
ARTICLE IN PRESS

Computers & Graphics 33 (2009) 359–368
Contents lists available at ScienceDirect
Computers & Graphics
0097-84

doi:10.1

� Corr

E-m

xinli@ec
journal homepage: www.elsevier.com/locate/cag
Technical Section
Geometry-aware domain decomposition for T-spline-based
manifold modeling
Hongyu Wang a,�, Ying He b, Xin Li c, Xianfeng Gu a, Hong Qin a

a Computer Science Department, Stony Brook University, Stony Brook, NY 11794-4400, USA
b Nanyang Technological University, Singapore
c Louisiana State University, USA
a r t i c l e i n f o

Article history:

Received 13 December 2008

Received in revised form

2 March 2009

Accepted 3 March 2009

Keywords:

Manifold splines

T-Splines

Tensor-product B-splines

Shape modeling

Solid modeling

Shape computing

Object segmentation
93/$ - see front matter & 2009 Elsevier Ltd. A

016/j.cag.2009.03.011

esponding author. Tel.: +016316328470; fax:

ail addresses: wanghy@cs.sunysb.edu (H. Wa

e.lsu.edu (X. Li), gu@cs.sunysb.edu (X. Gu), q
a b s t r a c t

This paper presents a new and effective method to construct manifold T-splines of complicated

topology/geometry. The fundamental idea of our novel approach is the geometry-aware object

segmentation, by which an arbitrarily complicated surface model can be decomposed into a group of

disjoint components that comprise branches, handles, and base patches. Such a domain decomposition

simplifies objects of arbitrary topological type into a family of genus-zero/one open surfaces, each of

which can be conformally parameterized into a set of rectangles. In contrast to the conventional

decomposition approaches, our method can guarantee that the cutting locus are consistent on the

parametric domain. As a result, the resultant T-splines of decomposed components are automatically

glued and have high-order continuity everywhere except at the extraordinary points. We show that the

number of extraordinary points of the domain manifold is bounded by the number of segmented

components. Furthermore, the entire mesh-to-spline data conversion pipeline can be implemented with

full automation, and thus, has potential in shape modeling and reverse engineering applications of

complicated real-world objects.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

With the ever-improved modern 3D scanning technologies
comes the urgent demand for more efficient, robust, and powerful
data modeling techniques for routinely acquired CAD-based
digital prototypes which are in forms of raw points or triangular
meshes. These data have to be converted into continuous,
compact representations to enable geometric design and down-
stream product development processes (e.g., accurate shape
analysis, finite element simulation, and e-manufacturing) in CAE
environments. Subdivision surfaces and spline schemes have been
extensively investigated during the recent past to fulfill the
aforementioned goal.

Real-world physical prototypes are frequently 2-manifolds of
complex geometry and arbitrary topology. Naturally, subdivision
surfaces can start with a coarser piecewise linear polygonal mesh,
and the smooth surface can be calculated as the limit of a
sequence of successive refinements from the coarse mesh. Despite
their modeling advantages for arbitrary complicated surfaces
(especially in animation and digital entertainment), subdivision
ll rights reserved.

+016316328334.

ng), yhe@ntu.edu.sg (Y. He),

in@cs.sunysb.edu (H. Qin).
surfaces have certain drawbacks. Accurate surface evaluation is
usually too computationally intensive for realtime applications
since most subdivision schemes do not allow closed-form analytic
formulation for their basis functions. In addition, extraordinary
points solely depend on the connectivity of the control mesh
and need special care. On the other hand, spline surfaces have
demonstrated their significance in shape modeling, finite element
analysis, scientific computation, visualization, manufacturing, etc.
In order to model an arbitrary surface in 3D, conventional spline
schemes will segment the surface to many smaller open patches,
and cover each patch by a single coordinate system, so that each
patch can be modeled by a spline surface. Finally, any generic
approach must glue all the spline patches together by adjusting
the control points and the knots along their common boundaries
in order to ensure continuity of certain degree. The entire
segmenting and patching process is performed manually, and it
requires user knowledge and skills, and for non-trivial topology
and complicated geometry this task is laborious and error-prone.

Manifold splines proposed by Gu et al. [1] provides a technical
solution for directly defining continuous surfaces over arbitrary
manifold domains. In their work, they extend the existing spline
schemes defined over planar domains to any manifold domain of
arbitrary topology using affine structures. To further promote
their work in real-world applications, in [2] they present
the manifold T-splines, a natural and necessary integration of

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2009.03.011
mailto:wanghy@cs.sunysb.edu
mailto:yhe@ntu.edu.sg
mailto:xinli@ece.lsu.edu
mailto:gu@cs.sunysb.edu
mailto:qin@cs.sunysb.edu


ARTICLE IN PRESS

Fig. 1. Genus-zero horse model with long branches. (b) shows the spherical conformal map of the genus-zero closed surface shown in (a). (c) highlights the area distortion

using color map. The Reeb graph of the given model shown in (e) is computed based on the harmonic function f defined on the given surface. (d) shows the isolines of f in

red. The segmentation result based on the Reeb graph representation is shown in (f): four base patches (colored in green and gray), and six long branches (colored in blue).

H. Wang et al. / Computers & Graphics 33 (2009) 359–368360
T-splines and manifold splines, which naturally extends the
concept and the currently available algorithms/techniques of the
popular planar tensor-product NURBS and T-splines to arbitrary
manifold domain of any topological type. Manifold T-splines can
be directly defined over the manifold of arbitrary topology to
accurately represent various shapes with complicated geometry/
topology. It naturally inherits all the attractive properties from
T-splines defined over a planar domain, including the powerful
local refinement capabilities and the hierarchical organization for
LOD control. Despite this earlier success, certain drawbacks of
manifold T-splines still remain: (i) there must be singularities for
any closed manifold except tori, and in practice small holes must
be punched around the singularities in order to enable the easy
construction of manifold splines in the finite dimension space. No
efforts for hole-filling in the vicinity of extraordinary points were
made in [2]; (ii) it is impossible to specify the locations of all the
singularities on the domain manifold given the fact that the
number of singularities is actually fixed, but their positions are
somehow globally related; (iii) the proposed domain construction
method is far from sufficient for surfaces with boundaries or
surfaces with long branches. For surfaces with long branches (for
example the horse model in Fig. 1), the existing global para-
meterization methods usually introduce extremely large area
distortion and therefore make it even harder and numerically
unstable for spline fitting process later on. The only feasible way is
to introduce additional cuts in these areas to make it a surface
with boundaries and then use double covering method to achieve
a better parameterization result. However, this technique will at
least double the time complexity and not practical for a large scale
complex dataset.

Wang et al. proposed polycube T-splines [3], which unifies
T-splines and manifold splines to define a new class of shape
representations for surfaces of arbitrary topology by using
polycube map as its parametric domain. Instead of further
reducing the number of extraordinary points as Gu et al.’s work
in [4], they aimed to reduce the total area distortion of the
parameterization by introducing more extraordinary points
(corners of the polycube) to facilitate a better spline surface
fitting. In [5] they advanced their work by introducing the user’s
interaction into the process of polycube map construction. By
allowing the user to directly select the corner points of the
polycubes on the original 3D surfaces in an interactive manner,
the location of singularities of the polycube map can be
interactively controlled. Therefore, the subsequent hole-filling
process and better data-fitting results can be easily accomplished
by placing the singularities at regions where no rich geometric
features exist. However, their interactive polycube map construc-
tion framework has the following limitations: (i) domain knowl-
edge from users is required to select a feasible set of corner points
which gives rise to a polycube map with high quality (that has
small angle distortion and area distortion); (ii) the resulting
polycube map is C0 continuous across polycube edges that
connect corners, which may introduce unpleasing results for later
spline surface fitting; (iii) it is not possible to properly handle
surfaces with long and thin branches (refer to Fig. 1 for an
example) because users cannot easily specify corner points in long
and thin branches and the computation of straight lines connect-
ing corner points in these parts will be numerically unstable and
error-prone.

In this work our objective is to further improve the existing
work in data modeling, which overcomes the aforementioned
drawbacks, and is much more efficient, robust, and applicable in
real-world applications and industrial CAD environments. We
propose a geometry-aware framework for manifold T-spline
construction, which first decomposes any given surface into three
categories: long branch (genus-zero patch with single boundary),
handle (genus-one patch with single boundary) and base patch
(genus-zero patch with at least three boundaries) by using the
pants decomposition method and exploiting the skeleton repre-
sentation of the surface, then locally parameterize all of these
patches into regular domains using Ricci flow, build the domain
manifold for each patch independently, and finally glue them
together to form a complete domain manifold for later spline
fitting. Note that, the T-junctions are allowed along the patch
boundaries to ensure certain continuity. The proposed construc-
tion pipeline is extremely flexible: (i) it can be made fully
automatic, which is therefore very useful and applicable in
industrial settings; (ii) users’ interaction is also allowed (refer to
Section 3 for details) during the process to arrive at a result they
prefer. Fig. 1 shows the horse model with long thin branches,
which is very difficult to handle by using existing data modeling
techniques, but can be handled elegantly by our new method.
Fig. 8 shows the manifold T-spline surface for this model
constructed by using our proposed algorithm.
1.1. Contribution

The specific contributions of this paper are as follows:
1.
 We provide a systematic way to segment any given surface into
three categories (branches, handles, and base patches), and
handle each category using different strategies to ensure high-
quality parameterization and fitting results. Object segmenta-
tion and local parameterization enhance the system’s flex-
ibility while improving time/space performance by avoiding
time-consuming and error-prone global parameterization.
2.
 We show that the number of extraordinary points equals 2 �
nbranch þ nhandle þ 2 � nbase and the resultant spline surface is C2

everywhere except C1 at the extraordinary points.

3.
 The entire object segmentation always leads to a set of four-

sided patches for any input surface with diverse topological
types. Tensor-product B-splines or T-splines are naturally
serving as basic building blocks, bridging the large gap
between NURBS-centric existing CAD software in industry
and manifold surface modeling algorithms.
4.
 The entire construction pipeline is flexible: it can be made
fully automatic, which makes the proposed framework very



ARTICLE IN PRESS

H. Wang et al. / Computers & Graphics 33 (2009) 359–368 361
valuable in industrial settings. Users’ interaction can also be
enabled in certain parts of the pipeline to lead to a user-
controllable object segmentation and local parameterization
that respects both feature alignment and geometric constraints
simultaneously.
5.
 The entire data processing pipeline enables the flexible
and accurate modeling of manifold surfaces within the
currently-available industrial CAD environment. The rectan-
gular structure of each modeled piece completely avoids the
trimming operation, while ensuring the ‘‘one piece’’ represen-
tation for manifold surfaces satisfying high-order continuity
requirements.

The remainder of this paper is organized as follows. We review
the related work on surface modeling, parameterization, skeleton
extraction, and handle/tunnel loops computation in Section 2. In
Section 3 we present the detailed algorithms for our geometry-
aware domain decomposition pipeline. Experimental results are
shown in Section 4. Finally, we conclude our paper in Section 5.
2. Related work

This section briefly reviews prior research on surface modeling,
surface parameterization, handle/tunnel loop computation and
skeleton extraction.

2.1. Surface modeling

The Catmull–Clark subdivision scheme was designed as a
generalization of bi-cubic uniform B-spline surfaces to arbitrary
topology [6]. It defines a smooth surface as the limit of a sequence
of successive refinements from a given coarse polygonal mesh.
Ref. [7] presents an exact evaluation scheme for Catmull–Clark
subdivision surfaces and show that the limit surface of Catmull–
Clark subdivision surfaces can also be evaluated directly, without
any recursive refinement.

T-spline was presented by Sederberg et al. in [8] as a
generalization of the traditional non-uniform B-spline surfaces.
By permitting T-junctions, T-splines enable a true local refining
mechanism without introducing additional, unnecessary control
points in nearby regions. They also developed an algorithm to
convert industry standard NURBS surfaces into T-spline surfaces,
in which a large percentage of superfluous control points are
eliminated [9]. Zheng et al. developed a technique for adaptively
fitting T-splines to functional data [10]. Recently, Li et al.
introduced an automatic technique to convert polygonal meshes
to T-splines using periodic global parameterization [11,12].
Wang and Zheng addressed the issue of control point removal
for T-spline surfaces [13].

Manifold splines have been introduced by Gu et al. [1] which is
a general theoretical framework to generalize spline surfaces
defined over planar domains to any manifold domain of arbitrary
topologies. He et al. further developed modeling techniques for
applications of manifold splines using triangular B-splines [14],
Powell–Sabin splines [15], and T-splines [2]. Most recent research
results along this direction also include [3–5].

2.2. Surface parameterization

Surface parameterization has been a very active research area
in the past decade [16]. Parameterization can be viewed as a
mapping from a surface in 3D to a 2D canonical domain. Since
isometric mappings only exist in very special cases, many
approaches to surface Euclidean parameterization therefore
attempt to find a mapping which is either conformal (i.e., no
angular distortion) [12,17–21], or equiareal (i.e., no area distor-
tion) [22–24]. Hyperbolic parametrization for high-genus surfaces
is presented in [25]. Spherical parametrization for genus-zero
surfaces are introduced in [26,27].

Patanè et al. in [28] proposed within the framework of
triangulation remeshing a novel approach to the parameterization
of triangle meshes representing 2-manifolds with an arbitrary
genus. Their method is based on a topology-based decomposition
of the shape. Each chart is then parameterized using an extension
of the barycentric coordinates method. However, a non-trivial
alignment of surface patches with shape features is required. In
addition, the consistent vertex distribution on the parametric
domain along the shared boundaries of different segments cannot
be guaranteed, which is the requirement of manifold splines
construction to ensure that the resulting domain manifold admits
an affine atlas, therefore the continuity along the shared
boundaries can be achieved naturally.
2.3. Handle/tunnel loop computation

The handle and tunnel loops can be defined as follows (see also
[29] for the definition): a loop bi on a surface M is a handle if it
spans a disk in the bounded space I; if one cuts M along bi and fills
the boundary with that disk, one eliminates a handle. A loop ai on
a surface M is a tunnel if it spans a disk in the unbounded space O,
whose its removal eliminates a tunnel. These loops characterize
important topological information of the surface, and automatic
detection of these loops are necessary in many applications such
as topology repair of 3D models, surface parameterization , and
feature recognition.

Various algorithms for computing different types of non-trivial
loops on surfaces have been proposed in recent years. They either
do not guarantee detecting handle and tunnel loops [30–32]; or
need some graph structures built from the input model to
compute the handles and tunnels such as Reeb graph [33], medial
axis [34], or curve skeletons [29]. More recently, Dey et al.
proposed a persistence based algorithm to compute well defined
handle and tunnel loops for a 3D model in [35]. The algorithm
provides a mathematical guarantee on detecting handle and
tunnel loops and does not require computing any extra structures.
2.4. Skeleton extraction

Curve-skeletons are 1D structures that represent a simplified
version of the geometry and topology of a 3D object. The
extraction of curve-skeletons from 3D models is a fundamental
problem in computer graphics and visualization, which has
received a lot of attention in recent decades. We refer the readers
to [38] for a detailed overview of curve-skeleton properties,
applications and algorithms.

Reeb-graph-based methods have gained much attention in
recent years. The Reeb graph [37] is a fundamental data structure
that captures the topology of a compact manifold by following the
evolution of the level-sets of a real-valued function defined on
the respective manifold. It is obtained by contracting to a point
the connected components of the level-sets of a function defined
on a mesh. A lot of algorithms have been proposed to compute
Reeb graph of an object using various real-value functions. Attene
et al. [41] presented an automatic method to extract the Reeb
graph of the manifold with respect to the height function. Aujay
et al. [39] proposed a harmonic Reeb graph that uses the harmonic
function, found by solving the Laplace equation. In [40] they use
an enhanced Reeb graph of the input surface to guide the



ARTICLE IN PRESS

H. Wang et al. / Computers & Graphics 33 (2009) 359–368362
hierarchical segmentation procedure. A robust on-line algorithm
for computing Reeb graphs was presented in [42].
3. Algorithm

3.1. Algorithm overview

As discussed in Section 1, the key idea of our proposed
approach is the geometry-aware object segmentation, by which
the given surface is first decomposed into a group of disjoint
components: branches, handles and base patches. We then apply
conformal parameterization and construct the domain manifold
for each individual component. Finally the domain manifold for
each component can be glued together to form a complete domain
manifold followed by a global relaxation for later spline fitting.
The proposed construction pipeline is flexible and robust: it can
be made fully automatic, which makes the proposed framework
very valuable in industrial settings. Users’ interaction can also be
enabled during certain parts of the pipeline to lead to a user-
controllable object segmentation and local parameterization that
respects both feature alignment and geometric constraints.

The manifold T-spline construction pipeline for a given surface
M is as follows:
1.
Fig
sur

loo

han
Segment the surface to branches, handles and base patches.

2.
 Parameterize branches, handles and base patches using

discrete Ricci flow.

3.
 Construct the domain manifold and set the knots.

4.
 Fit manifold T-spline and handle extraordinary points.

Fig. 2 shows the decomposition procedure for the genus-two
David model. We define different segmented components for a
given surface M as follows:
�
 A branch of M is a genus-zero patch with single boundary,
which is a region of M corresponding to the arc in its Reeb
graph representation with two end nodes of degree one and
degree three, respectively (refer to Section 3.2 for details). A
long branch of M with respect to a given threshold e is the
branch of M with arc length (in its Reeb graph representation)
longer than e (blue components in Fig. 2(f)).

�
 A handle of M is a region of M with genus-one and single

boundary (red components in Fig. 2(f)).
. 2. Decomposition of genus-two David model. The Reeb graph of the given model

face shown in (a). (c) shows the result after long branches removal. (d) highlights in

ps used to remove the handles are shown in blue in (e). (f) shows the decompositi

dles colored in red.
�

show

blu

on r
A base patch of M is a genus-zero patch with at least three
boundaries. By removing all the handles and long branches,
the remaining region of M is a base patch (gray component in
Fig. 2(f)); if the remaining region of M is further decomposed
into a set of pants patches (refer to Section 3.3 for details), each
pants patch is a base patch of M (green and gray components in
Fig. 1(f)).

�
 All the branches, handles and base patches of M are disjoint,

and their union equals M.

3.2. Branch segmentation

For surfaces with long branches, the existing global para-
meterization methods usually introduce very large area distortion
and therefore make it numerically unstable for spline fitting
process later on (refer to Fig. 1 for an example). To reduce the
parameterization distortion, we first remove long branches from
the given surface, and then parameterize them separately.

Reeb graph [37] is an ideal tool to detect the long branches from a
given surface. It is a 1D structure whose nodes are critical points
(maxima, minima, and saddles) of a real-value function f defined on
the model surface. It encodes the topology of the model and can be
constructed by contracting the connected components of the isolines
(level sets or contours) of f to a point. Given its intrinsic properties
Reeb graph becomes an ideal tool for us to find and remove the long
branches from a given surface M: each branch of M corresponds to
an arc in its Reeb graph representation with two end nodes of degree
one and degree three, respectively. Given the property that each arc
A in the Reeb graph represents a family of contours CA that do not
change topology, we can easily remove the long branch B (suppose
its corresponding arc is A) from the given surface by cutting the
surface along one contour c 2 CA (the set of contours of arc A). In
practice, the long branches to be removed and the corresponding cut
contours used to remove the branches from the given surface can be
either specified interactively by the user from its Reeb graph
representation; or decided by a preset length threshold elength, and a
removal ratio r, such that all the branches with corresponding arc
length larger than elength will be removed by the given ratio r. In the
latter way the branch removal process will be automatic.

Many algorithms for Reeb graph computation have been
proposed during the recent decades. We adopt the on-line
algorithm presented in [42] to compute the Reeb graph presenta-
tion of a given surface because of its robustness and scalability.
n in (b) is computed based on the harmonic function f defined on the given

e the handle and tunnel loops computed by using the method in [35], and the

esult: two branches colored in blue, one base patch colored in gray, and two



ARTICLE IN PRESS

H. Wang et al. / Computers & Graphics 33 (2009) 359–368 363
Fig. 2(b) shows the Reeb graph of the genus-two David model
based on the harmonic function f shown in Fig. 2(a). Fig. 2(c)
shows the remaining region after removing the long branches.
3.3. Handle and base patch segmentation

In [43] a consistent pants decomposition algorithm was
presented which takes as the input the handle and tunnel loops
of the surface, and then segments the given surface into a set of
pants patches (genus-zero patch with three boundaries) in a
consistent manner. In our construction pipeline, we use the
similar algorithm to remove the handles from the given surface
with long branches removed.

The handle and tunnel loop information is required for
automatic pants decomposition of the 3D surfaces [43]. There
are various existing algorithms for computing critical loops on
surfaces, but many of them do not guarantee detecting handle and
tunnel loops. We use the persistence based algorithm proposed by
Dey et al. in [35] which computes well defined handle and tunnel
loops for a 3D model, and guarantees that the resulting handle
and tunnel loops are topologically correct and geometrically
small. The handle and tunnel loop computation is conducted on
the original surface instead of the remaining patch with branches
removed since the algorithm in [35] requires that the input
surface is a closed one. Fig. 2(d) highlights in blue curves the
handle and tunnel loops computed by using the algorithm in [35].

Once the indexed g handle and tunnel loops (ai; bi;0piog) of
the given surface M with genus g are computed, we first map
them to the remaining patch M0 (M with long branches removed),
and then conduct a subsequent decomposition on M0 to obtain a
set of handles (genus-one patch with one boundary) and one base

patch (genus-zero patch with at least three boundaries). The
algorithm is detailed in [43], here we briefly outline the idea:

Step 1: Slice/remove all handles from M0. Repeat the following
steps until all handles are removed:
(1.1)
Fig. 3.
patch:

w00 as
Compute a loop bounding the handle-i (topologically, such a
loop ci ¼ a1

i � b1
i � a�1

i � b�1
i ).
(1.2)
 Shrink ci homotopically to the shortest loop wi (Fig. 3(a),
blue loops).
(1.3)
 Remove the handle-i from M0 by slicing the loop wi.
Step 2: (The remaining patch M00 is a topological sphere with at
least three holes.) Decompose M00 into pants patches (Fig. 3(b) and
(c)):
(2.1)
 Put all boundaries wi of M00 into a queue Q .

(2.2)
 If Q has p3 boundaries, end; else goto (2.3).

(2.3)
 Compute shortest loop w0 homotopic to wi �wj.

(2.4)
 (w0, wi and wj bound a pants patch pw0 ) Remove pw0 from M00.

Remove wi and wj from Q . Put w0 into Q . Goto (2.2).
w1
w3

w2

w4

w0

w0

w3

w0

w2

w1
w4

Pants Decomposition. (a) Remove handle patches. (b, c) Decompose base

(b) Slice w00, get a new pants patch. Boundary number decreases by 1. (c) Set

a new boundary, go on to compute w01.
After step 1, we get a set of handles and one base patch M00

which is a genus-zero patch with at least three boundaries. Step 2
is optional in our construction pipeline: we can either parameter-
ize M00 directly, or further decompose it into a set of pants patches

using the algorithm in step 2, then parameterize each pants patch
using the method presented in Section 3.6. In Fig. 1(f), the
remaining region of horse model after removing six long branches
is further decomposed into four base patches (colored in green
and gray).

3.4. Branch parameterization

Each branch B of the given surface is a genus-zero patch with
one boundary. Fig. 4 shows the parameterization procedure for a
branch from the David model shown in Fig. 2. The algorithm is as
follows:

Algorithm 1. Branch parameterization.
Fig.
the

bran

segm

(colo

runn

and
In: Branch B with boundary length lB .

Out: A rectangular domain D of B.
1. F
ind a point p which is the farthest point to the boundary of B (Fig. 4(a)).
2. C
onformally map B to a unit disk O [18]. If p is not the center of O, use a

Möbius transformation to move p to the center (Fig. 4(b)).
3. F
ind a diameter d of O, which separates the disk to two halves with minimal

area difference. Choose two points a1 and a2 on d with equal distance to p in

R3, such that the line segment c connecting a1 and a2 passes through p, and

its length lc in R3 satisfies j2 � lc � lBjoe. Find another line segment c0

perpendicular to c which starts from p and intersects with the boundary of O.

c and c0 correspond to two smooth curves on B.
4. S
lice B using c and c0 ,and run Ricci flow to get the rectangle domain D (Fig.

4(c)).
3.5. Handle parameterization

Each handle H is a genus-one surface with single boundary.
The handle and tunnel loop information is computed by using
Dey’s algorithm [35] on the original surface and mapped to H.
4. Parameterizing the branch. (a) shows the pivot point p (colored in green) on

given branch B which is the farthest vertex from the boundary. In (b) the

ch B is conformally mapped to a unit disk O with p as the disk center. Two line

ents c and c0 are selected on O which correspond to two smooth lines on B

red in red in (a) and (b)). (c) shows the rectangle domain D obtained by

ing Ricci flow after slicing B by using c and c0 . a1 and a2 marked in blue in (a)

(b) are the extraordinary points for the branch.



ARTICLE IN PRESS

H. Wang et al. / Computers & Graphics 33 (2009) 359–368364
Fig. 5 shows an example for the procedure of handle parameter-
ization. The algorithm is as follows:

Algorithm 2. Handle parameterization.
In: Handle H with computed handle and tunnel loops (Fig. 5(a)).

Out: A set of four rectangle domains Di of H (0pip3).
1.
 Slice H along the handle and tunnel loops , and map it to a rectangle domain D

with one inner circle using Ricci flow (Fig. 5(b)): the inner circle corresponds

to the original boundary of H, and the four corners of D are all images of c

(common points of the handle and tunnel loop).
2.
 Find a point p on the tunnel loop so that p, its image p0 and the center o of the

inner circle are as colinear as possible. Draw straight lines from o to p and p0

with two intersection points a and b with the inner circle (Fig. 5(b)) which

partition the domain D into two parts D0 and D00 (Fig. 5(d) shows one part).
3.
 For D0, find an arc A passing through p and p0 such that A has no other

intersection points with D0 except p and p0 . D0 can be further divided into two

parts by slicing along A. Find another arc A0 for D00 with the same property, and

D is finally decomposed into four parts by the lines op and op0 , and the arcs A

and A0 .
4.
 Parameterize each of the four parts from the step 3 into a rectangle with

corner points from a; b;p; c using Ricci flow.
3.6. Base patch parameterization

Each base patch is a genus-zero patch with at least three
boundaries. Fig. 6(a) shows an example of the base patch from
David model in Fig. 2. Given a base patch B with k boundaries, it
can be parameterized into a set of 2 � k rectangles using the
following algorithm:

Algorithm 3. Base patch parameterization.
In: Base patch B with k boundaries.

Out: 2 � k rectangle domains Di of B (0pip2 � k� 1).
1.
 Find two center points c1 and c2, and then draw k curves from each which are

perpendicular to the k boundaries:
(
1.1) For each vertex v on base patch, compute its shortest distance to the k

boundaries: d1, d2; . . . ; dk . Compute c1 as the one with the minimum range of

distances to the boundaries (Fig. 6(a)).
(
1.2) Remove m-ring neighbors of c1 from B, and map the remaining patch B0

to a circle O with k holes (circles) inside, which correspond to the original k

boundaries, and the outmost boundary of O corresponds to the hole

introduced by removing the m-ring neighbors of c1 (Fig. 6(b) and (c)).
(
1.3) Compute c2 as the one with the minimum distance range to the k

boundaries on O, and draw lines from c2 to each center of the k circles(holes)

inside O (Fig. 6(c)).
(
1.4) Remove n-ring neighbors of c2 from B, and map the remaining patch to a

circle O0 with k inner circles, draw k curves on O0 from c1 to the center of each

inner circle (Fig. 6(e)).
2. S
lice B into k patches using the 2 � k curves computed from step 1, each of

which contains c1 and c2, and four intersection points with the original k

boundaries. Parameterize each patch into a regular hexagon, and partition it

into two parts by the line connecting c1 and c2 (Fig. 6(f) and (g)).
3. F
inally B is decomposed into 2 � k patches, each of which is parameterized

into a rectangle (with four corners: c1, c2, and two of the 2 � k intersection

points with the k boundaries) using Ricci flow.
3.7. Domain manifold construction

Since the branches, handles and base patches are parameter-
ized individually (refer to Sections 3.4–3.6), the parameterization
may not be consistent along the shared cutting boundaries, i.e.,
the same cutting boundary of the 3D mesh is mapped to lines of
different length by the parameterization of different patches. This
inconsistency in the parametric domain causes significant
troubles in constructing manifold splines, since the knot vectors
of adjacent patches do not meet along the boundaries. We apply a
post-processing to eliminate these inconsistency.

Note that we map all patches (branches, handles and base
patches) to rectangles. Let f : P! D denote the parameterization,
where P is the 3D patch and D is the rectangle on the parametric
domain. The four corners of D are v0, v1, v2, and v3. Then we solve
a harmonic map c : D! D such that 4c ¼ 0 with following
boundary conditions:
(1)
 cðviÞ ¼ vi, i ¼ 0;1;2;3;

(2)
 cðvÞ ¼ ð1� aÞvi þ aviþ1 for any boundary vertex v 2 ðvi;viþ1Þ

and a ¼ lengthðf�1
ðviÞ;f

�1
ðvÞÞ=lengthðf�1

ðviÞ;f
�1
ðviþ1ÞÞ. The

function lengthðp;qÞ measures the arc length of the boundary
curves with end points p and q.
Solving the above harmonic map for each individual para-
meterization can guarantee that the shared boundary for two
adjacent patches is mapped to two straight lines (side of the
rectangle) that only differ by a translation, a rotation and a scaling.
In other words, given two parameterized rectangles ABCD and
A0B0EF where AB and A0B0 are the sides corresponding to the same
cutting boundary of the original mesh, we can find an affine
transformation (a composite map of one translation, one rotation
and one scaling) such that AB and A0B0 coincide.

To facilitate the implementation, we scale all parameterized
rectangles to make sure that two adjacent patches have the same
side lengths on the parametric domain. We should also point out
that T-junctions are allowed along the boundaries of the patches.
Thus, the resultant T-mesh is ready to serve as the domain
manifold for a manifold T-spline, where the knot interval of each
edge is just its length on the parametric domain.

Given the fact that each patch is parameterized individually,
thus, the above T-mesh may result in angle/area distortion along
the boundaries. To reduce the distortion, we use the following
technique.

For each cutting boundary, we extract the k-ring neighbors (k is
the user-specified parameter, k ¼ 2 in our implementation) and
then map it to a rectangle. Then we solve a harmonic map for the
rectangle where the vertices along the rectangle sides are fixed.
This harmonic map is helpful to reduce the angle distortion of the
parameterization. Fig. 7(a) shows the domain manifold for David
model in Fig. 2 after the global relaxation.

3.8. Surface fitting

Once the domain manifold M with conformal structure f :
M! R2 is given, we proceed to solve the problem of finding a
good approximation of a given polygonal mesh P with vertices
fpig

m
i¼1 by a manifold T-spline. We adopt the same strategy

presented in [2] to minimize a linear combination of interpolation
and fairness functionals, i.e.,

min E ¼ Edist þ lEfair . (1)

The first part is

Edist ¼
Xm

i¼1

kFðuiÞ � pik
2,

where ui 2 M is the parameter for pi, i ¼ 1; . . . ;m. The second part
Efair in (1) is a smoothing term with a fairness weight lX0. In our
proposed framework, the parameterizations for all decomposition
components are quasi-conformal which leads to a set of good
initial values for the control points, so we can obtain satisfactory
results using simply a small, constant l as suggested in [44]. We
choose l ¼ 0:2 in our experimentation. We refer readers to [2] for
the detailed definitions of FðuiÞ and Efair . Both parts are quadratic
functions of the unknown control points, leading to a linear
system. We solve Eq. (1) for unknown control points using
conjugate gradient method. The value and gradient of the
interpolation functional and fairness functional can be computed
straightforwardly.



ARTICLE IN PRESS

Fig. 6. Parameterizing the base patch. (a) shows the base patch (with four boundaries) of the David model with c1 marked with sharp edges, and in (b), a new boundary b0 is

introduced by removing m-ring neighbors of c1. The remaining patch is then parameterized into a circle O with four inner circles (c) which correspond to the original four

boundaries. The outmost boundary of O corresponds to b0 . (c) highlights in red the lines connecting c2 and the centers of four inner circles, and (d) shows their preimages on

the original base patch. (e) shows the eight curves from c1 and c2 and (f) shows one of the eight patches by slicing the original base patch using these curves. The patch in (f)

is then parameterized into a regular hexagon (g), and further decomposed into two parts by slicing along the line connecting c1 and c2 on the hexagon, each of which is

parameterized into a rectangle as shown in (h). c1 and c2 are the two extraordinary points for the base patch.

Fig. 5. Parameterizing the handle. (a) shows one handle from David model with handle and tunnel loops highlighted in blue, and the common point c of the loops shown in

yellow. Point p in step 2 can be found by traversing all vertices on the tunnel loop to minimize the angle difference jffpop0 � pj. (c) shows on the original handle patch the

preimages of the cut lines (in thick blue) connecting the center of the circle and point p in the rectangular domain. The arc with the property in step 3 is not unique. One

feasible way to find such an arc is to simplify the problem into finding an angle f so that the resulting arc satisfies the required property (refer to (d)). In practice, f can be

either decided automatically by iterating all possible values to find the one with the required property and minimizing the area difference of the two parts obtained by

slicing along the corresponding arc, or specified by the user in an interactive fashion to achieve a user-preferred segmentation result. (e) highlights in thick blue the lines by

which the original handle is decomposed into four pieces. (f) shows one piece of the decomposition, and (g) shows its corresponding rectangular domain. p is the

extraordinary point for the handle.

H. Wang et al. / Computers & Graphics 33 (2009) 359–368 365
As discussed in Section 3.7, our parameterization ensures the
consistency along the shared boundaries of different segmented
components on the parametric domain. Furthermore, our method
guarantees the transitions among local charts on the domain
manifold to be affine. According to manifold spline theory [1], the
construction leads to an affine atlas, and the continuity along the
shared boundaries is ensured automatically. The resulting spline
surface is C2 everywhere except at the extraordinary point.



ARTICLE IN PRESS

Fig. 7. Surface fitting for David model. Extraordinary points ((b) and (e)) on the

domain manifold correspond to the holes on the spline surface (shown in (c) and

(f)). For each hole, we construct a Catmul–Clark subdivision surface with high

continuity along their shared boundaries. (d) and (g) show the results after hole-

filling (hole areas are colored in yellow). (h) shows the manifold T-spline surface.

The yellow curves on the spline surface in (i) highlights the T-junctions

(singularities are colored in red).

H. Wang et al. / Computers & Graphics 33 (2009) 359–368366
Handling the extraordinary point: In [1], Gu et al. proved that
manifold splines MUST have singularities if the domain manifold
is closed and not a torus. The number of extraordinary points in
our geometry-aware manifold T-spline construction pipeline
equals 2 � nbranch þ nhandle þ 2 � nbase, and they can be classified
into three categories: (1) extraordinary points for handles:
each handle has a single extraordinary point with valence 8
(p in Fig. 5(e)); (2) extraordinary points for branches: each branch
has two extraordinary points with valence 2 (a1 and a2 in Fig. 4(a)
and (b)); (3) extraordinary points for base patches: each base
patch with k boundaries has two extraordinary points with
valence 2 � k (c1 and c2 in Fig. 6). Fig. 7 shows one extraordinary
point with valence 2 in (b) for the branch shown in Fig. 4, and one
extraordinary point with valence 8 in (e) for the base patch shown
in Fig. 6(a) with four boundaries.

Although the singularities are just points on the domain
manifold, in practice, we have to remove these points and their
1-ring or 2-ring neighbors. As a result, the holes are unavoidable
in the spline surface. Thus, we need to find a blending surface
patch to fill the holes smoothly. In our implementation, we use a
Catmul–Clark subdivision surface to fill each hole such that the
surface is C2 everywhere except C1 at the extraordinary point. For
each extraordinary point, we remove its 2-ring neighbors from the
domain manifold (red quads in Fig. 7(b) and (e)), and use its 6-ring
neighbors as the domain for the Catmul–Clark subdivision surface
to fill the introduced hole. The T-spline surface is evaluated
without using the yellow quads but taking into account their
contributions (to the green quads). The continuity along the
shared boundary between the T-spline surface and the Catmul–
Clark subdivision surface (i.e. the shared boundary between
yellow quads and green quads in Fig. 7(b) and (e)) is ensured
naturally due to the same set of control points for that shared
boundary on both the T-spline domain manifold and the domain
of the Catmul–Clark subdivision surface. Fig. 7(h) shows the
manifold T-spline surface built upon the domain manifold shown
in Fig. 7(a). In Fig. 7(i) the yellow curves highlight the T-junctions
on the spline surface. The singularities are colored in red in
Fig. 7(h) and (i).
4. Implementation and results

Our prototype system is implemented in Cþþ on windows
platform. We built a complete system for the Reeb graph
computation, handle and tunnel loops detection, surface decom-
position and parameterization, and T-spline surface fitting. We
tested our algorithms on various models with complicated
topologies. More examples are shown in Fig. 8. The results
demonstrate both the theoretic rigor and feasibility in practice.
The statistics of the examples are shown in Table 1.
5. Conclusion

In this paper, we have developed a new and effective method
to construct manifold T-splines for surfaces of complicated
topology/geometry. The most significant new idea of our approach
is the geometry-aware object segmentation that simultaneously
respects local geometric features and global topological struc-
tures. Our divide-and-conquer strategy can decompose an
arbitrarily complicated surface into a group of non-overlapping
components that comprise branches, handles, and base patches.
This object segmentation greatly simplifies objects of arbitrary
topological type into a family of genus-zero regular surfaces with
four curved boundaries. Popular spline schemes such as tensor-
product B-splines and T-splines can be easily employed to model
segmented patches with high accuracy. Furthermore, the entire
segmentation process is extremely flexible and intuitive, accom-
modating either full automation or interactive user control. This
local-to-global surface reconstruction is made possible through a
global gluing process followed by a global relaxation algorithm.
We show that the number of extraordinary points of the domain
manifold is bounded by the number of segmented components.
Since tensor-product B-splines and NURBS are currently standards
in CAD software industry, our entire mesh-to-spline data



ARTICLE IN PRESS

Reeb graph Surface decomposition T-Spline T-junctions

Fig. 8. Experimental results.

Table 1
Statistics of various test examples: g, genus of polycube P; Nbranch , # of branches;

Nhandle , # of handles; Nbase , # of base patches; Ne , # of extraordinary points; rms,

root-mean-square error.

Object g Nbranch Nhandle Nbase Ne rms (%)

David (Fig. 7) 2 2 2 1 8 0.12

Horse (Fig. 8) 0 6 0 4 20 0.06

Greek (Fig. 8) 4 1 4 2 10 0.13

Armadillo (Fig. 8) 0 7 0 3 20 0.09

Eight (Fig. 8) 2 0 2 0 2 0.02

H. Wang et al. / Computers & Graphics 33 (2009) 359–368 367
transformation pipeline enables and expedites the manifold
surface design over existing CAD software platform industry
(without any trimming), and thus, has great potential in shape
modeling and reverse engineering applications of complicated
real-world objects.
Acknowledgments

We would like to thank Prof. Tamal Dey for providing his
HanTun software to compute the geometry-aware loops and
tunnels. The models are courtesy of the AIM@SHAPE Shape
Repository. Hong Qin and Hongyu Wang are supported by NSF IIS-
0710819 and NSF IIS-0326388. Ying He is supported by the
Singapore National Research Foundation Interactive Digital Media
R&D Program, under Research Grant NRF2008IDM-IDM004-006.
Xianfeng Gu is supported by NSF DMS-0626223, NSF CCF-
0448399 and NSFC 60628202.

References

[1] Gu X, He Y, Qin H. Manifold splines. Graphical Models 2006;68(3):237–54.
[2] He Y, Wang K, Wang H, Gu X, Qin H. Manifold T-spline. In: Proceedings of GMP

’06. Lecture notes in computer science, vol. 4077; 2006. p. 409–22.
[3] Wang H, He Y, Li X, Gu X, Qin H. Polycube splines. Computer Aided Design

2008;40(6):721–33.
[4] Gu X, He Y, Jin M, Luo F, Qin H, Yau S-T. Manifold splines with single

extraordinary point. Computer Aided Design 2008;40(6):676–90.
[5] Wang H, Jin M, He Y, Gu X, Qin H. User-controllable polycube map for

manifold spline construction. In: Proceedings of the 2008 ACM symposium on
solid and physical modeling; 2008. p. 397–404.

[6] Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer Aided Design 1978;10(6):350–5.

[7] Stam J. Exact Evaluation of Catmull–Clark subdivision surfaces at arbitrary
parameter values. In: Proceedings of SIGGRAPH’98; 1998. p. 395–404.

[8] Sederberg TW, Zheng J, Bakenov A, Nasri AH. T-splines and T-NURCCs. ACM
Transactions on Graphics 2003;22(3):477–84.

[9] Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T. T-spline
simplification and local refinement. ACM Transactions on Graphics
2004;23(3):276–83.

[10] Zheng J, Wang Y, Seah HS. Adaptive T-spline surface fitting to z-map models.
In: GRAPHITE; 2005. p. 405–11.

[11] Li W-C, Ray N, Lévy B. Automatic and interactive mesh to T-spline conversion.
In: EG/ACM symposium on geometry processing; 2006.

[12] Ray N, Li WC, Lévy B, Sheffer A, Alliez P. Periodic global parameterization.
ACM Transactions on Graphics 2006;25(4):1460–85.

[13] Wang Y, Zheng J. Control point removal algorithm for T-spline surfaces. In:
GMP; 2006. p. 385–96.



ARTICLE IN PRESS

H. Wang et al. / Computers & Graphics 33 (2009) 359–368368
[14] He Y, Gu X, Qin H. Automatic shape control of triangular B-splines of
arbitrary topology. Journal of Computer Science and Technology 2006;21(2):
232–7.

[15] He Y, Jin M, Gu X, Qin H. A C1 globally interpolatory spline of arbitrary
topology. In: Lecture notes in computer science, vol. 3752; 2005. p. 295–306.

[16] Floater MS, Hormann K. Surface parameterization: a tutorial and survey. In:
Dodgson NA, Floater MS, Sabin MA, editors. Advances in multiresolution for
geometric modelling. Berlin: Springer; 2005. p. 157–86.

[17] Sheffer A, Lévy B, Mogilnitsky M, Bogomyakov A. ABFþþ: fast and robust
angle based flattening. ACM Transactions on Graphics 2005;24(2):311–30.

[18] Gu X, Yau S-T. Global conformal surface parameterization. In: Proceedings of
the eurographics/ACM SIGGRAPH symposium on geometry processing; 2003.
p. 127–37.

[19] Lévy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for
automatic texture atlas generation. In: SIGGRAPH ’02: proceedings of the
29th annual conference on computer graphics and interactive techniques.
New York, USA: ACM Press; 2002. p. 362–71.

[20] Jin M, Wang Y, Yau S-T, Gu X. Optimal global conformal surface parameter-
ization. IEEE Visualization 2004;25:267–74.

[21] Kharevych L, Springborn B, Schröder P. Discrete conformal mappings via circle
patterns. ACM Transactions on Graphics 2006;25(2):412–38.

[22] Maillot J, Yahia H, Verroust A. Interactive texture mapping. In: SIGGRAPH ’93:
proceedings of the 20th annual conference on computer graphics and
interactive techniques. New York, USA: ACM Press; 1993. p. 27–34.

[23] Surazhsky V, Gotsman C. Explicit surface remeshing. In: SGP ’03: proceedings
of the 2003 eurographics/ACM SIGGRAPH symposium on geometry proces-
sing. Aire-la-Ville, Switzerland: Eurographics Association; 2003. p. 20–30.

[24] Khodakovsky A, Litke N, Schröder P. Globally smooth parameterizations with
low distortion. ACM Transactions on Graphics 2003;22(3):350–7.

[25] Jin M, Luo F, Gu X. Computing surface hyperbolic structure and real projective
structure. In: Symposium on solid and physical modeling; 2006. p. 105–16.

[26] Gotsman C, Gu X, Sheffer A. Fundamentals of spherical parameterization for
3d meshes. ACM Transactions on Graphics 2003;22(3):358–63.

[27] Gu X, Wang Y, Chan TF, Thompson PM, Yau S-T. Genus zero surface conformal
mapping and its application to brain surface mapping. IEEE Transactions on
Medical Imaging 2004;23(8):945–58.

[28] Patanè G, Spagnuolo M, Falcidieno B. Para-graph: graph-based parameteriza-
tion of triangle meshes with arbitrary genus. Computer Graphics Forum
2004;23(4):783–97.

[29] Dey TK, Li K, Sun J. On computing handle and tunnel loops. In: Proceedings of
the 2007 international conference on cyberworlds; 2007. p. 357–66.
[30] Erickson J, Whittlesey K. Greedy optimal homotopy and homology generators.
In: Proceedings of the 16th annual ACM–SIAM symposium on discrete
algorithms; 2005. p. 1038–10460.

[31] Chen C, Freedman D. Quantifying homology classes. In: Proceedings of the
25th annual symposium on the theoretical aspects of computer science;
2008. p. 169–80.

[32] Colin de Verdière É, Lazarus F. On optimal system of loops on an orientable
surface. In: Proceedings of the 43rd annual IEEE symposium on foundations
of computer science; 2005. p. 627–36.

[33] Shattuck DW, Leahy RM. Automated graph-based analysis and correction of
cortical volume topology. IEEE Transactions on Medical Imaging 2001;20:
1167–77.

[34] Zhou Q-Y, Ju T, Hu S-M. Topology repair of solid models using skeletons. IEEE
Transactions on Visualization and Computer Graphics 2007;13:675–85.

[35] Dey TK, Li K, Sun J, Cohen-Steiner D. Computing geometry-aware handle and
tunnel loops in 3D models. ACM Transactions on Graphics 2008;27:1–9.

[37] Reeb G. Sur les points singuliers d’une forme de pfaff completement
intergrable ou d’une fonction numerique [on the singular points of a
complete integral pfaff form or of a numerical function]. Comptes Rendus
de l Academie des Sciences Paris 1946;222:847–9.

[38] Cornea ND, Min P, Silver D. Curve-skeleton properties, applications, and
algorithms. IEEE Transactions on Visualization and Computer Graphics
2007:530–48.

[39] Aujay G, Hétroy F, Lazarus F, Depraz C. Harmonic skeleton for realistic
character animation. In: Symposium on computer animation; 2006.
p. 151–60.

[40] Tierny J, Vandeborre J-P, Daoudi M. Topology driven 3D mesh hierarchical
segmentation. In: IEEE international conference on shape modeling and
applications; 2007. p. 215–20.

[41] Attene M, Biasotti S, Spagnuolo M. Shape understanding by contour-driven
retiling. The Visual Computer 2003;19(2–3):127–38.

[42] Pascucci V, Scorzelli G, Bremer P-T, Mascarenhas A. Robust on-line
computation of Reeb graphs: simplicity and speed. ACM Transactions on
Graphics 2007;58:1–9.

[43] Li X, Gu X, Qin H. Surface matching using consistent pants decomposition. In:
Proceedings of the 2008 ACM symposium on solid and physical modeling;
2008. p. 125–36.

[44] Eck M, Hoppe H. Automatic reconstruction of B-spline surfaces of arbitrary
topological type. In: SIGGRAPH ’96: proceedings of the 23rd annual
conference on computer graphics and interactive techniques; 1996.
p. 325–34.


	Geometry-aware domain decomposition for T-spline-based manifold modeling
	Introduction
	Contribution

	Related work
	Surface modeling
	Surface parameterization
	Handle/tunnel loop computation
	Skeleton extraction

	Algorithm
	Algorithm overview
	Branch segmentation
	Handle and base patch segmentation
	Branch parameterization
	Handle parameterization
	Base patch parameterization
	Domain manifold construction
	Surface fitting

	Implementation and results
	Conclusion
	Acknowledgments
	References




