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Abstract. This paper develops the manifold T-splines, which naturally extend
the concept and the currently available algorithms/techniques of the popular pla-
nar tensor-product NURBS and T-splines to arbitrary manifold domain of any
topological type. The key idea is the global conformal parameterization that intu-
itively induces a tensor-product structure with a finite number of zero points, and
hence offering a natural mechanism for generalizing the tensor-product splines
throughout the entire manifold. In our shape modeling framework, the mani-
fold T-splines are globally well-defined except at a finite number of extraordi-
nary points, without the need of any tedious trimming and patching work. We
present an efficient algorithm to convert triangular meshes to manifold T-splines.
Because of the natural, built-in hierarchy of T-splines, we can easily reconstruct
a manifold T-spline surface of high-quality with LOD control and hierarchical
structure.

1 Introduction

Despite many new shape representations proposed in recent years, to date, NURBS
remain the prevailing industrial standard for surface modeling in CAD/CAM primar-
ily because of their many attractive geometric properties and their dominant use in
modeling and design software industry. Nevertheless, theyexhibit two major shortcom-
ings: (1) NURBS control points must always align themselvesin a rectangular grid.
As a result, localized details and sharp features can not be easily accommodated with-
out introducing many more control points via knot insertion. Moreover, level-of-detail
(LOD) control and hierarchical structure facilitating multiresolution analysis are im-
possible using a single-level NURBS; (2) due to the nature ofits rectangular structure,
a single NURBS surface can only represent very simple shapessuch as open surfaces
or tori. In practice, in order to modeling surfaces of complicated topology, one must
define a network of tensor-productB-spline or NURBS patches and maintain certain
continuity requirement between adjacent patches [1, 2]. Furthermore, surface trimming
and abutting are oftentimes unavoidable.

To combat the above deficiencies of tensor-product NURBS, two recently developed
techniques, T-spline [3] and manifold spline [4], have beenintroduced in shape mod-
eling community. T-splines, developed by Sederberg, Zheng, Bakenov, and Nasri [3],
are a generalization of NURBS surfaces that are capable of significantly reducing the
number of superfluous control points by using the T-junctionmechanism. The main dif-
ference between a T-spline control mesh and a NURBS control mesh is that T-splines
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Fig. 1. Modeling the genus-one Rocker Arm model by manifold T-spline. (a) The conformal
structure induces a natural curvilinear coordinate on the manifold domain. (b) Construct the do-
main manifold by tracing the iso-curves of the global conformal parameterization. Note that the
domain manifoldM contains only quadrilaterals and T-junctions. (c) A cubic (C2-continuous)
manifold T-spline surface. (d) The red curves on the manifold T-splinesurface are the images
of the edges on the domain manifold along the u and v directions. (e) 2,121 control points are
highlighted. (f) The close-up view of the details.

allow a row or column of control points to terminate at anywhere without strictly en-
forcing the rectangular grid structure throughout the parametric domain. Consequently,
T-splines enable much better local refinement capabilitiesthan NURBS. Furthermore,
using the techniques presented in [3], it is possible to merge adjoining T-spline surfaces
into a single T-spline without adding new control points. However, this patching process
requires that the knot intervals of the to-be-merged edges must establish an one-to-one
correspondence between the two surfaces.

Manifold spline, presented by Gu, He, and Qin [4], is a general theoretical frame-
work, in which the existing spline schemes defined over planar domains can be sys-
tematically generalized to any manifold domain of arbitrary topology (with or without
boundaries) using affine structures. They demonstrated theidea of manifold spline only
using triangularB-splines because of the attractive properties of triangular B-splines,
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such as arbitrary triangulation, parametric affine invariance, and piecewise polynomial
reproduction. Despite the generality of triangularB-splines, they have not been used in
an industrial setting due to their modeling complexity in evaluation, differential prop-
erty computation, and data management. In practice, 2D-array-like control point layout
facilitates the effective computation, shape analysis, and perhaps above all, the sim-
plicity of data structure. In spite of all the potential modeling power associated with
our manifold spline, its has not gained a widespread popularity mainly due to the fact
that its constituent is triangularB-spline. To further promote its utility in real-world
applications, we must bring tensor-product splines such asNURBS into our manifold
spline framework and demonstrate its efficacy. Our current research reported here aims
to serve this need.

In particular, this paper presents the manifold T-splines,a natural and necessary
integration of T-splines and manifold splines, with a goal to retain all the desirable
properties while overcoming the aforementioned modeling drawbacks at the same time.
Manifold T-splines can be directly defined over the manifoldof arbitrary topology to
accurately represent various shapes with complicated geometry and topology. Mani-
fold T-splines naturally inherit all the attractive properties from T-splines defined over
a planar domain, including the powerful local refinement capabilities and the hierarchi-
cal organization for LOD control. Definitely worth mentioning here is that its build-
ing block comes from tensor-product NURBS, an industrial standard in all CAD/CAM
software systems with a large variety of algorithmic routines available. The systematic
development of our manifold T-splines streamlines the entire process of our manifold
splines by demonstrating the intrinsic connection betweenmanifold splines and pop-
ular tensor-product NURBS. As a result, our manifold T-splines are suitable for both
expert users and novice users. Users, who are familiar with NURBS, can easily em-
brace our manifold T-splines without extra difficulties, asall the software routines and
existing algorithms for tensor-product NURBS remain unchanged in our new model-
ing framework. Figure 1 shows the manifold T-spline of genus-one Rocker Arm model.
This manifold T-spline is a single spline representation without any trimming, cutting
and patching work.

2 Previous Work

2.1 Hierarchical Splines and B-splines/B́ezier Splines Based Modeling
Techniques

Forsey and Bartels presented the hierarchicalB-spline [5], in which a single control
point can be inserted without propagating an entire row or column of control points.
Gonzalez-Ochoa and Peters [6] presented the localized-hierarchy surface splines which
extended the hierarchical spline paradigm to surfaces of arbitrary topology. Yvartet
al presented theG1 hierarchical triangular spline which works on any 2-manifold tri-
angular mesh of arbitrary genus and has no restriction on theconnectivity of the ver-
tices. They demonstrated hierarchical triangular splinesin smooth adaptive fitting of
3D models in [7]. In [3], Sederberget al. presented the T-spline, a generalization of
the non-uniform B-spline surfaces. T-spline control gridsneed not to be totally regular.
In particular, they allow T-junctions, and lines of controlpoints need not to traverse
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the entire control grid. Therefore, T-splines enable true local refinement without intro-
ducing additional, unnecessary control point in nearby regions. Sederberget al. also
developed an algorithm to convert NURBS surfaces into T-spline surfaces, in which a
large percentage of superfluous control points are eliminated [8].

There also exist large number of literatures in modeling 3D shapes of complicated
topology usingB-splines and B́ezier patches. Due to the space limitation, we just name
a few of them. Peters constructedC1 surfaces of arbitrary topology using biquadratic
and bicubic spliens [9]. This method generalizes the standard biquadratic tensor-product
B-spline representation to irregular meshes, i.e., there are no regularity restrictions on
the input meshes. Hahmann and Bonneau [10] presented a method for interpolating
2-manifold triangular meshes with a parametric surface composed of B́eizer patches
of degree 5. This method can generate visually pleasing shapes without the unwanted
undulations, even if the interpolated mesh has irregular features. Loop and DeRose pre-
sented a method for constructing surfaces from control meshes of arbitrary topological
type [11]. This method is based on S-patches which generalize biquadratic and bicu-
bic B-splines. The aboveB-splines and B́ezier spline based methods share one common
property: they require the control points along the boundaries of adjacent spline patches
satisfying certain constraints to reachG1, C1 or C2 continuity. Therefore, only part of
the control points serve the geometric modeling purpose.

2.2 Manifold Construction

There are some related work on defining functions over manifold. In essence, mani-
fold construction is different from the above work on splines of arbitrary topology. The
shape (2-manifold) is covered by several charts. One buildsfunctions on each chart.
Due to certain continuity requirement of the transition functions between overlapping
charts, the smoothness properties of the manifold functions areautomaticallyguar-
anteed. Therefore, there are no restrictions/constraintson the control points. All the
control points are free variables in the entire modeling process. Furthermore, manifold
constructions can generateCk smooth surfaces.

Grimm and Hugues [12] pioneered a generic method to extend B-splines to sur-
faces of arbitrary topology, based on the concept of overlapping charts. Cotrinaet
al. proposed aCk construction on manifold [13, 14]. Ying and Zorin [15] presented
a manifold-based smooth surface construction method whichhasC∞-continuous with
explicit nonsingular parameterizations only in the vicinity of regions of interest.

More recently, Guet al. [4] developed a general theoretical framework of manifold
splines in which spline surfaces defined over planar domainscan be systematically gen-
eralized to any manifold domain of arbitrary topology (withor without boundaries).
Manifold spline is different from the above manifold construction methods in the fol-
lowing aspects: 1) The transition functions of manifold spline must be affine. Therefore,
the requirements of manifold spline is much stronger than previous work. That is why
topological obstruction plays an important role in the construction. 2) Manifold spline
produces either polynomial or rational polynomials. On anychart, the basis functions
are always polynomials or rational polynomials, and represented asB-splines or rational
B-splines.
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To further improve our manifold spline results, in this paper we develop the mani-
fold T-spline, which combine the benefits of our manifold spline and T-spline towards
a more practical solution on surface modeling and simulation.

3 Manifold T-spline

As pointed out in [4], if a particular planar spline scheme isinvariant under the paramet-
ric affine transformation, it can be generalized to manifolddomain of arbitrary topology
with no more than Euler number of singular points. For example, triangularB-splines
and Powell-Sabin splines have been generalized from the planar domain to manifold of
arbitrary topology [4, 16].

T-splines [3] are a generalization of NURBS surfaces that are capable of signifi-
cantly reducing the number of superfluous control points. T-splines are parametric affine
invariant, and therefore, they can be generalized to manifold domain without theoretical
difficulties. The overview of the construction algorithm isas follows:

Algorithm: Construction of manifold T-spline
Input: A polygonal meshP, maximal fitting toleranceε
Output: A manifold T-splineF which approximatesP

1. Compute the global conformal parameterization ofP.
2. Construct the domain manifoldM (a coarse T-mesh) according to the conformal

structure ofP.
3. Assign the knot interval for each edge ofM to get the initial T-splineF .
4. Compute the control points ofF by minimizing a linear combination of the inter-

polation and fairness functional.
5. Locally refine the T-splineF if the fitting error is bigger than the user specified

fitting toleranceε and repeat step 4. Otherwise, outputF .

3.1 Global Conformal Parameterization

SupposeP is a surface with handles, either open or closed. A global conformal pa-
rameterization is a mapφ : P→ R

2, such that each pointp on M is mapped to a point
on the planar parametric domainφ(p) = (u(p),v(p)). Furthermore, the mapφ is angle
preserving, which is equivalent to the following fact: suppose we arbitrarily draw two
intersecting curvesγ1, γ2 onM, the intersection angle isα, then the intersection angle of
their imagesφ(γ1) andφ(γ2) is alsoα. Mathematically, the conformality of the param-
eterization is formulated in the following way: the first fundamental form ofM under
conformal parameterization(u,v) is represented asds2 = λ2(u,v)(du2 +dv2), whereλ
is called the conformal factor, which indicates the area ratio between the area onM and
that on the plane.

In practice, it is more convenient to compute the gradient fields ofφ, namely(▽u,▽v).
If φ is conformal, then it satisfies the following criteria:

▽v(p) = n(p)×▽u(p),
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wheren(p) is the normal at the pointp, also

▽×▽u = ▽×▽v = 0,

because the gradient fields are curl-free. Formally, a pair of vector fields satisfying the
above conditions is aholomorphic 1-form. There exists an infinite number of this kind
of vector fields. They form a 2g dimensional real linear space, whereg is the number
of handles ofP.The integration curves▽u and▽v are calledhorizontal and vertical
trajectories, respectively. It is obvious that the horizontal and vertical trajectories are
orthogonal everywhere and two horizontal (vertical) trajectories do not intersect each
other in general. There are special points onP, where two horizontal trajectories in-
tersect (two vertical trajectories also intersect). It canbe proven that, at those points,
the conformal factors are zero, therefore, such kind of points are calledzero pointsof
the holomorphic 1-form. By the Poincaré-Hopf theorem, every vector field on a closed
surface of genusg 6= 1 must have zero points. The holomorphic 1-form has the unique
property that it has the minimal number of zero points, i.e.,|2g−2| zero points.

The following theorem reveals the relationship between theconformal structure and
the affine structure.

Theorem 1. ([4])Given a closed genus g surface M, and a holomorphic 1-formω.
Denote by Z= {zeros o fω} the zero points ofω. Then the size of Z is no more than
2g−2, and there exists an affine atlas on M/Z deduced byω.

Essentially, Theorem 3 indicates that an affine atlas of a manifold M can be deduced
from its conformal structure in a straightforward fashion.

3.2 Domain Manifold Construction

Unlike the manifold triangularB-spline which does not have any restriction on the do-
main manifold [4], manifold T-splines require that the domain manifold has mainly
rectangular structure possibly with T-junctions. The global conformal parameterization
induces the natural tensor-product structures on the domain manifold with Euler number
of zero points, which furthermore induces the affine structure of the domain manifold.
In the subsection, we present the method to construct the domain manifold (quad mesh
with T-junctions). The method varies different types of surfaces. We explain the details
for each case: genus zero closed surfaces, genus one closed surfaces, high genus closed
surfaces and surfaces with boundaries.

Genus zero closed surfacesEvery genus zero closed surfaceP can be conformally
mapped to a sphere. Practical algorithms for computing suchmaps are given in [17,
18]. The idea used in [17] is that, for genus zero closed surfaces, conformal maps are
equivalent to harmonic maps, which can be computed using heat flow method. Denote
by f : P → S

2 the conformal map and(θ,φ) the spherical coordinates. The horizon-
tal trajectories onP are the curvesf−1(φ = const.), and the vertical trajectories are
f−1(θ = const.). The preimages of the north and south poles are the zero points. The
trajectories are orthogonal everywhere except at the zero points and form the conformal
net. Figure 8 shows the conformal parameterization and the domain manifold of the
genus zero Iphegenia model.

Genus one closed surfacesThe holomorphic 1-formω on a genus one closed sur-
faceP is nonsingular everywhere, i.e., there are no zero points. Thus, the construction
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of domain manifold is straightforward. By integratingω onP, the whole surface can be
conformally mapped to a parallelogram on the plane, called the fundamental periodof
P. In general, this is not a rectangle, but a skewed parallelogram whose shape is deter-
mined by the conformal structure ofP. If the fundamental period is a rectangle, then
all the horizontal and vertical trajectories forming the conformal net on the surfaces are
closed circles. Otherwise, two families of curves parallelto the sides of the parallelo-
gram are used as the trajectories. Figure 1 shows the conformal parameterization and
domain manifold of the Rocker Arm model.

High genus closed surfacesThe global structure of conformal nets on high genus
closed surfaces is more complicated than the above cases dueto the existence of zero
points.

Once the differential form is obtained, we locate all its zero points and all the hor-
izontal trajectories passing through them, namely, thecritical horizontal trajectories.
The critical horizontal trajectories partition the surface into several patches. Each patch
is either a cylinder or a disk. All patches can be conformallymapped to a planar rectan-
gle. Therefore, we can build the conformal net for each patch, and glue them together.
Note that, the T-junctions are allowed along the boundariesof the patches. The zero
points, the critical horizontal trajectories, and the patches form a graph, the so called
critical graph.

(a) (b) (c) (d)

Fig. 2.Critical graph of the two-hole torus model. (a) Global conformal parameterization. (b) The
critical horizontal trajectories partition the surface into two patches. Each patch is a cylinder. (c)
Map each patch to a planar rectangle. (d) We build the quad mesh for eachpatch and then glue
them together.

Surfaces with boundariesFor surface with boundaries, we need to double cover
the original surfaces to make it become a closed surface (see[19] for the details of
double covering technique). Generally, ifP is of genusg and hasb boundaries, then
the double-covered surfacēP is a closed surface with genus 2g+b−1. We compute the
holomorphic 1-form basis of̄P and then find a special holomorphic 1-formω = (ωu,ωv)
on it such thatωu is orthogonal to∂P everywhere. Thisω induces a conformal net onP
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for which all curves in∂P are vertical trajectories. Figure 6 illustrates the critical graph
of the Stanford Bunny. In order to get the uniform global conformal parameterization,
three cuts are introduced in the original model, two are at the tips of ears, one is at the
bottom. Therefore, it is topologically equivalent to a 2-hole disk. The double covered
surface is of genus 2. The zero point is between the roots of the two ears. The critical
horizontal trajectories partition the surface into 2 connected components, each compo-
nent is a topological disk which can be conformally mapped toa rectangle in the plane
by integrating the holomorphic 1-formω. Then the domain manifold can be constructed
by remeshing each component.

Fig. 3.Modeling the Kitten model using manifold T-spline with 765 control points.

3.3 Hierarchical Surface Reconstruction

Given the domain manifoldM with conformal structureφ : M → R
2, the manifold T-

spline can be formulated as follows:

F(u) =
n

∑
i=1

CiBi(φ(u)), u ∈ M, (1)

whereBis are basis functions andCi = (xi ,yi ,zi ,wi) are control points inP4 whose
weights arewi , and whose Cartesian coordinates are1

wi
(xi ,yi ,zi). The cartesian coordi-
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nates of points on the surface are given by

∑n
i=1(xi ,yi ,zi)Bi(φ(u))

∑n
i=1wiBi(φ(u))

. (2)

Given a parameteru ∈ M, the evaluation can be carried out on arbitrary charts covering
u.

We now discuss the problem of finding a good approximation of agiven polygonal
meshP with vertices{pi}

m
i=1 by a manifold T-spline.

A commonly-used technology is to minimize a linear combination of interpolation
and fairness functionals, i.e.,

minE = Edist +λEf air . (3)

The first part is

Edist =
m

∑
i=1

‖F(ui)−pi‖
2

whereui ∈ M is the parameter forpi , i = 1, . . . ,m.
The second partEf air in (3) is a smoothing term. A frequently-used example is the
thin-plate energy,

Ef air =
∫∫

M
(F2

uu+2F2
uv+F2

vv)dudv.

Note that both parts are quadratic functions of the unknown control points.
We solve Equation 3 for unknown control points using Conjugate Gradient method.

The value and gradient of the interpolation functional and fairness functional can be
computed straightforwardly.

In our method, we control the quality of the manifold T-spline spline by specifying
the maximal fitting toleranceL∞ = max‖F(ui)−pi‖, i = 1, . . . ,m. If the current surface
does not satisfy this criterion, we employ adaptive refinement to introduce new degrees
of freedom into the surface representation to improve the fitting quality. Because of
the natural and elegant hierarchial structure of T-splines, this step can be done easily.
Suppose a domain rectangleI violates the criterion and denoteLI

∞ the L∞ error on
rectangleI . If the LI

∞ > 2ε, split the rectangleI using 1-to-4 scheme; Otherwise, we
divide I into two rectangles by splitting the longest edge.

After adaptive refinement, we then re-calculate the controlpoints until the maximal
fitting tolerance is satisfied. Figure 3.3 shows the whole procedure of hierarchical fitting
of the David’s head model. The initial spline contains only 105 control points and the
maximal errorL∞ = 8.6%. Through six iterations, we can obtain a much more refined
spline with 7706 control points. The maximal fitting error reduces to 0.74%. As shown
in the close-up view (Figure 5), our hierarchical data fitting procedure can produce high
quality manifold T-splines with high-fidelity recovered details.

3.4 Experimental Results

We have implemented a prototype system on a 3GHz Pentium IV PCwith 1GB RAM.
We perform experiments on various real-world surfaces. In order to compare the fit-
ting quality across different models, we uniformly scale the models to fit within a unit
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Table 1. Statistics of test cases.Np, # of points in the polygonal mesh;Nc, # of control points;
rms, root-mean-square error;L∞, maximal error. The execution time measures in minutes.

Object Np Nc rms L∞ Time

David 200,000 7,706 0.08% 0.74% 39m
Bunny 34,000 1,304 0.09% 0.81% 18m

Iphegenia 150,000 9,907 0.06% 0.46% 53m
Rocker Arm 50,000 2,121 0.04% 0.36% 26m

Kitten 40,000 765 0.05% 0.44% 12m

cube. Table 1 summarizes the spline complexities and performance. The execution time
includes the global conformal parameterization, domain manifold construction and hi-
erarchical spline fitting. Figure 8 shows the manifold T-spline of Iphegenia model. Note
that the details can be reconstructed easily with an appropriate number of control points.

4 Conclusions

In this paper, we have presented the manifold T-splines as a novel shape modeling
paradigm for complicated geometry and topology. Built uponour previous work, the
manifold T-splines integrate the algorithms and techniques of the widely-used, tensor-
product NURBS and recently-proposed T-splines towards theeffective shape model-
ing for arbitrary manifold. Our motivations come from two frontiers: (1) extending
NURBS and T-splines to the manifold setting; and (2) promoting the widespread ac-
ceptance of manifold splines in real-world, shape modelingapplications. The central
idea is the global conformal parameterization that naturally induces a tensor-product
structure over arbitrarily complicated manifold. In our shape modeling framework, the
manifold T-splines are globally well-defined except at a finite number of extraordinary
points without the need of any tedious and counter-intuitive trimming and patching
work. Driven by the theoretical advances, we have developedan efficient algorithm au-
tomatically construct manifold T-splines from input data points. The salient features of
our manifold T-splines include: natural hierarchical structure, local refinement, LOD
control, tensor-product splines as building blocks, etc. Our new techniques are poised
to be effective in shape modeling, and interactive design.
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P, Nv = 200K Conformal
structure

N1
c = 105
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N3
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L4
∞ = 2.4%

N5
c = 5087

L5
∞ = 1.3%

N6
c = 7706

L6
∞ = 0.74%

Fig. 4.Hierarchical surface reconstruction.Ni
c andLi

∞ are the number of control points and maxi-
mal fitting error in iterationi. Nv is the number vertices in the input polygonal meshP. The input
data is normalized to a unit cube.

(a) (b) (c) (d)

Fig. 5.Close-up of the reconstructed details. (a),(c) The original polygonalmesh. (b),(d) Manifold
T-spline where the red curves highlight the T-junctions.
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(a) (b) (c)

Fig. 6.Critical graph and domain manifold. (a) shows the global conformal parameterization. (b)
shows the critical horizontal trajectories partition the whole surface into two components. Each
component can be conformally mapped to a rectangle. (c) Construct the domain manifold (quad
mesh with T-junctions) by remeshing each component. T-junctions are allowed along the critical
trajectories.

(a) (b) (c) (d)

Fig. 7.Converting Stanford Bunny into a manifold T-spline. (a)&(b) The frontview. (c)&(d) The
back view. The red curves illustrate the T-junctions on the spline surface.
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(a) (b) (c) (d)

Fig. 8.Modeling the Iphegenia model using manifold T-spline. (a) Global conformal parameteri-
zation; (b) The domain manifold; (c) AC2 manifold T-spline with 9,907 control points; (d) The
red curves are the images of the edges of the rectangles in the domain manifold.


