. 13, we plot the profile of the all-purpose distance
transformation function. We can see from the figure that it
looks like a soft-thresholding function. When the base dis-
tance is small, the ground distance is zero. When the base
distance increases to a particular value, the ground distance

suddenly jumps to a very large value. Then, as the base dis-
tance continues to increase, the ground distance augments
very slightly until it becomes saturated. In Fig. 12, we also
plot the profiles of two class-specific transformation func-
tions. It can be seen that the two functions basically have the
soft-thresholding shape, like the all-purpose transformation
function. However, their threshold value differs, due to their
class-specific characteristics. In Fig. 11, we have shown that
the retrieval performance increases significantly by exploit-
ing this class-specific information.

We also apply the learning methods to “partial-to-partial”
and “part-in whole” retrieval. Fig. 14 shows the precision-
recall plots for the “partial-to-partial” retrieval task. There
are two types of training methods “general purpose” and
“class specific”, and the transformation functions are learnt
either from “global-to-global” or “partial-to-partial” feature
matching histograms. The purpose here is to study whether
the transformations learnt from “global-to-global” feature
matching histograms are suitable for “partial-to-partial” re-
trieval. “Learn1” is to learn a “general purpose” transfor-
mation function on “partial-to-partial” feature matching his-
tograms; “Learn2” is to learn a “class-specific” transforma-
tion function on ”partial-to-partial” feature matching his-
tograms. “Learn3” and “Learn4” are the “general purpose”
and “class-specific” learning schemes based on “global-to-
global” feature matching histograms. “EUC” is the precision-
recall curve of the Euclidean ground distance for “partial-to-
partial”, reproduced here for comparison.

From Fig. 14, we can see that both the four learning
schemes outperform the Euclidean ground distance. The trans-
formation functions (Learn3 and Learn4) learnt from “global-
to-global” feature pairing are in general appropriate for “partial-
to-partial” retrieval. However, the transformation functions
learnt from “partial-to-partial” feature pairing (Learn1 and
Learn2) perform better in the same task. Particularly, “Learn2”
is the best one among the five methods, which again demon-
strating the superiority of “class-specific” learning.
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Fig. 14 A Comparison of different learning methods for partial-to-
partial retrieval. See texts for details of Learn1-Learn4.
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Fig. 15 A Comparison of different similarity measures for partial-
to-partial retrieval. EUC: the Euclidean ground distance; SIG: the
“sigmoid” parametric transformation. Learn1: Learning an all-purpose
transformation function. Learn2: Learning class-specific transforma-
tion functions. Both Learn1 and Learn2 are based on “partial-to-
partial” feature matching histograms. PMK: The pyramid match kernel
algorithm (the best performance of using it as a distance or similarity
measure is shown here)

Fig. 15 compares the performance of learnt transforma-
tion functions with the parametric transformation functions
in the partial-to-partial retrieval task. Here, “Learn1” and
“Learn2” are reproduced from the two curves with the same
name in Fig. 14, while EUC, SIG are the EMDs with the
Euclidean ground distance and the sigmoid transformation
function, respectively. Again, PMK denotes the pyramid match
kernel algorithm [18]. It is clear from the figure that all the
three EMD distances with non-linear transformation func-
tions obtained better performance than EUC and PMK. Be-
sides, the performance of the class-specific learning scheme
(Learn2) is comparable to the sigmoid parametric transfor-
mation function (SIG), while the performance of the all-
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Fig. 16 A Comparison of different learning methods for Type I part-
in-whole retrieval. See texts for details of Learn1-Learn4.

purpose learning scheme (Learn1) is slightly worse than SIG
and Learn2.

We also compare the different learning methods for Type
I part-in-whole retrieval, shown in Fig. 16. Similarly, “Learn1”
and “Learn2” are the “general purpose” and “class-specific”
learning schemes based on “partial-to-global” feature match-
ing histograms; while “Learn3” and “Learn4” are the “gen-
eral purpose” and “class-specific” learning schemes based
on “global-to-global” feature matching histograms. “EUC”
denotes using the EMD with the Euclidean ground distance
for “part-in-whole” retrieval, reproduced here for compari-
son. Clearly, once again, the four learning methods perform
better than “EUC”. And, as we expected, “Learn2” again has
the best performance among the five methods, demonstrat-
ing the advantage of “class-specific” learning.

5.4 The Advantage of a Good Feature Matching Histogram

As mentioned before, the feature matching histograms are
generated by solving the EMD with the Euclidean ground
distance (EUC). And the learning of transformation func-
tion is performed on the feature matching histograms. This
is not in full consistency, as the feature matching patterns
produced by EUC may be somewhat affected by irrelevant
feature pairings. Ideally, the learning should be conducted
recursively, so that the transformation function learnt in the
last round is used by EMD to generate the current feature
matching histogram. However, the transformation functions
are only learnt in a histogram representation, which prevents
well-defined recursive learning in a strict sense.

To examine whether better learning results could be ob-
tained by using a better feature matching histogram, we run
EMD with a parametric transformation function to compute
the feature matching patterns. Then, learning is performed
on the resulting feature matching histogram. Here, the sig-
moid function introduced in Section 5.3 is chosen as the
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Fig. 17 A Comparison of different feature matching histograms for
partial-to-partial retrieval.

parametric transformation function, as its shape is closest
to the learnt functions.

The results of using different feature marching histograms
for partial-to-partial retrieval are shown in Fig. 17. “Learn1”
and “Learn3” are the “general purpose” and “class-specific”
learning schemes based on the feature matching histograms
of EUC, reproduced here for comparison; while “Learn2”
and “Learn4” are the “general purpose” and “class-specific”
learning schemes based on the feature matching histograms
induced by the sigmoid transformation function. We can see
from the figure that “Learn2” is better than “Learn1”, and
“Learn4” is better than “Learn3”, though the differences are
not large. These findings indicate that the feature pairings
generated by the sigmoid function are also better than those
with the original Euclidean distance, which justifies the the-
oretical consistency of the proposed approach.

5.5 The Effectiveness and Efficiency of Our Algorithm on
Larger Databases

We have carefully tested how different parameter settings
and building blocks of our algorithm may affect its perfor-
mance on a variety of retrieval tasks. Now, our primary focus
is to study the scalability and time-efficiency issues of our
algorithm on larger databases. For this purpose, the database
of SHREC07 partial matching track [31] is used, which is
composed of 400 watertight 3D models in 20 categories (with
20 models in each category) and 30 mixed query models.
In this section, we only perform partial-to-partial shape re-
trieval on the first 200 models in the database (i.e., the mod-
els in the first 10 classes). While in Section 5.6, the 30 query
models will be used to retrieve the 400 database models for
comparing the performance of our algorithm with two par-
tial shape matching algorithms based on structural informa-
tion of 3D shapes [9,6].
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Fig. 18 A comparison of different distance measures for Partial-to-
Partial retrieval (with parametric transformation functions) on the first
200 models of the SHREC07 database. EUC: the Euclidean ground dis-
tance; REC: ”reciprocal”; EXP: ”exponential”; SIG: ”sigmoid” trans-
formations. The performance of the pyramid match kernel algorithm
(PMK) is also plotted.

We use the same partial shape feature extraction strategy
as described in Section 5.2. That is, each 3D model is rep-
resented using the 150 (50%) spin image features nearest to
a randomly selected interest point. On an ordinary PC com-
puter, the average time of extracting the 300 spin images for
each full shape is 3.02 sec. Then, each 3D model is used to
retrieval the remaining shapes in the database. We first ex-
amine whether the transformational mechanism still works
well in this scenario. To the end, we use the EMD distance
with the exactly the four transformation functions in Section
5.1 (EUC, REC, EXP, SIG) to quantify partial shape simi-
larities. The average per query time for each transformation
function is: EUC: 8.37 sec; REC: 8.48 sec; EXP: 8.99 sec;
SIG: 9.58 sec. As a result, the transformation mechanism
only slightly increases the computational time of the Earth
Mover’s distance. The Precision-Recall plots of these meth-
ods are shown in Fig. 18.

It is clear from Fig. 18 that the three non-linear trans-
formation functions (REC, EXP, SIG) in EMD have better
performance than the Euclidean ground distance (EUC) and
the pyramid match kernel algorithm (PMK), and the sigmoid
transformation (SIG) has the best performance among the
five approaches.

We also try to learn the distance transformation func-
tions using the algorithm presented in Section 4. Specifi-
cally, the learning is performed on the partial-to-partial fea-
ture matching histograms induced by the Euclidean ground
distance (EUC) and the sigmoid transformation (SIG), and
the all-purpose and the class-specific learning schemes are
also tested. Fig. 19 compares the performance of the above
four combinatorial learning strategies, Learn1: all-purpose
learning on the EUC feature matching histogram; Learn2:
all-purpose learning on the SIG feature matching histogram;
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Fig. 19 A comparison of different learning methods for Partial-to-
Partial retrieval on the first 200 models of the SHREC07 database. See
the texts for details of Learn1-Learn4. For comparison purpose, we
also reproduce the sigmoid (SIG) parametric transformation function
in Fig. 18

Learn3: class-specific learning on the EUC feature match-
ing histogram; Learn4: class-specific learning on the SIG
feature matching histogram. The amortized learning time
for each query (i.e., the learning time divided by 200) is,
Learn1: 0.535 sec; Learn2: 0.495 sec; Learn3: 1.275 sec;
Learn4: 1.125 sec. The time for generating the feature match-
ing histogram is essentially similar to the time for computing
the pairwise EMD distances between the 200 3D models.

We can see from Fig. 19 that both the four learning meth-
ods have better retrieval performance than the Euclidean ground
distance (EUC). Specifically, the performance of the all-purpose
learning scheme is slightly worse than the sigmoid transfor-
mation function (SIG) and the performance of class-specific
learning scheme is better than SIG.

5.6 The Generalization Performance of the Proposed
Learning Algorithm

In the previous sections, we have shown that the proposed
learning algorithm is very effective for improving the per-
formance of partial shape retrieval by exploiting the rela-
tive distance comparison information in the triplets. How-
ever, from the machine learning perspective, it is important
to show that the learnt distance transformation function is
not simply over-fitted to the training data, i.e., it should also
generalize well on other related datasets.

To this end, we randomly divide the 200 3D models from
the first 10 classes of the SHREC07 partial matching track
[31] into a training set and a test set. Specifically, for each
class, 10 out of the 20 3D models are randomly included
in the training set while the remaining 10 models are as-
signed to the test set. Therefore, both of the training and
test set contain exactly 100 3D models with balanced class

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 
EUC
CV
Empirical

Fig. 20 The Precision-Recall plots for three partial-to-partial shape re-
trieval approaches on the SHREC07 test dataset. 1) EUC: the EMD dis-
tance with the Euclidean ground distance; 2) CV: The cross-validation
experimental scheme, where the distance transformation function is
learnt from the SHREC07 training dataset, and is used to perform
shape retrieval on the test dataset. 3) Empirical: Both the learning and
testing of the transformation function are performed on the test dataset.
In this case, the Precision-Recall plot could be over-fitted and is only
representative of the empirical risk.

composition. Then, similar to Section 5.5, we represent each
3D model in the two sets with 150 spin images nearest to a
random interest point to conduct partial-to-partial shape re-
trieval on the two datasets. To test the efficacy of the pro-
posed learning algorithm, the classification of the 3D mod-
els in the training set is employed to learn an all-purpose
distance transformation function. Then, the function is ap-
plied to the feature matching histogram of the test set to
perform partial-to-partial shape retrieval. In this approach,
both the feature-matching histograms of the training set and
test set are computed by the EMD with Euclidean ground
distance, and no class-label information about the test set is
used. The retrieval results of the aforementioned approach
(Cross-Validation) are compared with two alternative meth-
ods on the test set: 1) Empirical: The distance transformation
function is also learnt from the test set; 2) EUC: The EMD
with Euclidean ground distance is used directly to perform
shape retrieval. The precision-recall plots of all the three ex-
perimental settings are compared in Fig. 20.

From Fig. 20, we can see that the “empirical” approach
is only slightly better than the “cross-validation” approach.
However, both of the two methods have much better retrieval
performance than the “EUC” setting. This finding suggests
that the proposed learning algorithm generalizes very well
beyond training data, since there is not much difference if
the learning process is performed on the training set (“cross-
validation” approach) or on the test set (the “empirical” ap-
proach). Besides, the advantage of distance transformation
function over a naı̈ve ground distance definition (EUC) is
demonstrated again.
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Fig. 21 The Precision-Recall plots for six partial-to-partial shape re-
trieval approaches on the SHREC07 200 model database. 1) EUC: the
EMD distance with the Euclidean ground distance (EUC in Fig. 18); 2)
SIG: The EMD distance with the sigmoid transformation function (SIG
in Fig. 18); 3) Em-EUC: The transformation function is learnt from the
SHREC07 200 model database with Euclidean distance induced fea-
ture matching histogram (Learn1 in Fig. 19); 4) Em-SIG: Similar to
Em-EUC, but with the sigmoid function induced feature matching his-
togram (Learn2 in Fig. 19). 5) CV-EUC: The transformation function is
learnt from the PSB-52 3D model database with Euclidean distance in-
duced feature matching histogram; 6) CV-SIG: Similar to CV-EUC, but
learning is performed on the sigmoid function induced feature match-
ing histogram.

Motivated by the fact that the three nonlinear paramet-
ric transformation functions introduced in Section 5.1 work
well across different 3D model databases, we are interested
in examining whether the distance transformation functions
learnt on one database still work well on another heteroge-
neous database. To this end, we consider a more challenging
retrieval task: First, we learn an all-purpose distance trans-
formation on the PSB-52 database. Then, this function is
used to perform shape retrieval on the first 200 models of
the SHREC07 database. Since the two databases are con-
structed by different researchers and having very different
shape classes, this task is much harder than traditional super-
vised learning problems, in which both the training set and
test set are assumed to follow the same, but unknown dis-
tribution. Specifically, we first learn two all-purpose trans-
formation functions from the PSB-52 database, based on the
partial-to-partial feature matching histograms generated by
the EMDs with Euclidean ground distance and the sigmoid
transformation function, respectively. Then, the two trans-
formation functions are applied to the SHREC07 200 model
database to perform partial-to-partial shape retrieval (termed
CV-EUC and CV-SIG, respectively). Note that the feature
matching histogram of the SHREC07 200 model database
is generated by the EMD with Euclidean ground distance.
As a result, no a priori information about the SHERC07
200 model database or its transformation function is used
in these experimental settings.

Fig. 21 compares the performance of the two cross-validation
approaches with four other retrieval settings on the SHREC07
200 model database. We can see from the figure that both
the 5 approaches with a non-linear distance transformation
function have much better retrieval performance than the
EMD with the Euclidean ground distance. More remarkably,
the performance of the two cross-validation schemes (CV-
EUC and CV-SIG) is comparable to or even slightly better
than the two empirical learning schemes (Em-EUC and Em-
SIG). This observation again strongly demonstrates the good
generalization property of our algorithm: The learnt distance
transformation function works equally well on some poten-
tially heterogeneous dataset.

It can be concluded from the experiments above that
the performance improvement of the learnt transformation
function is not simply an artifact of over-fitting to a particu-
lar dataset. It generalizes very well over a broad application
scope. As a result, not only the proposed learning algorithm
is useful for a particular retrieval task at hand, but also it is
able to work well on many pattern recognition and machine
learning problems which involve quantifying the partial sim-
ilarities between feature-sets, e.g., learning the Gram-matrix
for kernel machines, as we pointed out at the end of Section
4.

5.7 Comparison with Previous 3D Partial Shape Matching
Algorithms

It is interesting to compare the performance of our approach
with previous 3D partial shape matching algorithms. To this
end, we use the 30 hybrid query models in the SHREC07
partial matching dataset to retrieve the 400 database models
[31], as the performance of two graph-matching based par-
tial retrieval algorithms [6,9] on the same task is available.

As we have mentioned before, all the 430 shapes in this
database are watertight 3D models. Each of the 400 database
models belongs to one of 20 equal-sized shape classes, and
each of the 30 hybrid query models is highly-relevant or
marginally relevant to several classes of database models,
as they are generated by fusing several parts of different 3D
shapes. The ground-truth classification of these 3D models
is available at [31].

Different from the above experiments on partial shape
retrieval, our task here is to evaluate the partial similarity
between the full shapes of 3D models. As a result, we use
the feature extraction strategy described in Section 5.1, i.e.,
each 3D model is represented by 300 spin image features
that are uniformly distributed on the meshes. To make the
comparison between different algorithms feasible, the “Nor-
malized Discounted Cumulated Gain Vector” (NDCG) [22]
is used in this section for performance evaluation. Similar to
the Precision-Recall plot, higher NDCG curves correspond
to better retrieval results.
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Fig. 22 The performance of our algorithms on the original spin-image
features. Both highly and marginally relevant models are considered.
“EUC” is the EMD distance with Euclidean ground distance and
“Learn” is to learn an all-purpose transformation function based on
the feature matching patterns generated by the “EXP” transformation
function. “EUC*” and “Learn*” are the results of the two algorithms
after removing the influence of the “spring” class.

Fig. 22 shows the performance of two representative al-
gorithmic settings (“EUC” and “Learn”) of our approach.
Details can be found from the caption of Fig. 22. Unfortu-
nately, the performance of these two algorithms is not satis-
factory. Upon a closer look at the retrieval results, we found
that spin image features of the model in the spring class are
degenerated. As a result, these models often appear on the
top of the retrieval list of many query models. This is be-
cause the springs are highly structured 3D shapes with very
large curvatures. The rapid change of the direction of nor-
mals makes the spin images quite unstable. To eliminate this
effect, the distances between unrelated query models to the
spring shapes are set to be a large value (Spring shapes can
be easily identified from the curvature distributions, so this
is feasible). The NDCG curves of “Euc*” and “Learn*” in
Fig. 22 show that the retrieval results are greatly improved.
From the panel (b) of Figure 3 in [31], we can see that the
performance of our algorithms are comparable to, or even
slightly better than the Many-to-Many shape matching ap-
proach [9]. However, the performance of our algorithms still
does not reach that of the sub-part correspondence method
[6].

To further boost the performance of our approach, we
propose a new approach to learn a better base distance func-
tion for spin image features. Our basic observation is that,
since different bins in the spin image descriptor are spa-
tially related, a bin-to-bin Euclidean base distance is not an
ideal choice, a cross-bin base distance could be better. As
a typical example of cross-bin distance between vectors is
the (squared) Mahalanobis distance, we try to learn a Maha-

lanobis distance as the base distance in our framework:

dA(pi, qj) = (pi − qj)TA(pi − qj), (18)

where pi, qj are the i-th and j-th (column) feature of two
3D models, and A is a positive semi-definite matrix. There
are a number of approaches for learning a Mahalanobis dis-
tance, e.g. [11]. However, the class labels of each features
are required in these methods. In our problem, only the class
label of feature-sets are available, so it is necessary to over-
come this bottleneck. To this end, we propose a new learn-
ing scheme similar to the recursive Adaboost learning proce-
dure introduced earlier. In the first step, we compute the fea-
ture matching patterns of two sets: fij by solving the Earth
Mover’s distance with a Mahalanobis ground distance. In
the second step, based on the observation that:∑

i,j

fij(xi − xj)TA(xi − xj)

=
∑
i,j

fij tr
(
(xi − xj)TA(xi − xj)

)
=
∑
i,j

fij tr
(
A(xi − xj)(xi − xj)T

)

= tr

A∑
i,j

fij(xi − xj)(xi − xj)T
 .

(19)

We can directly use the approach [11] to learn the matrix
A in the Mahalanobis distance, since it suffices to replace
(xi − xj)(xi − xj)T in the original optimization procedure
[11] with

∑
(i,j)

fij(xi − xj)(xi − xj)T . The above two steps

are iterated until convergence. More details can be found in
our technical report [45].

Besides, we can always factorize the learned matrix A
as A = RTR, e.g., using Cholesky decomposition, as A is
a positive semi-definite matrix. Then the Mahalanobis dis-
tance can be rewritten as

dA(pi, qj) = [R(pi − qj)]T [R(pi − qj)] . (20)

So if we replace pi and qj with Rpi and Rqj , we can simply
compute the Mahalanobis distance between pi and qj as a
squared Euclidean distance between Rpi and Rqj .

We conduct the aforementioned learning procedure on a
database with 52 models from the Princeton Shape Bench-
mark, obtaining the matrix A and R. Then we project each
spin image feature from pi to Rpi. To avoid the influence
of irrelevant feature pairings, we only use the Mahalanobis
distance as a base distance in EMD, and defining the ground
distance by using a parametric transformation function y =√
x. (This approach is denoted as “Maha” in Fig. 23.) Be-

sides, we also learn an all-purpose transformation function
based on the resulting feature matching histogram (denoted
as “Learn” in Fig. 23). Finally, the affect of the spring class
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Fig. 23 The improved retrieval performance with an improved base
distance.

is removed, resulting “Maha*” and “Learn*”, also shown in
Fig. 23.

Now, we can see that the performance of “Learn*” (the
rightmost NDCG score is 0.66) closely matches the final
performance of sub-part correspondence method (which is
smaller than 0.7) [6](except our approach is lower on a small
range at the left-hand side), and it is better than the Many-
to-Many shape matching approach [9]. This is good news
for our approach since: 1) It is much simpler than the above
two graph matching algorithms and is provably well scale-
up to large databases (by using the metric embedding tech-
niques); 2) Our method is applicable to a wider range of 3D
shape formats, such as meshes with holes, polygon soups
and even oriented point clouds, while the graph matching
algorithms are only tested on watertight 3D shapes without
holes and without topology errors; 3) In our approach, the
local shape descriptor can be selected arbitrarily. In the cur-
rent implementation, we only used the classic spin image de-
scriptor but other more powerful local shape descriptors can
be used to further improve the retrieval performance. Note
that, albeit our current approach currently is not suitable for
handling highly structured shape classes (spring), it can be
compensated by using a structured local shape descriptor
[6]. However, it would be harder for the graph matching al-
gorithm to deal with general 3D shapes which could have
many openings and with many topological errors.

6 Conclusion

In this paper, we propose a novel transformation mechanism
for better evaluating the partial similarity between two fea-
ture sets. Specifically, the robustness of the EMD distance
with respect to irrelevant feature pairings can be greatly im-
proved with the introduction of distance transformation func-
tions. Also, we prove that under certain conditions, the trans-

formation function is able to keep the metric property from
the base distance to the ground distance, thereby enabling
the use of metric embedding methods to scale-up our method
to large databases.

We also propose a supervised learning approach for ap-
proximately learning the distance transformation function
based on the Adaboost algorithm. Specifically, a modifica-
tion of the original Adaboost optimization procedure is de-
veloped to guarantee the monotonicity of the learnt trans-
formation function. The class-specific learning scheme is
also developed to further enhance the power of the learning
method. Finally, extensive experiments on 3D partial shape
retrieval convincingly demonstrate the effectiveness of the
proposed algorithms and their superiorities on a variety of
CBIR applications.
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