
1. Introduction

The representation of a volume dataset as a collection of
partially overlapping 3D radial basis functions (RBFs, simply
called kernels in those days), centered at the grid positions,
gave rise to one of the first volume rendering algorithms --
splatting [Wes90]. While early splatting approaches suffered
from blurring as well as popping artifacts during view transi-
tions, the introduction of post-rasterization classification and
shading [MMC99], in conjunction with the image-aligned ker-
nel-slicing approach [MSH*99], enabled volume rendering
with splatting at high quality in both static and dynamic view-
ing modes. A hallmark of splatting is its object-centric (or bet-
ter, voxel-centric) rendering paradigm, which enables the
efficient and rendering of sparse and irregularly-shaped
datasets [MHB*00][HHF*05]. Splatting is also a popular para-
digm for surface rendering with point-based representations,
giving rise to point-based rendering [LW85][PZvB*00]
[RL00]. Here, surfaces are represented as collections of sur-
face-aligned 2D RBFs which are rasterized to the screen to
form the image. Just as in volume splatting, surface-splatting
with points allows a more efficient representation and render-
ing of intricate objects with high, but possibly sparse detail. In
terms of volume rendering, if all one desires are iso-surfaces,
then a favorable approach is to convert a volume into a set of
surface points on the fly and render these with surface splatting
[LT04][vRLH*04]. This eliminates the need for reconstructing
the surface in volume space by interpolating the local neigh-
borhood of 3D RBFs. On the other hand, if the goal is to create
a composited or summed integration of the volume data, say,
along the viewing direction, then it is preferable to retain the
volumetric RBF representation during the rendering. Our paper
focuses on this latter task. 

Point-based objects rendered with RBF surface splatting are
commonly created from dense point clouds, which were
acquired via range scanning. To find the RBF-based surface,
some optimization method is used, such as least squares and
others [DTS01][OBH04]. More recently, researchers have also

used methods of this kind to reduce volumetric datasets origi-
nated from computational science, such as CFD or finite ele-
ment simulation, into a smaller set of RBFs [JWH*04]
[WBH*05], and a scattered volumetric point cloud results
from this RBF-fitting process. On the other hand, volumetric
scanning, using Lidar and others, also gives rise to scattered
volumetric point clouds [JRS*02]. 

The original volume splatting algorithm was motivated by
medical data, which come on cartesian grids. The rendering
algorithms for these could rely on this regular structure and
rasterize and composite the splats in very regular ways. Scat-
tered data, on the other hand, requires more complicated space
traversal, rasterization, and compositing strategies. Most meth-
ods simply order the RBFs and then rasterize them as single,
pre-shaded blobs, projecting their screen space footprints (usu-
ally a Gaussian). However, pre-shading and -classification
leads to blurring on zooms, and it also can cause the leakage of
color. A better method, just as in the splat rendering of regular
data, is to reconstruct a set of parallel, image-aligned density
slices of the volume first, and then perform color lookup and
shading, followed by a merging with a front-to-back or back-
to-front compositing buffer. The method presented in this
paper follows this high-quality paradigm.   

In that respect, our work is most similar to that of Jang et al.
[JWH*04], who use an octree for spatially organizing the
RBFs and then pass a set of equi-distant slice planes across this
decomposition. The octree helps to quickly locate the RBFs
which intersect with the slice. Then, for each slice plane pixel -
- forming a point Psl in volume space -- they employ a frag-
ment program on the GPU to evaluate the exponential Gauss-
ian functions of the RBFs overlapping at Psl, plugging in the
volume-space distance of Psl and each RBF center. They report
frame-rates of 4 fps for grids with less than 1000 kernels.
Although excellent images can be obtained, the explicit object-
space interpolation approach suffers from high memory and
computational overhead, since each point may have to be
loaded and its kernel function be evaluated a number of times
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per slice, once for each slice pixel. This in turn limits the
attainable rendering frame rate. We take the opposite strategy,
more in line with point-based rendering, which spreads a vol-
ume point’s contributions to all affected pixels in a slice with
a single load and requires only a few kernel evaluations. More
specifically, the contributions of our paper are:
• Instead of using expensive fragment programs at each slice

pixel, we rasterize kernel sections, taking advantage of the
much faster hard-wired floating-point polygonal rasteriza-
tion facilities provided by the latest graphics cards, such as
the Nvidia 6800 FX. This enables us to achieve splat ren-
dering rates of two orders of magnitudes higher than with
an explicit kernel function evaluation approach. 

• In addition to spherical RBFs we also support generalized
ellipsoidal kernels, using a novel GPU-based scalable ker-
nel slicing method. Elliptical RBFs potentially enable a
better, more data-aligned fitting, which can reduce the
number of RBFs and also lower fitting errors resulting
from the optimization. While we do not explore this poten-
tial in this paper, there have been a number of results in
point-based surface rendering which substantiate this claim
[DTS01].

• Finally, our method also uses a spatial decomposition (but
a flat organization, not an octree), in conjunction with an
active splat list, to quickly locate the kernels falling into a
slice slab. 
Our paper is organized as follows: In Section 2 we review

some related previous works on the rendering of irregular
grids, splatting, and GPU-accelerated rendering. Then, in Sec-
tions 3 and 4, we describe the theory and implementation of
our framework. Section 5 presents some of our results, and in
Section 6 we conclude and give directions for future work.

2.  Related Work

Our paper deals with the point-based rendering of irregu-
larly distributed RBFs in volumes. For a survey of point-
based rendering methods for surfaces refer, for example, to
[KB04]. In the scope of regular-grid splatting of pre-classified
points, the EWA framework has been devised to separate the
object-space scaling and filtering of 3D kernels from the
image-space filtering of footprints [ZPvB*01]. Our frame-
work could be enhanced in similar ways, and we will discuss
ideas to this end in the future work section of this paper. The
EWA algorithm has recently also been accelerated on the
GPU [CRZ*04]. 

In the following, we shall concentrate on related work in
volumetric RBF splatting of scattered and irregularly-gridded
data. There have been various algorithms that use the splatting
paradigm for these purposes. Meredith and Ma [MM01] use
spherical kernels that fit into a cube and are mapped to tex-
tured squares for projection. Jang et al. [JRS*02] fill a cell
with one or more ellipsoidal kernels, which they render with
elliptical splats. A similar approach was also taken by Mao
[Mao96]. Hopf et al. [HLE04] apply splatting to very large
time-varying datasets and render the data as anti-aliased GL
points. Common to all these approaches is that shading pre-
cedes splat projection because the overlap of the kernels in
volume space makes it difficult to interpolate the local infor-
mation, such as gradient and density, needed for the shading
information. Doing so would be equivalent to a local recon-
struction of the field function. The image-aligned splatting
method [MSH*99], on the other hand, enables this by interpo-

lating a set of parallel, image-aligned density slices, splatting
the slices of the kernels they intersect (see also Section 3).
This allows the mapping of pixel densities into color by ways
of the transfer function, as well as shading by calculating the
gradients within-slice (x, y) and across-slice (z). This, in turn,
enables crisp edges on zooms and reduces the color leakage
created by mixing pre-colored RBF “balls” on the image
plane. It also resolves the ordering paradox resulting from the
partial overlap of the kernels, which is even more pronounced
in the irregular, scattered data case, where possibly large and
small RBFs mix together. 

As mentioned in Section 1, a slice-interpolating approach
bearing these advantages was recently taken by Jang et al.
[JWH04] for scattered data, but they use a GPU fragment pro-
gram to evaluate the Gaussian function of all kernels that
overlap at a given point. Their post-shaded approach leads to
imagery with much better lighting effects, but it suffers from
the overhead associated with the explicit kernel evaluation.
Since they run an optimization algorithm to encode their vol-
umes into a minimal set of spherical RBFs, the number of ker-
nels they must render is not very large (not more than 1000),
and therefore they can obtain interactive frame-rates of up to
4 fps. However, the reduction is highly dependent on the
accuracy threshold set and the complexity of the original,
unoptimized volume. It is therefore worthwhile to explore
methods that can process points at a faster rate. In fact, by per-
forming the local function reconstruction via analytic means
in the fragment shaders, the explicit approach does not exploit
the much faster hard-wired interpolation facilities that exist in
GPUs, and which have been exploited by even early splatting
approaches run on SGI hardware [CM93]. It turns out that by
using the new floating blending capabilities of the latest gen-
eration of graphics cards, all splatting operations necessary
can be executed within the hard-wired parallel rasterization
and pixel processing units on these cards. We shall see that by
using these facilities a significantly higher point rendering
rate can be obtained, while still maintaining the high visual
quality enabled by the slice-based post-shaded rendering. 

3. Method

First, we briefly review the image-aligned splatting
approach [MSH*99] and show the modifications required for
the splatting of ellipsoids. We also summarize how it is accel-
erated on the GPU (see [NM05] for more detail). Then we
move to its extension to elliptical RBF kernels.

3.1 The modified image-aligned splatting algorithm   

Fig. 1 illustrates the algorithm in its modified form. For
reasons which will become apparent at the end of this section,
the slicing planes only extract slices of the kernel, and not pre-
integrated kernel slabs, as was done in [MSH*99]. The algo-
rithm only requires a single 2D generic Gaussian footprint
texture (and not an array as in [MSH*99]) and a 1D texture
with a Gaussian scaling function. This decomposition is
enabled by the separability of higher-dimensional Gaussian
functions into a set of products of lower-dimensional Gauss-
ians. 

(1)
Here, the first part is the scaling function and the second is

the splat. When a slicing plane cuts across a kernel, the 1D
Gaussian scaling texture is indexed by the slice plane’s dis-

G Ae k x2 y2 z2+ +( )– Ae kz2– e k x2 y2+( )–= =
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tance from the center of the kernel. The result is then used as a
factor to scale (using the OpenGL functions) the footprint tex-
ture when it is rasterized. This yields a properly scaled raster-
ized kernel slice. Extracting kernel slices instead of slabs has
not resulted in lower quality rendering for the cartesian-grid
case. In essence, while the present method is a point-sampling
of the slice function, the previous slab method pre-filters
(box-averages) the kernel along the viewing direction (using
the slab width as the box-filter support). Thus, the present
method is similar to point-sampling in ray casting. To over-
come possible staircase artifacts, etc., one could easily add
pre-integrated rendering [EKE01], using the interpolated den-
sities of a front and back slice as indices. 

In [NM05], we have described a number of techniques that
promote the use of built-in hardware facilities, such as early z-
culling, (i) to eliminate kernels projecting onto opaque image
areas at an early stage and (ii) to focus slice-based shading
and compositing operation onto areas that have received ker-
nel contributions. We extend the standard algorithm by gener-
alizing the basic primitive of the spherical kernel, used to
represent a point, to a general ellipsoid. An ellipsoid can be
perceived and processed as a deformed (warped) sphere, since
it can be represented by a series of 3D scaling and rotation
operations applied to a unit sphere. By transforming all the
slicing/compositing operations of the 3D ellipsoid to opera-
tions on a unit sphere, we can exploit the symmetry of the
radial kernel and apply an efficient algorithm which is also
easy to accelerate using current generation GPU hardware.
Once transformed we use the method shown in Fig. 1 to
extract the slice. Fig. 2 justifies our approach of splatting only
the kernel slices and not the pre-integrated slabs.

3.2 Ellipsoid slicing

We shall now derive our warping/slicing procedure for
ellipsoidal kernels more formally. Modeling the 3D elliptical
Gaussian kernel using the implicit equation of a general ellip-
soid (quadric surface) yields the following equation:

(2)
Let us assume that the ellipsoid is centered at the origin

(0,0,0) and its size is one. We can then let g=h=j=0 and k=-1.
In the matrix form of equation (3), the ellipsoid can now be
expressed as a 4x4 quadric matrix Q, which is equivalent to
applying an affine transformation to a unit sphere.

(3)

(4)

In the above notation, the quadric matrix of a unit sphere is
represented as an identity matrix with the last element set to
be -1, and it will be referred to as I’. An arbitrary ellipsoid Q
can therefore be composed by scaling and then rotating a
sphere around its center. Thus, given a scaling matrix S and a
rotation matrix R, the resulting ellipsoid will be:

(5)

Since R is orthogonal, and S is diagonal we have 
and , and therefore: 

 (6)
For rendering, each ellipsoid needs to be transformed into

screen space by first positioning it into volume space (apply-
ing a translation T to its center), and then applying the view-
ing transformation matrix V to the matrix Q. Here, V = SV · RV,
where the matrices SV, RV are the zoom (scale) and rotation
matrices, respectively. The screen-space scaling SV will be
applied as a 2D scaling transformation to the ellipsoid slices
just before the rasterization takes place. In the remainder of
the text, we define the term screen space to be the coordinate
system aligned with the screen before the final viewport trans-
formation is applied, sometimes also referred to as eye-space.

Using V and T to transform the ellipsoid into screen space,
we are now ready to slice it for rasterization into the corre-
sponding slicing plane buffers. For this, we would intersect it

compositing

image plane

contributing 
kernel slices

*

Gaussian scaling function

generic 
Gaussian footprint

slicing planes

Figure 1:  Modified image-aligned sheet-buffered splat-
ting, as seen from the top. Kernels and planes extend to
3D. A viewing angle of 0° is shown, but any viewing angle
is possible since the kernels are radially symmetric.

ax2 by2 cz2 2dxy 2zey 2fxz 2gx 2hy 2jz k=0+ + + + + + + + +

elliptical kernel warped into 
a radially symmetric kernel

Figure 2:  Illustration of the kernel warping process in 2D.
In the original image-aligned splatting algorithm, the kernel
slice tables would store the pre-integration of the rays
across the slab, traversing it orthogonal to the slab’s two
bounding planes. However, the warping undoes this orthog-
onality. The integrals due to the red rays would be looked
up and not those due to the warped black rays. This could
lead to slight errors, which are different for each slab posi-
tion. Therefore we do not store the slab integrals, but only
use a cross-sectional texture of the radially symmetric RBF
(we use Gaussians), which is then scaled by the orthogonal
kernel value.     

ray paths across 
warped ray paths are no longer
orthogonal to the slicing plane

the slab (the red paths are)
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with a group of equidistant planes perpendicular to the view-
ing direction. The kernel slices would then be added to the
corresponding slicing buffers. Fig. 3a illustrates an arbitrary
ellipsoid with a set of slicing planes along the viewing direc-
tion. However, since the kernel slices and the orthogonal scal-
ing are orientation-dependent, we would require a separate
generic footprint and scaling function for each possible screen
space orientation of this individual ellipsoid, and for each ori-
entation of the collection of ellipsoids in a given view.

We can overcome these obstacles by warping the slicing
planes from the space of a given ellipsoidal kernel into the
space of a standard spherical kernel of unit size. By express-
ing an ellipsoidal kernel as a transformation applied to a
spherical kernel, we can take also advantage of the hard-wired
GPU texture-mapping and blending functionality to achieve a
very fast mapping. While an ellipsoid will be sliced in screen
space, resulting in a set of stacked 2D ellipses, the kernel
evaluation will be done by applying the corresponding texture
coordinates of the slicing polygons to a 3D spherical kernel in
unit texture space. Thus these ellipses will be treated as
deformed disks, or, more specifically, as slices of a spherical
kernel. Fig. 3b illustrates the corresponding texture coordinate
space, where the intersecting polygons are now slicing a unit
sphere. Further optimizations are then applied to take advan-
tage of the fact that the Gaussian kernel being used is spheri-
cally symmetric. We will now describe our slicing technique
in further detail. 

3.3 Efficient ellipsoid slicing on the GPU

The obvious approach to ellipsoid slicing would deal
directly with equation (2) of the general ellipsoid, and its
quadric representation in equation (4). To create a 2D ellipse
one only needs to drop the last two rows and columns of the
matrix Q. This approach was used for EWA splatting
[ZPvB*01], which, however, splats entire kernels without
slicing. Incorporating slicing is possible, but we discovered
that it requires many operations, including square roots, that
are not well accelerated on the GPU hardware. Although they
could be issued in a fragment program, we prefer the faster
hard-wired vector and matrix operations the hardware pro-
vides. Further, such a method requires conditional statements,

which also pose challenges and are currently not recom-
mended for wide use by the GPU manufacturers. In the fol-
lowing paragraphs, we describe an approach which performs
the slicing task with fewer computations and uses more vector
and matrix operations which are better accelerated on the
GPU. For our own research, we have used the results of the
other, analytical approach to evaluate the correctness of our
method. Unfortunately, the space restrictions do not permit us
to include both solutions in this paper. 

For the following discussion, consider the transformation
pipeline , where the final screen
space ellipsoid is expressed as the result of a series of trans-
formations to be applied to a unit sphere, positioned at the ori-
gin. Reading from right to left (multiplication order), S and R
are the scaling and orientation matrixes, which define the
shape and orientation of each ellipsoid, while T positions the
ellipsoid in volume space, by applying a translation from the
origin. The matrix TRS defines the ellipsoid returned from an
optimization [JWH*04][WBH*05], local fitting, or modeling
procedure [GM04][MCQ04]. Matrices RV, SV and TV are the
decomposition of the viewing transformation and they encode
a rotation, scaling and translation of the volume. The scaling
and translation are applied during the rasterization stage, so
our slicing pipeline uses , which encodes all
the transformations that lead to a unscaled view transformed
ellipsoid. Therefore, by multiplying the view transformed
ellipsoid quadric Q with  we would obtain a unit sphere:

(7)

On the other hand, when the same transformation, , is
applied to the set of intersecting polygons which slice the
ellipsoid, we end up with a set of parallel polygons that slice a
unit sphere. Note that these slicing planes in unit sphere space
are not necessarily axis-aligned, as one can observe from
Fig. 3b. But this difference in slice orientation is not relevant,
since the kernel is radially symmetric. The notable and crucial
difference, however, is that in unit sphere space the number
and distance of slice planes has changed, due to the warp.
Since our plan is to set up an incremental procedure for: (i)
the retrieval of consecutive kernel slices, and (ii) their raster-
ization to the screen, we need to know four sets of vectors: 
• the vector nus connecting the centers of adjacent slices in

unit sphere space (the black vector in Fig. 3b): this will
allow us to compute the increment in the 1D texture storing
the Gaussian scaling function. 

• the vector nss connecting the centers of adjacent slices in
screen space (the black vector in Fig. 3a): this will allow us
to incrementally position the extracted kernel slice texture
polygon in the sheet buffer for rasterization.

• the slice texture polygon orientation vectors uss, vss in
screen space (the blue and red vectors in Fig. 3a): these are
also needed to position the kernel slice texture polygons --
they define slicess , the polygon that maps the slice texture
onto the sheet buffer, as defined in equations (13) and (15). 

• the slice texture orientation vectors uus, vus in unit sphere
space (blue and red vectors in Fig. 3b): they define sliceus,
the polygon that maps the slice texture in the unit sphere.

Multiplying all the vertices of sliceus and nus by matrix M
yields slicess and nss.

(a) (b)

Figure 3:  Ellipsoidal kernel sliced (a) in screen space, (b)
in unit texture space (unit sphere space). The u,v,n vectors
are shown in red, blue, and black respectively. These 3
vectors, along with the size of the direction vector n pro-
vide enough information to create all the intersecting
slices of the ellipsoid in screen space (progressing along
the viewing direction) and evaluate the corresponding
Gaussian kernel by texture-mapping the 2D slices from
the unit sphere space. 
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Inside the GPU, each ellipsoid is expressed using 13 float
values. These include the scaling and rotation matrices, S and
R, and the position and scalar value of the point (density, X, Y,
Z, Sx, Sy, Sz, R1, R2, R3, R4, R5, R6). We only store 6 elements
to represent the 3x3 rotation matrix R, since it is orthogonal
and the last 3 elements can be derived using a cross-product
operation of the first two lines of the matrix. We use the trans-
lation, rotation and scaling matrices to compute  and .

(8)

The key element to our approach is that all slicing opera-
tions on the ellipsoid are computed in the ellipsoid’s coordi-
nate system, with the ellipsoid centered at (0,0,0). We define
matrix M’, which brings the screen space ellipsoid to the ellip-
soid’s coordinate system by cancelling the translation as
shown in equation (9). The inverse of matrix M’ is also very
easy to compute, since R and RV are both orthogonal.

(9)

Using M’, we first compute the slicing planes in unit texture
space by applying the inverse transform  to the coordi-
nate system vectors of the screen aligned slicing planes. The
resulting vectors, u,v,n in unit sphere space are the first three
columns of :

  (10)
These vectors are no longer orthogonal, since S is not ortho-
normal in general, and therefore we must re-orthogonalize
them, resulting in u’,v’,n’.

(11)
Here, the corrected-normalized vector n’ is the direction of
the axis passing through the center of all slicing planes and
through the center of the sphere in unit texture space (along
the black vector in Fig. 3b), while the corrected normalized
vectors u’ and v’ define the actual orientation of the slicing
planes. The real length of n’ (which has been normalized to a
unit vector) can be recovered by computing its dot product
with the original vector n. The resulting vector will become: 

(12)
Thus, n” is the normal vector for all slicing planes in the

unit sphere space and its length is the distance between any
two slicing planes. This vector may be used to advance the
current slicing plane for the kernel to the next slicing plane by
adding n” to each of the corner vertices. Therefore, u’ and v’
can be used to define the slicing polygon as the set of vertices:

(13)
and the normal vector along the slicing axis is defined as:

(14)
Now, to obtain the corresponding slicing polygons and

normal vector in screen space, we need to multiply the above
set with the original transformation matrix . Thus,

(15)
and the corresponding normal vector is

(16)

Note that the sampling distance in screen space is usually
defined as  (but any value can be chosen to achieve
tighter or sparser sampling along the viewing axis). Thus, 

(17)
where (dx, dy) is the screen-space vector that can be used to
incrementally position consecutive kernel slice polygons on
the sheet buffer screen. Using (12), the unit sphere space slice
distance vector is: 

(18)
where  can be used to index the Gaussian scaling func-
tion. Since the Gaussian in kernel space is a radially symmet-
ric function, we can choose to slice it along the z direction,
which also reduces  to:

(19)
We can now set up an incremental kernel slicing procedure
which only needs to perform the (screen space - unit sphere
space) transformation once for the initial kernel mapping and
can use simple vector additions to obtain the remaining map-
pings. The setup cost for each ellipsoid is not large, requiring
two matrix-matrix multiplications to obtain

 three cross-products, two normaliza-
tions, one dot product, four matrix-vector multiplications, and
a few scalar-vector multiplications. The incremental slicing
just involves four vector additions and a scalar addition. More
on this next.

4. Implementation

Our current implementation extends the existing GPU-
accelerated framework for image-aligned post-shaded splat-
ting of regular volumetric datasets [NM05] to scattered data
points, represented either as ellipsoidal or as spherical ker-
nels. This existing GPU-accelerated image-aligned splatter
achieves very high quality images even for sparse datasets at
high magnifications and interactive frame-rates. 

Extending this GPU accelerated algorithm, however, to
render unstructured data sets that consist of arbitrarily ori-
ented general ellipsoids of various sizes poses several chal-
lenges. Splatting is an object order approach which employs
front-to-back compositing (for occlusion culling). Either a
sorting/bucketing operation is required whenever the view-
point changes, or one may use a spatial decomposition data
structure which will facilitate a front-to-back traversal of the
dataset during rendering. Both of these solutions are not triv-
ial to implement on the GPU and they impose several trade-
offs. These trade-offs involve the amount of data that has to
be transferred from the CPU during every frame, versus the
amount of data that will be replicated and processed multiple
times directly on the GPU. We have addressed the visibility
and occlusion issue using a flat cubic data-structure (yet the
extension to an octree would be possible) in combination with
a set of vertex and fragment programs that are used to emulate
dynamic behaviors which would otherwise be taken for
granted on the random access memory model of the CPU. The
variability of the data is also addressed by this collection of
vertex and fragment programs, which define a set of multiple-
attribute arrays. The data points are first processed as textures
taking advantage of the parallelism employed by the GPU at
the fragment level to screen-align and slice all of the relevant
ellipsoids (those that have non-zero opacity and color after
transfer function indexing, and their immediate neighbors that
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usually have slightly lower densities and were only barely
rejected by this test). This is an operation that consumes only
little overhead, but we also note that it is conceivable, for
larger volumes, to divide the space into sub-volumes and per-
form the entire process in front-to-back order, but only on
sub-volumes that are still visible after compositing the ones
ahead of them. These textures are then passed on to the vertex
processor as vertex attribute arrays, where they are iteratively
processed (rasterized) as the slicing operation proceeds
through the volume.

Similar to [NM05], we employ an elaborate mechanism
which exploits the early z-culling hardware optimization in
order to eliminate extraneous splatting onto already opaque
regions (early splat elimination). A similar mechanism, which
also takes advantage of early z-culling, is used to restrict the
expensive shading and compositing operations only to frag-
ments of the current sheet-buffer that have been updated by
splatting. This efficient hardware-accelerated fragment level
method provides an alternative to more complex CPU based
methods that use tiles or quadtree based structures.

Finally, in order to achieve correct results, we have
adjusted the shading/compositing process to normalize the
contents of the sheet-buffer during reconstruction, and we
also take special considerations at the volume boundaries. In
the following subsections we will describe our implementa-
tion in further detail.

4.1 Ellipsoid slicing and rendering on the GPU

The slicing of all the input points in the system is done by a
fragment program which processes all the initial input data as
a set of textures. We have seen in Section 3 that 13 floating
point values are required for an ellipsoid. These are packed in
a set of 3 textures and are permanently resident in GPU mem-
ory. To fit all values, we “pack” the Z and Y elements of the
translation matrix T together. The output of the slicing calcu-
lation also returns 12 values for each ellipsoidal point. These
include the starting position for the first intersecting slice in
screen-space, (px, py, pz) which is the center of the slice, the
2D u and v vectors (ux,uy),(vx,vy), which define the axis-
aligned slicing polygon, as explained in Section 3, and the

 vector which defines the difference of each
slicing polygon to the next. To slice the kernel in unit texture
space, the vector  is provided, and the start-
ing position is given by (0, 0, StartZus). Finally, the scalar
value of the data point is provided as a single float. The range
for the scalar density value is [0...1], which gives some room
to encode more data into the density input value, as we shall
see in the remainder of this section. These 12 values are
encoded in a set of 3 textures. The processing of all the data
points is performed in one pass and the results are simulta-
neously assigned to the 3 destination textures using the multi-
ple render targets (MRT) extension, which is available on
both the latest NVidia as well as ATI boards. The measured
timings for this step were around 30-90 msec, for datasets of
sizes varying from 35K-500K points.

The slicing step has to take place once every time the view
point changes. When all points are processed they are con-
verted into vertex arrays within the graphics board memory,
and they are then assigned as vertex attribute arrays and
passed to the splatting vertex program. The vertex program
maintains the slicing polygon for each data point via the use
of a uniform status variable that is passed to the program for

all vertices. The currentSlicingZ parameter, which is passed to
all the vertices, holds the z value of the current image aligned
slicing plane. Thus, for every point, the vertex program first
decides whether it does intersect this slice, and if so, it com-
putes the position of each of its corners and the corresponding
texture coordinates. Otherwise it forces the point to be culled
by setting the coordinates outside of the view frustum.

The polygons slicing general ellipsoids have to be rendered
using the GL_QUAD primitive, since point sprites are not
applicable in this case. Our system follows the standard
method used for rendering billboards with vertex programs.
This method requires that the point data is replicated once for
every destination vertex, and an additional piece of informa-
tion is provided in the vertex data to decide which one of the
polygon corners it represents. We employ this approach, and
encode the polygon identity information using the density
value. During the construction of the textures, we have den-
sity = (vertexCount%4) * 1000 + inputScalarDensity. The
vertex program decides the texture coordinates as well as the
corner positioning for a given vertex. 

The third set of parameters define the slicing of the 3D
spherical kernel in 3D unit texture space. This operation is
implemented using the texture mapping of a 2D texture
encoded Gaussian kernel, modulated by a 1D Gaussian along
the z-direction. The 1D Gaussian value is currently computed
inside the vertex shader, since vertex textures are still slower.

After all of the kernel contributions for the corresponding
slice have been accumulated, the reconstructed density slice is
passed to a fragment program which performs classification,
shading and composites the results to the final frame-buffer
image. In order to achieve correct reconstruction of unstruc-
tured data, a normalization step needs to be performed on the
reconstructed densities. This is done by maintaining the splat-
ted weights contributed by all sliced points in a separate chan-
nel of the slicing buffer. During normalization, the fragment
program divides the densities by their corresponding weight.
Special care has to be taken at the boundary regions of the
volume, where coverage is sparse, and therefore the accumu-
lated weights are smaller than one. Dividing by the small
weight values would give rise to unnaturally high density val-
ues at the boundaries. In this implementation, a threshold is
set before the division is performed. Thus, the resulting densi-
ties are:

(20)
An alternative solution to the boundary problem when splat-
ting irregular grids would be to add a set of “ghost points”
around the boundaries, which will have zero density, but nor-
mal weight values. This follows the fact that regular volumes
implicitly have infinite coverage throughout the volume. That
is, there exist empty points which have weights, but zero val-
ues wherever there is empty space in the regular volume,
including the boundary regions. Normalization, however, is
not required in regular volumes because everything would
have to be divided by the same weight which can be inte-
grated in the kernel texture.

4.2 GPU-support for spatial decomposition

In this work we address the spatial decomposition require-
ment imposed by the image aligned splatting algorithm by
using a flat decomposition data structure in combination with
additional functionality in the vertex programs that process
each point. The volume is decomposed into a low-resolution

nss dx dy 1.0, ,( )=

nus 0 0 n″, ,( )=
normalizedDensity density( ) max 1 weight,( )( )⁄=
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cubic block data structure, which can then be traversed in a
front-to-back order in the exact same way as a full octree. 

The spatial decomposition structure is first created on the
CPU in a preprocessing step just after the volume is loaded.
Every point is sliced and rasterized onto a very low resolution
3D grid, where each grid point maintains a list of all the points
that intersect it. The result is a 3D regular cubic structure,
which when traversed in a front-to-back order it will return a
list of data points for each of its non-empty cells. The struc-
ture is then flattened onto a set of four 2D textures by copying
the contents of every cell, in the format described in
Section 4.1. The resulting texture will be processed by the
ellipsoid slicing fragment program, resulting in a set of
attribute vertex arrays for rendering, every time the viewpoint
changes.

During rendering, each active cell’s associated vertex list
will be called using the glDrawArrays OpenGL call. The cells
are placed in the active list in a front-to-back traversal of the
decomposition data structure, and they are taken out of the
active list when they stop producing slicing polygons, which
is when the currentSliceZ has passed even the largest point,
and which can be determined by a comparison with the maxi-
mum point diagonal for the cell.

The main challenge with maintaining such a structure on
the GPU during rendering is the handling of splats that span to
more than one cells, and are therefore being called for render-
ing in multiple lists. In the CPU scenario, a flag could have
easily been set in the data-structure to signify that a point has
already been called by another list and should not be consid-
ered active. In our implementation we emulate the tagging
behavior by using uniform variables that pass the current state
to the vertex program. Along with the current slicing plane,
we pass the current cell ID as a uniform variable. During the
slicing step, for each data point, we also compute the ID of the
starting cell. This is the cell where the first slicing polygon for
the point will be encountered, and it is easily computed by
projecting (startx, starty, startz) to the 3D cubic decomposition
structure. The point is then assigned that ID in all cells that it
participates in. Then, in the rendering stage, we also compute
the cell ID for each cell that is sliced by the current sheet
buffer, and a point/vertex is only allowed to render if its start-
ing cell ID is the same than that of the current cell, and if it
also intersects the current slicing buffer. If it has a different
ID, then it has already been activated before for rendering,
and this new instantiation of the point can be is culled from
the viewing frustum.

5.  Results

We have tested our system using datasets from subdivision
volumes [MCQ04] and computational science, both encoded
as a field of irregularly distributed ellipsoidal RBFs. The RBF
fields for the former set of volumes was obtained by fitting
Gaussian kernels to a mid-level of the subdivision hierarchy,
while the RBF field for the latter was obtained by fitting basis
functions to a local Delauney triangulation [HNM*06]. This
paper does not seek to determine error bounds on these -- it is
merely concerned with achieving their fast rendering. The
hardware configuration consists of a Pentium 4 running at
3GHz and 1 GB RAM, and the graphics board is an NVidia
Quadro FX 3400 with 256MB RAM, which is equivalent to a
GeForce 6800 GT board. 

In order to test throughput, all the datasets were rendered at
an image resolution of 400x400 pixels. Table 1 summarizes
the results for each dataset, along with some description. The
second column lists the number of ellipsoidal or spherical
data points included in the dataset (the number in parentheses
lists the number of non-occluded, splatted voxels, which are
between 70-90% of the total number of voxels).  As we render
our volumes in semi-transparent mode, occlusion culling
effects are less pronounced. The third column gives the range
of the minimum and maximum diagonals of the enclosing
cube for the ellipsoidal or spherical kernels, which is a mea-
sure of the maximum point sizes. This is actually the diagonal
of the enclosing cube for an ellipsoidal or spherical kernel,
and it gives a measure of the maximum size of the point. The
fourth column shows our measured frame rate for these
datasets at an image resolution of 400x400 and the fifth col-
umn directs to Fig. 4 (color-plate). 

The first two datasets, “Blunt Fin” and “Combustion”,
were created using the Delauney RBF fitting method, and
they were composed using ellipsoidal points. The last four
datasets were created from subdivision volumes, and they all
encode deformed objects. All are rendered in semi-transparent
compositing mode. Looking at the results, we find that the
rendering of irregular data using the image aligned splatting
algorithm can give a points/sec. throughput rate of up to two
orders of magnitude higher than existing methods that use
fragment-shader based kernel evaluations [JWH*04]
[WBH*05] on the slice plane instead, with the same high-
quality visual results that slice-based post-shaded methods
produce (using the same GPU platform or of one generation
past, respectively). Here, we only compare the frame rates for
pure volume rendering (the system of [WBH*05] is much
more versatile, also rendering and mixing in results from flow
field analysis). 

Our next observation is that although the elliptical datasets
have a significantly smaller point count, they also are signifi-
cantly slower to rasterize. This can be explained by the fact
that the size (diagonal) of the ellipsoids used to compose these
datasets affects a much larger range. After a closer look into
the rasterization process, we have found that these datasets
also have much larger overlaps between the neighboring
points, resulting in significant overdraw.

5.1 Comparison with fragment-centric approaches

The existing volume RBF splatting method [JWH*04]
[WBH*05] uses a fragment-centric approach, evaluating all
RBFs on a single fragment position before moving to the next,
making it a gather-algorithm. Ours, on the other hand, is an

Dataset # Points   Diagonal FPS Fig.4

Blunt Fin 34k (31k) 0.9-120 1.6 a,b

Combust. 39k (35k) 8.3-27.4 1.9 c,d

Chess Pc. 84k (63k)) 1.9-2.5 3.5 e

Monster 91k (60k) 2.5-3.0 4.0 f

Toy Car 173k (117k) 2.0-4.3 2.2 g

Toy Train 199k (139k) 2.0-4.0 2.1 h

Table 1: Results.
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RBF-centric approach, that is, we process (rasterize) the slices
of the entire RBF before moving to the next, making it a scat-
ter-algorithm. Similar to other researchers, we have also
found that it is often advantageous to rather evaluate a (mod-
est) function in the fragment shader than incurring the over-
head associated with accessing a lookup texture to retrieve the
pre-computed result. We do this to obtain the footprint scaling
values from the 1D Gaussian scaling function, and so does the
fragment-centric approach of [JWH*04][WBH*05] which,
however, needs to evaluate the entire 3D RBF function at
each fragment, in addition to the overhead associated with
computing the 3D index. Looking at the fragment-centric and
RBF-centric approaches, we observe that for a given dataset
both will perform the same number of sheet-buffer writes and
will also need the same number of RBF function values. How-
ever, they differ greatly in terms of the efficiency at which
these operations are performed, First, the RBF-centric
approach only requires an evaluation of one 1D Gaussian per
RBF-slice, using the inexpensive kernel rasterization to
spread the function values across the sheet buffer fragments.
The fragment-based approach, on the other hand, needs to
evaluate the 3D Gaussian for each fragment, which is much
more costly than a simple scaled texture mapping. Second, the
texture rasterization of the RBF-centric approach is likely to
be significantly more coherent, light-weight, and optimized
on the GPU hardware than the heavier (in terms of data) tex-
ture fetches of the fragment-centric scheme. Third, each data
fetch of the RBF-centric approach will amount to a rasteriza-
tion, unless the fragment is killed early due to early fragment
elimination. On the other hand, the fragment-centric
approach, may sometimes pull in RBFs that are out of reach
of the fragment’s location, although this number may be low
for good tree encoding. All of these considerations may
explain the large difference in performance of the two
approaches, especially when considering that our approach
uses the considerably more data-intensive ellipsoidal RBFs. 

6. Conclusions and Future Work

We have described a framework which extends the high-
quality image-aligned sheet-buffer splatting method to irregu-
lar grids, and we have shown how to successfully accelerate it
on the GPU. The performance of our implementation, in
terms of splats/sec., is quite high, and this suggests that it may
be preferable to use splatting for the slice-based post-shaded
rendering of scattered point datasets and RBFs, instead of
reconstructing the slice plane fragment values via explicit ker-
nel-evaluations in fragment programs. 

A possible future extension of our work could be the inte-
gration of EWA-type filtering in perspective viewing. For
this, one may simply stretch the kernel slice textures as a
function of slice distance to achieve the desired low-passing
effect. This would use the zoom (scale) matrix SV introduced
in Section 3.2. Finally, future work will also be geared
towards improving the fitting procedure for elliptical RBFs. 
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