
Noname manuscript No.
(will be inserted by the editor)

Meshless Methods for Physics-Based Modeling and
Simulation of Deformable Models

Xiaohu Guo · Hong Qin

Received: date / Accepted: date

Abstract As 3D digital photographic and scanning devices produce higher resolu-

tion images, acquired geometric data sets grow more complex in terms of the modeled

objects’ size, geometry, and topology. As a consequence, point-sampled geometry is

becoming ubiquitous in graphics and geometric information processing, and poses new

challenges which have not been fully resolved by the state-of-art graphical techniques.

In this paper, we address the challenges by proposing a meshless computational frame-

work for dynamic modeling and simulation of solids and thin-shells represented as

point samples. Our meshless framework can directly compute the elastic deformation

and fracture propagation for any scanned point geometry, without the need of con-

verting them to polygonal meshes or higher order spline representations. We address

the necessary computational techniques, such as Moving Least Squares, Hierarchical

Discretization, and Modal Warping, to effectively and efficiently compute the physical

simulation in real-time. This meshless computational framework aims to bridge the

gap between the point-sampled geometry with physics-based modeling and simulation

governed by partial differential equations.

Keywords Meshless Method · Physics-Based Modeling · Physics-Based Simulation ·
Deformable Models

Xiaohu Guo is partially supported by National Science Foundation CCF-0727098. Hong Qin
is partially supported by National Science Foundation IIS-0710819.

X. Guo
Department of Computer Science
University of Texas at Dallas
Tel: +1-972-883-4723
Fax: +1-972-883-2349
E-mail: xguo@utdallas.edu

H. Qin
Department of Computer Science
Stony Brook University
Tel: +1-631-632-8450
Fax: +1-631-632-8334
E-mail: qin@cs.sunysb.edu

2

1 Introduction

A fundamental question in digital modeling and simulation is the choice of geometric

and functional representation: What mathematical description should be chosen to

represent the surface or volume of a 3D object on a digital computer? The diversity

of the application fields of 3D geometry is reflected in a wide variety of geometric

representations that have been proposed in the past. For example, industrial design

applications for car and airplane construction are mostly based on B-splines or NURBS

[9]; medical applications make frequent use of implicit representations such as level

sets [19]; game and movie industry has focused on polygonal representations such as

triangle meshes [7]. The choice of geometric representation is typically guided by the

following considerations: the number of individual primitives, the descriptive power

or approximation order, the power of handling complicated geometry, and the ease of

performing topological changes.

– B-splines and NURBS can represent complex shapes with relatively few primitives,

since each individual spline patch has a high approximation order. However, com-

bining different patches to a consistent surface model of arbitrary topology can be

difficult, since strict global continuity constraints need to be observed. Furthermore,

it is difficult to model high-frequency features or even discontinuity. Some attrac-

tive properties such as local adaptivity and multi-resolution are rather difficult to

achieve.

– Polygonal meshes are easier to handle as they are defined by a set of vertices with

a consistent adjacency graph, but require a higher number of primitives to achieve

the same geometric accuracy. With increasing resolution of the scanning devices,

geometric data sets are becoming more and more complex, lately reaching billions of

sample points for a single model [17]. Since scanners typically produce a collection

of point samples, many reconstruction methods are used to convert the point cloud

into a polygonal representation. Unfortunately, most of these methods do not scale

well with model size, e.g., many techniques based on the Delaunay triangulation

have a worst-case complexity of O(n2), where n is the number of sample points.

Being able to directly process, animate, or simulate point cloud representations

would avoid the need for surface reconstruction entirely.

Nowadays three-dimensional acquisition is an increasingly popular means of cre-

ating surface models. With the dramatic increase of the polygonal complexity of the

acquired graphical models, large scaled point-sampled geometry is becoming ubiqui-

tous in graphics and geometric information processing pipeline. Points have several

unique advantages over traditional primitives such as triangle meshes in modeling, an-

imation, and simulation. For example, they are free of connectivity concerns, which

makes them very suitable for dynamic shape manipulation and physical simulation

when the underlying geometry is undergoing topological changes.

Traditionally in computer animation and physical simulation, meshes are inevitable

for physical simulations since the finite element methods (FEM) require an explicit

mesh structure. However, for some complex physical effects, such as large deforma-

tion and fracture, it will pose grand technical challenges in terms of maintaining the

topological consistency of the underlying meshes. In these cases, efficient and consis-

tent surface (and volumetric) representations are necessary to facilitate geometric and

topological operations.

3

– The finite element interpolation functions are then built upon the mesh, which

ensures the compatibility of the interpolation. However, this procedure is not always

advantageous, because the numerical compatibility condition is not the same as the

physical compatibility condition of a continuum. For instance, in a Lagrangian type

of computations, one may experience mesh distortion, which can either end the

computation altogether or result in drastic deterioration of accuracy. In computer

simulations of very large deformation, a distorted mesh introduces severe errors

in numerical computations. Therefore, it would be computationally efficacious to

discretize a continuum by only a set of nodal points without mesh constraints.

This is the leitmotif of contemporary meshless methods in mechanical engineering,

scientific computing, and computer animation.

– In simulations of failure processes [23], we need to model the propagation of cracks

along arbitrary and complex paths. This problem, in particular, becomes a notori-

ously difficult task using conventional mesh-based computational techniques such

as finite element method or finite difference method. In essence, the underlying

structure of these methods, which stem from their reliance on meshes, impedes the

flexible modeling and natural handling of discontinuities that do not coincide with

the original mesh lines. Therefore, the most viable strategy for dealing with moving

discontinuities in these methods is to remesh in each time step of the integration so

that mesh lines remain coincident with the discontinuities throughout the simula-

tion. However, this can introduce numerous difficulties for data management, such

as the strong need to map between meshes in consecutive stages of the simulation,

which inevitably results in degradation of both accuracy and complexity for system

implementation. In addition, model remeshing becomes an unavoidable burden. In

sharp contrast, meshless methods can overcome the above difficulties associated

with mesh structure, and avoid complex remeshing operations and the associated

problems of element cutting and mesh alignment sensitivity common in FEM.

In this paper, we try to build high-fidelity meshless computational models of the

point-sampled scanned geometry in the physical world. The objective is to unify com-

plex point-sampled geometry, easy topological change, realistic physical properties and

behavior in a single meshless framework. Unlike meshes or splines, the point-sampled

geometry representation has no intrinsic differential structure, which make it very hard

to incorporate rigorous physical model from continuum mechanics. In this paper, we

introduce our meshless simulation framework, in which the partial differential equa-

tions (for dynamic physical simulation) can be applied and solved directly over point

samples via Moving Least Squares (MLS) shape functions defined on the parametric

domain without explicit connectivity information. Our meshless framework can per-

form efficient simulation for elastic thin-shell and solid deformations. For thin-shell

simulation, the simulation domain is not naturally given by the point geometry, which

make it necessary to utilize parameterizations for the point-sampled surfaces. For solid

deformation, the number of volumetric nodes is typically prohibitive for real-time sim-

ulation. We exploit the methodology of Modal Analysis and adapt the Modal Warping

technique into our volumetric meshless simulation framework to achieve real-time ma-

nipulation and deformation.

The remainder of this paper is organized as follows. In section 2 we briefly review

the prior work utilizing meshless methods for physics-based modeling and simulation.

In section 3 we describe the detailed theoretical derivations for the meshless method,

particularly the Moving Least Squares method. In section 4 we describe the hierarchical

4

discretization methods for our meshless framework. For solid simulation, we use octree

discretization based on implicit functions of the point-set surface (section 4.1). For

thin-shell simulation, we use quadtree discretization based on the global conformal

parameterization of the surfaces (section 4.2). In section 5 we describe the differential

equations used to represent the solid and thin-shell dynamics, and the Modal Warping

technique that we use to solve the dynamic system in real-time. Section 6 shows the

statistics and performance data of our experimental results. Finally, we conclude this

paper with several possible directions for future work in section 7.

2 Previous Work

Meshless (mesh-free) methods [4,18] have been developed in the field of mechanical

engineering to enable solving partial differential equations (PDEs) numerically. The

meshless computation is based on a set of scattered nodes without having to recourse

to an additional mesh structure. The meshless methods require only a set of nodes

distributed across the entire analysis domain. The shape function associated with each

node is then constructed to approximate (or interpolate) the field functions using their

values at the sampling nodes in the analysis domain without explicit connectivity,

while satisfying certain basic requirements, such as compact support for computational

accuracy and efficiency, stability and consistency to ensure numerical convergence, etc.

Meshless method was introduced into the graphics and animation field by Desbrun

and Cani [8] using a particle system coated with a smooth iso-surface for animating soft

inelastic substance which undergo topological changes. Later they applied Smoothed

Particle Hydrodynamics (SPH) to simulate highly deformable bodies. Müller et al. [21]

presented a method for modeling and animating elastic, plastic, and melting volumetric

objects based on the MLS approximation of the displacement field. Most recently, they

presented a geometrically motivated approach in [22] for simulating deformable point-

based objects. Pauly et al. [27] simulated volumetric meshless fracture with a highly

dynamic surface and volume sampling method that affords complex fracture patterns

of interacting and branching cracks. Guo and Qin [11] combined meshless method with

modal analysis framework to provide real-time deformation of volumetric objects. The

most relevant work to our meshless thin-shell simulation is the approach proposed

by Wicke et al. [29], which uses locally defined fibers to approximate the differential

surface operators of the thin shell functional.

3 Meshless Methods

During the last two decades, meshless methods have been developed that enable solv-

ing PDEs numerically, based on a set of scattered nodes without having recourse to an

additional mesh structure (which must be put in place for the traditional finite element

methods). The unique advantages of meshless methods are multifold: (1) there is no

need to generate a mesh of nodes – they only need to be scattered within the analysis

domain, which is much easier to handle in principle; (2) moving discontinuities such as

cracks can be naturally facilitated, since no new mesh needs to be constructed as in

finite element methods, and the computational cost of remeshing at each time step can

be avoided entirely; (3) properties such as spatial adaptivity (node addition or elimi-

nation) and shape function polynomial order adaptivity (approximation/interpolation

5

types) can streamline the adaptive model refinement and simulation in both time and

space; and (4) data management overhead can be minimized during simulation. In

1994, Belytschko et al. proposed the Element Free Galerkin (EFG) method [2] to solve

linear elastic problems, specifically the fracture and crack growth problems [3], in which

the Moving Least Squares (MLS) interpolant was employed in a Galerkin procedure.

In this paper we focus on the Element Free Galerkin method, mainly because it has

been well-developed with mature techniques, and it has shown a superior rate of con-

vergence and high efficiency in modeling moving interfaces. Other variants of available

mesh-free methods can also be adopted into our prototype system in a straightforward

way without theoretical obstacles.

In a nutshell, the meshless methods require only a set of nodes distributed across

the entire analysis domain. The shape function associated with each node is then

constructed to approximate (or interpolate) the field functions using their values at

the sampling nodes in the analysis domain. For finite element methods, however, the

shape functions are constructed utilizing the mesh of the elements. In sharp contrast,

the shape functions in meshless methods are constructed using only the sampling nodes

without any connectivity, while satisfying certain basic requirements, such as compact

support for computational accuracy and efficiency, stability and consistency to ensure

numerical convergence, etc. The shape functions in the EFG method are constructed

by using the MLS technique, or alternatively on the basis of reproducibility conditions

(note that both approaches can arrive at the same expressions for the shape functions),

and it can provide continuous and smooth field approximation throughout the analysis

domain with any desirable order of consistency. To make our paper self-contained,

we present a brief introduction of the MLS approximation for the definition of shape

functions in the following subsection.

3.1 Moving Least Squares Shape Functions

The moving least squares method can be traced back to its original application in

scattered data fitting, where it has been studied under different names (e.g., local

regression, “LOESS”, weighted least squares, etc.) [16].

We associate each node I with a positive weight function wI of compact support.

The support of the weight function wI defines the domain of influence of the node: ΩI =

{x : wI(x) = w(x,xI) > 0}, where w(x,xI) is the weight function associated with node

I evaluated at position x. The approximation of the field function f at a position x

is only affected by those nodes whose weights are non-zero at x. We denote the set of

such nodes the active set A(x). Figure 1 illustrates the meshless computational model

with rectangular and circular local influence domains, respectively.

Let f(x) be the field function defined in the analysis domain Ω, and fh(x) the

approximation of f(x) at position x. In the MLS approximation, we let

fh(x) =

m∑

i=1

pi(x)ai(x) = pT (x)a(x), (1)

where pi(x) are polynomial basis functions, m is the number of basis functions in the

column vector p(x), and ai(x) are their coefficients, which are functions of the spatial

coordinates x. In our implementation, we utilize 3-D linear basis functions: pT
(m=4) =

6

Analysis Domain

Influence Domain Node

Object Boundary Analysis Domain

Influence Domain Node

Object Boundary
(a) (b)

Fig. 1 The meshless computational model with rectangular (a) and circular (b) support,
respectively.

{1, x, y, z} in the interest of time performance. We can derive a(x) by minimizing a

weighted L2 norm:

J =
∑

I∈A(x)

w(x− xI)[pT (xI)a(x)− fI]2, (2)

where fI is the nodal field value associated with the node I. We can rewrite Equation

(2) in the form:

J = (Pa− f)T W(x)(Pa− f), (3)

where

fT = (f1, f2, . . . fn),

P =

p1(x1) p2(x1) · · · pm(x1)

p1(x2) p2(x2) · · · pm(x2)
...

...
. . .

...

p1(xn) p2(xn) · · · pm(xn)

 ,

and

W(x) =

w(x− x1) 0 · · · 0

0 w(x− x2) · · · 0
...

...
. . .

...

0 0 · · · w(x− xn)

 .

To find the coefficients a(x), we obtain the extremum of J by setting

∂J

∂a
= A(x)a(x)−B(x)f = 0, (4)

where the m×m matrix A is called moment matrix :

A(x) = PT W(x)P,

B(x) = PT W(x).

7

So we can obtain:

a(x) = A−1(x)B(x)f . (5)

And the shape functions are given by:

φ(x) = [φ1(x), φ2(x), . . . φn(x)] = pT (x)A−1(x)B(x). (6)

If we consider the field function as a function of both space and time f(x, t), the

approximation in the analysis domain Ω can be written as:

f(x, t) ≈ fh(x, t) =
∑

I∈A(x̂)

φI(x)fI(t), (7)

The moment matrix A may be ill-conditioned when (i) the basis functions p(x) are

(almost) linearly dependent, or (ii) there are not enough nodal supports overlapping

at the given point, or (iii) the nodes whose supports overlap at the point are arranged

in a special pattern, such as a conic section for a complete quadratic polynomial basis

p(x). Note that the necessary condition for the matrix A to be invertible is

∀x ∈ Ω card{I : x ∈ ΩI} > m, (8)

which can be automatically guaranteed using the octree-based (for volumetric models)

and quadtree-based (for surface models) node placement method to be explained in

the next section. Furthermore, the spatial derivatives of the shape functions can be

obtained by noting that the differentiation of Equation (4) yields:

A,ia + Aa,i = B,if ,

where a,i denotes ∂a
∂xi

. Then we can obtain the derivative of a,i by:

a,i = A−1(B,if −A,ia). (9)

So the factorization of A in Equation (6) can be re-used for the computation of the

derivatives with little extra cost.

3.2 Basis and Weight Functions

To obtain a certain consistency of any desirable order of approximation, it is necessary

to have a complete basis. The basis functions p(x) may include some special terms such

as singularity functions, in order to ensure the consistency of the approximation and

to improve the accuracy of the results. The following gives two examples of complete

bases in 3 dimensions for first and second order consistency:

Linear : pT
(m=4) = {1, x, y, z}, (10)

Quadratic : pT
(m=10) = {1, x, y, z, x2, xy, xz, y2, yz, z2}. (11)

The weight functions w(x,xI) play important roles in constructing the shape func-

tions. They should be positive to guarantee a unique solution for a(x); they should

decrease in magnitude as the distance to the node increases to enforce local neigh-

bor influence; they should have compact supports, which ensure sparsity of the global

8

matrices. They can differ in both the shape of the domain of influence (e.g., paral-

lelepiped centered at the node for tensor-product weights, or sphere), and in functional

form (e.g., polynomials of varying degrees, or non-polynomials such as the truncated

Gaussian weight). In our implementation, we choose the parallelepiped domain of in-

fluence for the ease of performing numerical integrations, and utilize the composite

quadratic tensor-product weight function:

w(x,xI) = c(
x− xI

dmxI
)c(

y − yI

dmyI
)c(

z − zI

dmzI
), (12)

where dmxI , dmyI , and dmzI denote half of the length of the supporting parallelepiped

sides (for the tensor-product weights) along three directions, respectively. The compo-

nent function c(s) is analytically defined as:

c(s) =

(1− 2s2) for 0.5 > s ≥ 0

2(1− s)2 for 1 > s ≥ 0.5

0 for s ≥ 1

(13)

One key attractive property of MLS approximations is that their continuity is

directly related to the continuity of the weighting functions. Thus, a lower-order poly-

nomial basis p(x) such as the linear one can still be used to generate highly continuous

approximations by choosing appropriate weight functions with certain smoothness re-

quirements. Therefore, compared to the finite element method, there is no need for

post-processing to generate smooth stress and strain fields. This can facilitate the

direct and fast visualization of the physical properties of volumetric objects for me-

chanical analysis. Note that the FEM equivalents can also be reached if the weight

functions are defined as piecewise-constant entities over each influence domain.

4 Hierarchical Discretization for Meshless Dynamics

The general idea of meshless methods is to create overlapping patches ΩI comprising a

cover {ΩI} of the domain Ω with shape function φI subordinate to the cover ΩI . One

way to create the meshless discretization is to start from an arbitrarily distributed set of

nodes. No fixed connections between the nodes are required. The nodes are the centers

of the overlapping patches Ωi, which can be either parallelepiped or spherical domains.

However, due to the rather unstructured distribution of nodes over the domain some

algorithmic issues may arise: (1) a discretization without structure does not allow

determination of the patches that contribute to a certain integration point without

performing an expensive global search; (2) the moment matrix A in moving least

squares shape function may become invertible if the patch covering conditions (e.g.,

Equation 8) are not satisfied; (3) the effective handling of the interaction between

scattered nodes with the geometric boundary (e.g. the surface of a volumetric model in

our solid simulation system) becomes very difficult. From the implementation’s point of

view, it is very important that the patches are clearly defined. The interaction between

the patches themselves, and between the patches and the boundary, has to be well

understood and easily accessible during the runtime of the system execution. These

problems can be solved perfectly with the assistance of octree discretization (for solid

models) and quadtree discretization (for thin-shell models).

9

4.1 Octree-Based Discretization for Solid Models

In our meshless volumetric simulation system, the input data is an unstructured point

cloud comprising a closed manifold surface. If we conduct our dynamic simulation

solely on surface points, many difficulties arise. First, performing inside/outside tests

based entirely on surface point information is a forbidding task with many ambiguities.

Second, point insertion is unavoidable if a deformation is large and in fact spreads out

across the model rather significantly, in which case gaps will occur at the current

resolution. To ameliorate, we compute a volumetric distance field for the input surface

points. Such a distance field, which expands to the entire volumetric domain, will also

aid in the selection of volumetric points at the interior of solid objects for the dynamic

simulation governed by the EFG method. Let us first briefly review some relevant

work which leads to the construction of octree-based distance fields for point surfaces.

Pauly et al. [26] rely on the moving least squares surface projection operator for both

inside/outside tests and point insertion. However, ambiguities would still occur in many

degenerate cases if we only use the moving least squares surface projection operator

[30]. Guo et al. [10] proposed to embed the point set surfaces into volumetric scalar

fields to facilitate surface representation, surface editing, dynamic point re-sampling,

collision detection, etc. Implicit surfaces can be considered a natural and powerful

tool for modeling unstructured point set surfaces for the following reasons: (i) the

inside/outside test can be performed by directly utilizing the implicit function; (ii) the

topology of the implicit surface can be easily updated without any ambiguity. Figure

2 (a) shows the visualization of distance fields using a color-coded 2D slice.

(a) (b) (c)

Fig. 2 (a) Distance field visualization using a color-coded 2D slice; (b) Octree-based dis-
cretization; (c) Volumetric node placement.

In our implementation, we utilize multi-level partition of unity(MPU) implicit sur-

face construction method proposed by Ohtake et al. [24]. The multi-level approach

allows us to construct implicit surface models from large point sets based on an octree

subdivision method that adapts to variations in the complexity of the local shape.

We also observed that the octree discretization of the volume can provide a structure

to construct the patches which would provide a priori information with respect to

the size and interactions of the patches [15]. The octree subdivides the volume of an

object represented as point set surface into cubes, giving a non-overlapping discrete

representation of the domain, on which efficient numerical integration schemes can be

employed. The octants serve as the basic unit from which to construct the patches and

10

allow the efficient determination of patch interactions. In the following subsection, we

will describe the use of the octree structure as the basic building block to help us define

our mesh-free patches and integration cells.

4.1.1 Octree-Based Volumetric Node Placement

An octree structure can be defined by enclosing the object domain of interest Ω in a

cube which represents the root of the octree, and then subdividing the cube into eight

octants of the root by bisection along all three directions. The octants are recursively

subdivided to whichever levels are desired. Note that the terminal level used for our

node placement does not need to coincide with the terminal level of the MPU implicit

surface construction. Actually, in our implementation, the size of the terminal octant

used for our volumetric node placement (for mesh-free simulation) is much larger than

the terminal octant used for MPU implicit surface reconstruction because the surface

point density is much larger compared to the volumetric node density. Figure 2 (b)(c)

shows the octree-based discretization for the MPU implicit surface construction and

volumetric node placement. We restrict the octree to be a one level adjusted octree,

where the level difference of all terminal octants and their face and edge neighbors is

no more than one. This restriction can facilitate the automatic satisfaction of patch

covering condition (Equation (8)) as we will discuss later.

Fig. 3 The definition of interior, exterior, interior boundary, and exterior boundary octants
for mesh-free simulation.

Since we already have the implicit surface representation of the object, we can

easily classify each terminal octants as interior (I) octants OI , exterior (E) octants

OE , and boundary (B) octants OB (see Figure 3). Interior octants are those that

are fully embedded in the interior of the geometric domain Ω. Exterior octants are

those that are located totally outside of Ω, and boundary octants are those that are

intersected by the boundary of Ω. The boundary octants are further classified into

interior boundary (IB) OIB and exterior boundary (EB) OEB octants. The simple rule

is that the centroid of an IB octant is located within the domain, whereas the centroid

of an EB octant is located outside the domain. After the geometric classification, we

can place a volumetric node (for mesh-free dynamics) at the center of each interior (I)

and boundary (IB, EB) octant. For an EB octant, the node should be displaced by

projecting from its center onto the implicit surface to ensure that each node resides in

11

Ω. Let octant Oi ∈ OI ∪ OB and node i reside in Oi, the open cover associated with

node i is a cube of size α · size(Oi) centered around node i (see Figure 4 (a)). Both the

volumetric nodes and their open cover regions are necessary constituents for mesh-free

dynamics.

octant

open cover

a size(OI)

size(OI)

node I

integration point

integration cell

(a) (b)

Fig. 4 (a) The definition of open cover {ΩI} regions based on the octree structure for mesh-
free patches; (b) The interaction between open covers and integration cells, and the integration
points for Gaussian quadrature.

The open cover construction based on terminal octants can provide the structure

needed to perform efficient neighboring search and patch intersection test. It has been

proved in [15] that by choosing a suitable size for α, the validity of the open cover can

be guaranteed a priori. For example, for a linear basis p(x)T(m=4) = {1, x, y, z}, any

point in the domain will be covered by at least 4 patches if we choose α to be 3. The

generation of an octree is much more efficient than a finite element mesh in practice.

Furthermore, the octree allows refinement of the discretization in areas of singularities

if necessary (e.g., near the crack surface).

4.1.2 Octree-Based Gaussian Integration for Matrix Assembly

In order to assemble the entries of the system matrices, such as the mass matrix or

stiffness matrix, we need to integrate over the problem domain. This can be performed

through numerical techniques such as Gaussian quadrature, using the underlying in-

tegration cells. The integration cells can be totally independent of the arrangement of

nodes. The integration cells are used merely for the integration of the system matrices

but not for field value interpolation. In our octree-based discretization scheme, since

the terminal octants do not overlap (except on their shared boundaries), we can fur-

ther subdivide the terminal octants OI and OB into smaller cells and use them as the

integration cells (see Figure 4 (b)). There may exist some integration cells that do not

entirely belong to the analysis domain. We can easily separate the portion of the cell

which lies outside of the domain by evaluating the implicit function (used for repre-

senting the surface distance field). The creation of the open cover and the integration

cells, as described here, eliminates any global searching for members of the open cover

during matrix assembly and time integration. With the prior knowledge of the value

α and utilizing the direct face neighbor links, all patches covering a integration point

x ∈ Ω can be found in O(1) time.

12

4.2 Parameterization-Based Quadtree Discretization for Thin-Shell Models

The implicit surface representation mentioned above is essentially volumetric embed-

ding. It does not admit a natural, 2-dimensional domain for the effective analysis

of point-sampled surfaces. As a result, simulating physical behavior of point-sampled

thin-shells becomes rather difficult, compared with the direct simulation of volumetric

models. Although the volumetric simulation mechanism is both natural and intuitive, it

is essentially plagued by the additional computational burden in both time and space.

In many real-world applications, such as the deformation of the wings of the gargoyle,

or even open surfaces like a plate, thin-shell simulation is much better than volumetric

one, since one dimension of the surface body is much smaller than the other two, and

the volumetric simulation may fail if the neighboring volumetric nodes are arranged

in degenerate locations, such as a plane. To combat the deficiency associated with the

dimensional increase, we can utilize the global conformal parameterization [12] of the

point-sampled surfaces, to obtain a natural 2-dimensional parametric domain for simu-

lation node placement and numerical integration. Figure 5 shows the global conformal

parameterization for the David head surface model. Figure 6 shows the simulation

nodes (and their support radii) placed on the Moai surface model and it corresponding

parametric domain.

(a) (b) (c) (d)

Fig. 5 The global conformal parameterization (b) for the David head model (a). The checker-
board texture on the parametric domain (d) can be mapped onto the surface (c).

(a) (b) (c)

Fig. 6 The simulation nodes placed on the Moai surface model (a) and its parametric do-
main (b). The larger translucent white hemispheres represent the support radii of two of the
simulation nodes. (c) shows the deformed Moai surface using the set of simulation nodes.

13

One important advantage of meshless method is the flexibility of the sampling pat-

tern. In the thin-shell simulation, it would be more desirable to have a initial sampling

scheme such that the sampling nodes are uniformly distributed on the manifold surface

(Figure 8 (a)). Similar to the idea of using octree structure to facilitate the volumetric

sampling of the volumetric space in Section 4.1, we utilize a quadtree structure on

the parametric domain. The subdivision depth of the quadtree is dependent on the

conformal factor λ. Suppose the size of the quadtree cell is l. If λl is larger than a

threshold (i.e. the surface patch corresponding to the cell is still large enough), we

keep subdividing the cell into 4 child-cells. We place the sampling nodes based on the

quadtree discretization of the parametric plane. Since the conformal factors in u and v

directions are equivalent, we can choose simple “symmetric” supporting region (such

as squares, or disks) for each simulation nodes. In our implementation, we use square-

shaped supporting region for the ease of performing numerical integrations. For a node

i reside in quadtree cell Qi, its supporting region is a square of size η ·size(Qi) centered

around node i. We restrict the quadtree to be a one-level adjusted quadtree, where the

level difference of all terminal cells and their edge neighbors is no more than one. This

restriction can facilitate the automatic satisfaction of patch covering condition in order

to make the moment matrix invertible. It has been proved in [15] that by choosing a

suitable size for η, the validity of the supporting region can be guaranteed a priori. For

example, for a linear basis p(x)T = [1, θ1, θ2], any point in the domain will be cov-

ered by at least 3 patches if we choose η to be 3. The supporting region construction

based on terminal quadtree cells can provide the structure needed to perform efficient

neighboring search and patch intersection test. The quadtree cells can be also utilized

as integration cells to perform numerical integration similar to the volumetric case in

Section 4.1.2.

(a) (b)

Fig. 7 (a) The quadtree structure on the parametric plane for placing simulation nodes; (b)
the dynamic re-sampling near the crack line (blue curve).

In the parameterization stage, the seams between different parametric patches are

represented by additional point set curves, which are generated by tracing integral

curves. These additional point set curves are only used in the parameterization step,

i.e., they are not added to the original point set surface after the parameterization. In

the simulation stage, the parametric seams are maintained in a table indicating the

connection correspondence of different parametric patches. The simulation nodes are

not duplicated on the patch boundaries. The support of the shape function associated

with each simulation node is not restricted to the parametric patch where it resides.

In fact, the support can be expanded to other parametric patch if the node is close to

14

the boundary of its patch (see Figure 8 (c)). So the behaviors of the nodes across the

boundaries are consistent with non-boundary nodes without any unnatural artifact.

(a) (b) (c)

Fig. 8 (a) Uniform sampling nodes on the surface; (b) the 4 parametric planes; (c) the sup-
porting regions of two simulation nodes are shown in pink and green; their overlapping region
is shown in yellow.

When a crack is generated in a body, the dependent variables (e.g. the displace-

ments, etc.), must be discontinuous across the crack. Furthermore, the support of the

nodes affected by the discontinuities need to be modified accordingly to incorporate

the proper behavior of the shape functions and its derivatives. Similar to the approach

of [27], we use the transparency criterion proposed in [25] to allow partial interaction of

nodes in the vicinity of the crack front. Note that all these operations can be easily per-

formed on the 2D parametric domain. We need to perform dynamic up-sampling (node

insertion) during the crack simulation, in order to maintain numerical stability even for

an initially adequately sampled model. New simulation nodes need to be inserted in the

vicinity of crack lines. We take the same criterion as [27] to determine under-sampling

at each node based on transparency weights. If the transparency weights becomes too

small due to a nearby crack line, we subdivide the quadtree cell associated with the

simulation node into 4 child-nodes (see Figure 7 (b)).

5 Dynamic Deformation System

In our meshless approximation, the motion parameters of the material point x, i.e.,

the displacements u, velocity u̇, and acceleration ü, can be approximated by using the

moving least squares shape functions φI(x) as:

u(x, t) =
∑

I

φI(x)uI(t), (14)

u̇(x, t) =
∑

I

φI(x)u̇I(t),

ü(x, t) =
∑

I

φI(x)üI(t).

15

Note that uI , u̇I , and üI are not the nodal values of displacements, (velocities, etc.),

but rather nodal parameters without a direct physical interpretation, because the shape

functions φI(X) produce approximation, not interpolation of the field values. The par-

tial derivatives with respect to the referencing coordinates xk can be obtained simply

as:

u,k(x, t) =
∑

I

φI,k(x)uI(t).

5.1 Dynamic Elastic Solids

We use the Euler-Lagrange equations for the elastic deformation of solid models:

d

dt
(
∂T (u̇)

∂u̇
) + µu̇ +

∂V (u)

∂u
= Fext, (15)

where the kinetic energy T and elastic potential energy V are functions of u̇ and u,

respectively. The term µu̇ is the generalized dissipative force, and Fext is a generalized

force arising from external body forces, such as gravity.

The kinetic energy of the moving body can be expressed as:

T =
1

2

∫

Ω

ρ(x)u̇ · u̇dΩ =
1

2

∑

I,J

MIJ u̇I · u̇J , (16)

where ρ(x) is the mass density of the body, and MIJ =
∫

Ω
ρ(x)φI(x)φJ (x)dΩ. Then

we can have:
d

dt
(
∂T (u̇)

∂u̇
) = Mü, (17)

where the matrix M composed of the elements MIJ is called the mass matrix.

The elastic potential energy of a body can be expressed in terms of the strain tensor

and stress tensor. The strain is the degree of metric distortion of the body. A standard

measure of strain is Green’s strain tensor:

εij =
∂ui

∂Xj
+

∂uj

∂Xi
+ δkl

∂uk

∂Xi

∂ul

∂Xj
. (18)

Forces acting on the interior of a continuum appear in the form of the stress tensor,

which is defined in terms of strain:

τij = 2G{ ν

1− 2ν
tr(ε)δij + εij}, (19)

where tr(ε) =
∑

ij δijεij . The constant G is called the shear modulus, which determines

how strongly the body resists deformation. The coefficient ν, called Poisson’s ratio, de-

termines the extent to which strains in one direction are related to those perpendicular

to it. This gives a measure of the degree to which the body preserves volume. The

elastic potential energy V (u) is given by the formula:

V = G

∫

Ω

{ ν

1− 2ν
tr2(ε) +

∑

ijkl

δijδklεikεjl}dΩ, (20)

By combining the above Equations (14), (18), and (23), we can formulate the

derivatives of V (with respect to u) as polynomial functions of u, the coefficients of

which are integrals that can be pre-computed using the techniques mentioned in Section

4.1.2.

16

5.2 Dynamic Elastic Thin-Shells

For any point-sampled surface, if we assume that one dimension (i.e. the thickness),

of the surface body is significantly smaller than the other two dimensions, we can

consider the point-sampled surface as a thin-shell. In the Kirchhoff-Love thin shell

framework, the deformation of the surface body is fully described by the deformation

of the middle surface represented by point-samples. Let ϕ denote the position of a

point on the middle surface of the shell, and let a3 be the unit director vector which

is normal to the shell surface. Given the global parameterization of the point-sampled

surfaces, we can describe the positions of any material point in the reference (denoted

r̄) and deformed (denoted r) configurations of the shell by:

r̄(θ1, θ2, θ3) = ϕ̄(θ1, θ2) + θ3ā3(θ1, θ2), (21)

r(θ1, θ2, θ3) = ϕ(θ1, θ2) + θ3a3(θ1, θ2), (22)

where θ1 and θ2 are parameters of the point-sampled middle surface, and θ3 (−h
2 ≤

θ3 ≤ h
2) is in the thickness direction.

The precise form of the membrane and bending strain and stress matrices are given

in [6]. Similar to the elastic solids, we use the Euler-Lagrange equation (24) for our

dynamic thin-shell deformation. The kinetic energy of the moving thin-shell is defined

similar to the elastic solids in equation (16), except that the integration domain Ω is

the global conformal parametric domain. The elastic potential energy V is given by

the formula:

V =

∫

Ω

[
Eh

1− ν2
αT H̃α +

Eh3

12(1− ν2)
βT H̃β]dΩ. (23)

where α and β are the membrane and bending strains respectively, H̃ is the stan-

dard constitutive matrix, the constant E is Young’s modulus, and the coefficient ν is

Poisson’s ratio. More specific derivations can be found in [6].

5.3 Solving the Dynamic System

The system of ordinary differential equations which results from the application of

the Element-free Galerkin discretization of the spatial domain can either be integrated

directly, or analyzed by mode superposition. That is, the time dependent solution can

be expressed as the superposition of the natural (or resonant) modes of the system.

In the following section, we will briefly introduce some basics of Modal Analysis. More

detailed discussions can be found elsewhere [28,14,13,5].

5.3.1 Basics of Modal Analysis:

Consider the discretized Euler-Lagrange equations for elastic deformation:

Mü(t) + Cu̇(t) + Ku(t) = F(t) (24)

where M, C, and K are the mass, damping and stiffness matrices, respectively, F is the

external load vector and u(t) is the vector of nodal displacements. Under the commonly

adopted Rayleigh damping assumption, we can replace the damping matrix with C =

αM + βK, where α and β are weighting coefficients. For linear elasticity models, both

17

M and K are constants. Let the columns of Ψ be the solution to the generalized

eigenvalue problem Kx = λMx, and Λ be the diagonal matrix of eigenvalues, then

equation (24) can be transformed to:

z̈ + (αI + βΛ)ż + Λz = ΨT F, (25)

where z = Ψ−1u is the vector of modal amplitudes, and Ψ is called modal displacement

matrix whose i-th column represents the i-th mode shape (see Figure 9). The decou-

pled ODEs in Equation (25) can be computed independently and combined by linear

superposition. The computational loads can be further reduced by removing modes

that are too stiff to be observed (corresponding to higher eigenvalues). So we can take

only l dominant columns of Ψ, to reduce the amount of computation significantly.

(a) (b) (c) (d) (e)

Fig. 9 (a) is the beam model before deformation; (b)-(e) show the 6th, 7th, 8th, and 11th

mode shapes, respectively.

5.3.2 Modal Warping for Rotational Deformation:

Our Meshless Modal Analysis framework is build upon the Modal Warping technique

proposed by Choi and Ko [5]. Their innovative approach tracks the local rotations that

occur during the deformation based on the infinitesimal rotation tensor, and warps the

pre-computed modal basis in accordance with the local rotations of the mesh nodes.

For the space limit, we only briefly introduce their general ideas here. More specific

technical details and proofs can be found in [5].

Considering an infinitesimal deformation with displacement u, the rotation tensor

is defined as:

ω =
1

2
(∇× u)× = w×, (26)

where ∇×u is the curl of the displacement, w× denotes the standard skew-symmetric

matrix of vector w. Here w = 1
2 (∇ × u) can be considered as a rotation vector that

causes the rotation by angle ‖w‖ around the unit axis w/‖w‖. In the Modal Analysis

setting, the rotation vector can be expressed in terms of the modal amplitude z:

w(x) =
1

2
(∇×)Φ(x)Ψz (27)

where Φ(x) is the vector of MLS shape functions evaluated at position x.

The basic idea of the Modal Warping approach is to embed a local coordinate

frame at each simulation node (see Figure 10). The rotation matrix Ri of the local

coordinate frame associated with node i can be computed from its rotation vector wi.

For a general non-linear elastic deformable model, the stiffness matrix K(u) is not a

18

(a) (b)

Fig. 10 A solid rabbit model before (a) and after (b) deformation. The green spheres are the
discretized simulation nodes inside the rabbit surface. The local coordinate frames associated
with the simulation nodes are rotated during the deformation.

constant. In order to apply the linear Modal Analysis method, it has been shown in [5]

that the non-linear Euler-Lagrangian equations

Mü + Cu̇ + K(u)u = F (28)

can be approximated using the displacement uL measured from each local orientation

frame:

MüL + Cu̇L + KuL = RT F (29)

where R = [δijRi] is the block diagonal rotation matrix for all the nodes. Actually

there are two basic assumptions to guarantee the validity of this approximation (please

refer to [5] for the details and proofs). And we found that these assumptions can be

directly applied to our meshless setting without influencing its validity. Using modal

decomposition: uL(t) = ΨzL(t), the linear elastodynamic equation (29) for uL can be

reduced to a set of decoupled ODEs:

z̈L + Cz ż
L + Kzz

L = ΨT (RT F). (30)

where Cz = (αI + βΛ) and Kz = Λ are both diagonal matrices. We solve the above

decoupled ODEs using implicit time integration. We take an approach similar to [1] by

making a first-order approximation of the total force at the next time step, to get the

following linear system:

{
∆z = h(ż0 + ∆ż)

∆ż = h(F0 −Kz(z0 + ∆z)−Cz(ż0 + ∆ż))

where h is the size of the time step, z0 and ż0 are the current modal amplitude and

velocity, and ∆z and ∆ż are their expected change in the next time step. By regrouping,

we obtain

Az∆ż = bz (31)

where

Az = I + hCz + h2Kz

and

bz = h (F0 −Kzz0 − (Cz + hKz)ż0)

Note that Az is a diagonal matrix, which makes equation (31) to be solved efficiently.

19

5.3.3 Manipulation constraints

In order for the users to interact with the simulated objects, position and orientation

constraints are important and must be enforced. In general, the MLS shape functions

lack the Kronecker delta function property and result in u(xI) 6= uI . The position and

orientation constraints (Cp and Co, respectively) can be formulated as:

Cp(xc) = Φ(xc)u(t)− dc(t) = 0

Co(xc) =
1

2
(∇×)Φ(xc)u(t)−wc(t) = 0

where xc is the constrained position of the object, dc(t) is the desired displacement,

and wc(t) is the desired orientation, which are known a priori. If we express both the

position and orientation constraints in terms of the modal amplitude z, they can be

simply written as:

C = Acz− bc = 0 (32)

where Ac is a k×n constraint matrix (k is the number of constraints), and each row of

Ac represents a linear constraint on z, and the vector bc represents the values of these

constraints. The constraint condition (32) can be integrated into the system equation

(31) by Lagrange multipliers. In our implementation, we replace the constraint equation

C = 0 by the damped second-order equation C̈ + 2ηĊ + γ2C = 0, where η and γ are

stabilization factors [20]. So we can obtain the constrained equations of motion:

[
Az AT

c

Ac 0

][
∆ż

λh

]
=

[
bz

h(−2ηĊ− γ2C)

]
. (33)

Since both the number of selected modes l and the number of constraints k are typically

small (l ≤ 128, k ≤ 20 in all of our examples), equation (33) could be solved in real-

time.

6 Experimental Results

The meshless simulation and rendering parts of our system are implemented on a

Windows XP PC with dual Intel Xeon 2.8GHz CPUs, 2.0GB RAM, and an nVidia

GeForce Fx 5900 Ultra GPU. The entire point-based rendering pipeline is built upon

Pointshop3D [32]. We have conducted extensive experiments on various point-sampled

surface data sets, for both solid and thin-shell simulations.

Table 1 shows the model statistics and performance data for our meshless solid

simulation based on the modal warping technique. For all the data sets in the elastic

solid simulation, the MLS pre-computation for the system matrices takes less than 10

minutes, while the modal decomposition takes less than 1 minute. Figure 11 shows the

deformation of the Santa Claus model based on users’ manipulation constraints on its

hands and feet. Figure 12 shows the deformation of the balljoint model under users’

manipulation with the bottom fixed.

Table 2 shows the performance data for our meshless thin-shell simulation based

on global conformal parameterization. We use the implicit time integration method

for the thin-shell simulation, which has been demonstrated to be very stable. The

initial numbers of nodes in the examples of gargoyle, bunny, rocker arm, and Iphigenie

simulations are only around 500. The elastic deformations of the gargoyle (Figure 13),

20

Table 1 The model statistics and performance data for the meshless elastic solid simulation
based on modal warping.

Model Points Nodes Modes Simulation

Beam 5,634 1,008 64 0.013 s/f
Balljoint 137,062 357 64 0.026 s/f
Rabbit 67,038 1,251 64 0.019 s/f
Santa 75,781 1,150 128 0.028 s/f

(a) (b) (c)

Fig. 11 A solid Santa model before (a) and after (b,c) elastic deformation.

(a) (b) (c)

Fig. 12 A solid balljoint model before (a) and after (b,c) elastic deformation.

bunny (Figure 14), and rocker arm (Figure 15) are simulated in real-time. Figure 16

shows the global conformal parameterization and explosion simulation of the Iphinenie

model. The computational load at each time step of the fracture propagation is much

higher than pure elastic deformation. We need to perform transparency tests for the

integration points, surface points, and simulation nodes in the neighborhood of new

crack lines. And new simulation nodes need to be inserted if necessary. We have to

update the mass and stiffness matrices at each time step to accomodate these changes.

7 Conclusion and Future Work

Large-scale point-sampled geometry is becoming ubiquitous in graphics, visualization,

and geometric information processing, due to the rapid advancement of the 3D scanning

21

Table 2 The model statistics and performance data for the meshless elastic thin-shell simu-
lation based on global conformal parameterization.

Model Points Parameterization Nodes (Initial/Final) Simulation

Rockerarm 40,000 88.63 s 405/405 0.020 s/f
Gargoyle 40,002 62.09 s 520/520 0.026 s/f
Bunny 50,002 99.85 s 440/440 0.022 s/f
Iphigenie 200,219 866.45 s 420/650 1.2 s/f

(a) (b) (c) (d)

Fig. 13 A thin-shell gargoyle model before (a) and after (b-d) elastic deformation.

(a) (b) (c)

Fig. 14 A thin-shell bunny model before (a) and after (b,c) elastic deformation.

(a) (b) (c)

Fig. 15 A thin-shell rocker arm model before (a) and after (b,c) elastic deformation.

devices. Developing new computational techniques for point-centered digital process-

ing has become a common and long-term mission in computer graphics. In this paper,

we present our recent research results in meshless simulation of deformable shells and

solids. Our meshless framework is build upon continuum mechanics, which provide a

rigorous foundation to simulate the physical behavior of the modeled point geometry.

We presented several key computational techniques: (1) Moving Least Squares for func-

22

(a) (b) (c) (d)

Fig. 16 (a) The global conformal parameterization of the Iphigenie model. (b-d) The meshless
thin-shell fracture simulation based on the parameterization. The bottom parts show the crack
pattern in the parametric domain.

tional approximation and interpolation using discrete nodes; (2) hierarchical meshless

discretization for shells and solids; (3) Modal Warping for real-time simulation of large

deformations.

There are many avenues for possible future work, including exploring the theoretical

foundation of the meshless framework, designing efficient and accurate computational

algorithms, developing new functionalities, e.g. integrating haptic interaction between

human beings and virtual environments. Some of the most exciting applications of

HCI and haptic feedback have been found in surgical simulation, including a variety

of medical procedures, e.g. limb surgery, plastic surgery, gastrointestinal endoscopy,

etc. Traditionally mesh-based FEM is used to simulate real-time visual and haptic

rendering of soft tissues. A potential solution to the remeshing problems faced by the

FEM techniques is to use meshless methods articulated in this paper. Simulating surgi-

cal operations such as cutting and coagulation requires frequently updating the organ

mesh structure which is a very challenging process to be implemented robustly with-

out numerical singularities. Surgical cutting simulation is a simplified version of the

fracture simulation, since the cutting path is human-guided. However, surgical simu-

lations pose more critical time constraints since they need to provide timely sensory

information for the user in order to achieve immersive realism. A balance is needed to

ensure the simulation is fast enough for generating real-time feedbacks whilst the level

of realism is reasonably acceptable. Numerical methods, including the solvers used in

our meshless methods, can be very computationally expensive. Fortunately, many such

numerical techniques can be parallelized in order to accelerate the computation of rel-

evant quantities. In particular, the hierarchical structure (quadtree and octree) used in

our thin-shell and volumetric simulations can facilitate the parallelization by comput-

ing strains and other relevant quantities locally and by assembling the results globally.

Graphics processing unit (GPU) has seen fast developing in recent years. More and

more researchers have tried to use the GPU to solve general-purpose problems. Some

GPU-based mesh deformation algorithms have already been proposed [31]. However,

the GPU pipeline is specifically designed for mesh-based computations. Using the par-

23

allel computing ability of the GPU to accelerate meshless simulation is an interesting

direction for the future work.

References

1. Baraff D, and Witkin A. Large steps in cloth simulation. Proceedings of SIGGRAPH’98,
pp. 43-54, 1998.

2. Belytschko T, Lu Y Y, and Gu L. Element free galerkin methods. International Journal for
Numerical Methods in Engineering, 37: 229-256, 1994.

3. Belytschko T, Lu Y Y, and Gu L. Fracture and crack growth by element-free galerkin
methods. Modeling Simulations for Materials Science and Engineering, 2: 519-534, 1994.

4. Belytschko T, Krongauz Y, Organ D, Fleming M, and Krysl P. Meshless methods: an
overview and recent developments. Computer Methods in Applied Mechanics and Engineer-
ing, 139: 3-47, 1996.

5. Choi M G, and Ko H S. Modal warping: real-time simulation of large rotational deformation
and manipulation. IEEE Transactions on Visual Computing and Graphics, 11(1): 91-101,
2005.

6. Cirak F, Ortiz M, and Schröder P. Subdivision surfaces: a new paradigm for thin-shell
finite element analysis. International Journal for Numerical Methods in Engineering, 47(12):
2039-2072, 2000.

7. DeRose T, Kass M, and Truong T. Subdivision surfaces in character animation. Proceedings
of SIGGRAPH’98, pp. 85-94, 1998.

8. Desbrun M, and Cani M P. Animating soft substances with implicit surfaces. Proceedings
of SIGGRAPH’95, pp. 287-290, 1995.

9. Farin G. Curves and Surfaces for CAGD. Morgan-Kaufmann, 5th edition, 2001.
10. Guo X, Hua J, and Qin H. Scalar-function-driven editing on point set surfaces. IEEE

Computer Graphics and Applications, 24(4): 43-52, 2004.
11. Guo X, and Qin H. Real-time meshless deformation. Computer Animation and Virtual

Worlds, 16(3-4):189-200, 2005.
12. Guo X, Li X, Bao Y, Gu X, and Qin H. Meshless thin-shell simulation based on global

conformal parameterization. IEEE Transactions on Visualization and Computer Graphics,
12(3): 375-385, 2006.

13. Hauser K, Shen C, and O’Brien J. Interactive deformation using modal analysis with
constraints. Proceedings of Graphics Interface, pp. 247-255, 2003.

14. James D, and Pai D. Dyrt: dynamic response textures for real time deformation simulation
with graphics hardware. Proceedings of SIGGRAPH’02, pp. 582-585, 2002.

15. Klaas O, and Shephard M. Automatic generation of octree-based three-dimensional dis-
cretizations for partition of unity methods. Computational Mechanics, 25: 296-304, 2000.

16. Lancaster P, and Salkauskas K. Curve and surface fitting: an introduction. Academic Press,
London, 1986.

17. Levoy M, Pulli K, Curless B, Rusinkiewicz S, Koller D, Pereira L, Ginzton M, Anderson
S, Davis J, Ginsberg J, Shade J, and Fulk D. The digital Michelangelo project: 3d scanning
of large statues. Proceedings of SIGGRAPH’00, pp. 131-144, 2000.

18. Li S, and Liu W K. Meshfree particle methods and their applications. Applied Mechanics
Review, 54: 1-34, 2002.

19. Malladi R, Sethian J A, and Vemuri B C. Shape modeling with front propagation: A level
set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17: 158-175,
1995.

20. Metaxas D, and Terzopoulos D. Dynamic deformation of solid primitives with constraints.
Proceedings of SIGGRAPH’92, pp. 309-312, 1992.

21. Müller M, Keiser R, Nealen A, Pauly M, Gross M, and Alexa M. Point-based animation
of elastic, plastic, and melting objects. Proceedings of ACM SIGGRAPH/ Eurographics
Symposium on Computer Animation, 2004.

22. Müller M, Heidelberger B, Teschner M, and Gross M. Meshless deformations based on
shape matching. ACM Transactions on Graphics, 24(3):471-478, 2005

23. O’Brien J F, and Hodgins J K. Graphical modeling and animation of brittle fracture.
Proceedings of SIGGRAPH’99, pp. 137-146, 1999.

24. Ohtake Y, Belyaev A, Alexa M, Turk G, and Seidel H-P. Multi-level partition of unity
implicits. Proceedings of SIGGRAPH’03, pp. 463-470, 2003.

24

25. Organ D, Fleming M, Terry T, and Belytschko T. Continuous meshless approximations
for nonconvex bodies by diffraction and transparency. Computational Mechanics, 18: 1-11,
1996.

26. Pauly M, Keiser R, Kobbelt L, and Gross M. Shape modeling with point-sampled geometry.
Proceedings of SIGGRAPH’03, pp. 641-650, 2003.

27. Pauly M, Keiser R, Adams B, Dutré P, Gross M, and Guibas L. Meshless animation of
fracturing solids. Proceedings of SIGGRAPH’05, pp. 957-964, 2005.

28. Pentland A, and Williams J. Good vibrations: model dynamics for graphics and animation.
Proceedings of SIGGRAPH’89, pp. 215-222, 1989.

29. Wicke M, Steinemann D, and Gross M. Efficient animation of point-sampled thin shells.
Computer Graphics Forum, 24(3):667-676, 2005.

30. Xie H, Wang J, Hua J, Qin H, and Kaufman A. Piecewise C1 continuous surface recon-
struction of noisy point clouds via local implicit quadric regression. Proceedings of IEEE
Visualization’03, pp. 91-98, 2003.

31. Zhou K, Huang X, Xu W, Guo B, and Shum H Y. Direct manipulation of subdivision
surfaces on GPUs. ACM Transactions on Graphics, 26(3): 91, 2007.

32. Zwicker M, Pauly M, Knoll O, and Gross M. Pointshop3D: an interactive system for
point-based surface editing. ACM Transactions on Graphics, 21(3): 322-329, 2002.

