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Abstract

This paper presents a new unified subdivision scheme that is defined over a k-simplicial complex in n-D space with k ≤ 3. We first present a
series of definitions to facilitate topological inquiries during the subdivision process. The scheme is derived from the double (k + 1)-directional
box splines over k-simplicial domains. Thus, it guarantees a certain level of smoothness in the limit on a regular mesh. The subdivision rules
are modified by spatial averaging to guarantee C1 smoothness near extraordinary cases. Within a single framework, we combine the subdivision
rules that can produce 1-, 2-, and 3-manifolds in arbitrary n-D space. Possible solutions for non-manifold regions between the manifolds with
different dimensions are suggested as a form of selective subdivision rules according to user preference. We briefly describe the subdivision matrix
analysis to ensure a reasonable smoothness across extraordinary topologies, and empirical results support our assumption. In addition, through
modifications, we show that the scheme can easily represent objects with singularities, such as cusps, creases, or corners. We further develop
local adaptive refinement rules that can achieve level-of-detail control for hierarchical modeling. Our implementation is based on the topological
properties of a simplicial domain. Therefore, it is flexible and extendable. We also develop a solid modeling system founded on our subdivision
schemes to show potential benefits of our work in industrial design, geometric processing, and other applications.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Motivation

Many industrial design projects include a wide range of
shape representations in a single place. For instance, in car
design, a hood of a car can be represented as thin plate,
while volume representation is more appropriate for the engine
parts. Such a situation leads to complicated non-manifold
objects, where curves and surfaces meet together, or multiple
surfaces coincide in one edge. In addition, boundary and feature
representations are essential in mechanical design. Without
modification, subdivision schemes tend to smooth objects, since
the subdivision process is weighted averaging in essence. In
this paper, we establish a framework that is based on flexible
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parametric domains and powerful subdivision rules which can
be applied to objects with complicated dimensionality. The
goals of our new approach are as follows:

• Define a parametric domain that provides high flexibility in
modeling and simplicity in topological inquiry.

• Represent objects with multiple dimensions in a single
framework.

• Develop unified subdivision rules for arbitrary manifolds
and multiple dimensions.

• Automatic treatment for non-manifold regions with minimal
user intervention.

• Support the boundary and the sharp feature representation
• Level-of-detail (LOD) control.

Fig. 1 illustrates a general idea of our approach. In the
next section, we discussion by reviewing the previous work
that is related to the goals specified above. First, we
begin our background review with brief mentioning of
current existing representations in Solid Modeling. Then, we
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Fig. 1. A non-manifold object represented by our subdivision scheme. (a) The initial complex that consists of 1-, 2-, and 3-simplices. (b) After level 3. (c) The
cross-section of the 3-manifold reveals the internal structure.
review the previous research related to parametric domains,
subdivision schemes, and their expansions such as non-
manifold representation and feature representation.

1.2. Background

Since Requicha and Voelcker’s [26] famous survey paper
in 1982, the past two decades have witnessed significant
growth in solid modeling, especially in the development
of new solid representation techniques. In essence, we can
classify the existing techniques by how they represent models:
namely, either continuous or discrete representation. Parametric
representations and implicit function methods are two classic
examples of the continuous representation. As Boehm et al. [2]
surveyed, parametric curves and surfaces had been widely
used especially in computer-aided design and manufacturing
for a long time. Bernstein-Bézier solids [14], B-spline solids,
and other tensor product based [12] approaches are typical
examples of parametric representations in solid modeling.
Implicit function methods, such as CSG [20] and blobby
models [29], define an object by a solution set of implicit
functions. In this method, it is especially easy to perform set
operations, such as intersections and unions. However, even
though the implicit function method has a great flexibility in
the topologies of the models that it can represent, it is relatively
hard to model objects with different dimensionality (e.g., non-
manifold objects) in a single representation. In contrast, the
discrete representations include cell decomposition, triangular
models for surfaces, and tetrahedral or hexahedral models for
solids. These techniques represent models as a finite number
of elements, such as pixels, voxels, triangles, or tetrahedra.
Because there is no function involved, it can represent an object
with arbitrary manifold properties in exchange of analytic
geometric information.

The subdivision technique is an example of new representa-
tion that shares the features of both categories. From an initial
control mesh that is essentially discrete, we successively per-
form a series of computations – mostly simple linear combina-
tions – to obtain the next level of mesh that is finer than the pre-
vious one. In the limit, we end up getting an object which is an
image of smooth functions. Topological information can be ac-
quired from the initial meshes, whereas geometrical properties
can be obtained from the subdivision matrix analysis. In gen-
eral, the subdivision technique has the following advantages:

• Uniformity of representation
• Multiresolution analysis and levels of details
• Numerical efficiency and stability
• Arbitrary topology or genus.

Parametric domain
For nearly all subdivision schemes, the tensor-product is

a standard way to expand the dimensions. For instance, the
Catmull–Clark scheme by Catmull and Clark [3] and the Multi-
linear Cell Averaging scheme by Bajaj et al. [1] both utilize
tensor-product cubic B-splines. In any case, their parametric
domains should have the form of a tensor-product space. Some
shortcomings are apparent for the tensor-product space. First,
tensor-product functions have a higher polynomial degree than
the functions that are natively defined over the space with
the same smoothness. Secondly, tensor-product meshes have
lattice structure, which is less desirable than triangular or
tetrahedral meshes when one wants to represent unstructured
shapes. We choose a simplicial mesh as our parametric domain
for the framework because of its flexibility, extendability, and
the ability to accommodate non-manifolds. There has been
substantial research on simplicial meshes. For instance, Floriani
et al. [10,11] proposed techniques to represent progressive non-
manifolds by simplicial meshes. Most of the work on simplicial
meshes has been related to numerical analysis, especially for
the finite element method (FEM).

Subdivision schemes
Since one of the purposes of the framework is to represent

multi-dimensional objects, we are required to have subdivision
schemes that can be easily extended to various dimensions.
Moreover, as explained in the previous paragraph, we want
the schemes to be based on a simplicial domain. Cubic B-
spline subdivision is one of the simplest schemes for curves.
An example of the surface subdivision schemes that are based
on 2-simplices, or triangular meshes, is Loop’s scheme [16].
For 3-D solid objects, MacCracken and Joy [17] proposed the
tensor-product extension of the Catmull–Clark subdivision in
the volumetric setting, mainly for the purpose of free-form
deformation in 3-D space. Later on, Bajaj et al. [1] further
extended the scheme with an analysis based on numerical
experiments. They are both tensor-product extensions of the
cubic B-spline curves, and hence are not suitable for our
purpose. Pascucci [19] suggested a special solid subdivision
scheme with slow cell increase. Most recently, Schaefer
et al. proposed a tetrahedral mesh based subdivision [27].
Interestingly, they use the octet-truss structure and prove the



772 Y.-S. Chang, H. Qin / Computer-Aided Design 38 (2006) 770–785
smoothness using the joint spectral analysis recently developed
by Levin et al. [15]. In addition, Chang et al. [4] suggested a
non-tensor-product based subdivision scheme over simplicial
meshes whose limit converges to the trivariate box spline. They
also proposed an interpolatory subdivision solid scheme [5]
over simplicial complexes. In fact, the cubic B-spline scheme,
Loop’s scheme, and Chang’s box spline solid scheme are the
direct analogs of the double directional box splines over 1-,
2-, and 3-simplicial meshes. These three schemes serve as basic
rules for our framework.

Non-manifold subdivision
Non-manifold regions can occur through self-intersection

in a single dimension. Even though subdivision approaches
have a benefit of topological flexibility over other modeling
representations, it is not trivial to deal with a non-manifold
situation. Ying and Zorin [30] suggested modified rules for
the Loop’s scheme to deal with non-manifold surfaces. In
our framework, the cases are more complex than those of a
subdivision scheme with a single dimension, since it involves
intersections between splices of various dimensions. Not only
does our approach provide a specific solution for each situation,
but also we suggest a generalized rule based on a solid
subdivision scheme.

Feature and detail control
Generally speaking, the models represented by subdivision

schemes tend to be smooth everywhere. However, the
vast majority of real-world models, especially manufactured
objects, have sharp features. Hoppe et al. [13] proposed
modifications to Loop’s scheme to represent features like
corners and creases. We follow similar approaches to introduce
features within the framework. For level-of-detail control, a
considerable amount of research has been done for progressive
mesh approaches. For instance, Popovic et al. [21] presented
the idea of a progressive simplicial complex. In this paper, we
follow the traditional local refinement method for triangular and
tetrahedral meshes to achieve the LODs.

The rest of the paper is organized in the following fashion. In
Section 2, we define a parametric domain and document other
topological definitions, which serve as the fundamentals of our
unique framework. In Section 3, we discuss the subdivision
rules, their modifications, and a brief sketch of the analysis.
We tackle the problem of features and level-of-detail control
in Section 4. Section 5 describes the implementation of the
framework and demonstrates several models generated by our
framework. Finally, we discuss future work and conclude the
paper in Section 6.

2. Simplicial complex domain

In the paper, we define an object in the space as a manifold,
or a union of manifolds. Topologically, a manifold is defined
as a locally Euclidean countable Hausdorff space. By locally
Euclidean, we mean that for any point x on the manifold, we
can find a homeomorphic map from an open subset of Rn . In
addition, there is a manifold with a boundary if the domain
Fig. 2. Examples of simplices. (a) A 1-simplex, (b) a 2-simplex, and (c) a 3-
simplex.

of a local Euclidean map is half-space-like. From the solid
modeling point of view, it is a matter of choosing a continuous,
injective, and surjective function from an appropriate domain in
Euclidean space.

Throughout the framework, we choose the domain to be
k-simplices in R3 (k ≤ 3). Local Euclidean maps are
defined and evaluated by a series of subdivision rules whose
supports are limited in a single simplex or a small number
of adjacent simplices. In fact, the initial control points for
the subdivision rules also provide the simplicial domain of
our objects. Moreover, the subdivision rules are not only
homeomorphic, but their limits also satisfy the higher level of
smoothness on the supports and are C1 across the simplices. In
the next few sections, we introduce several definitions related
to the simplicial complex that are to be utilized for various
topological inquiries during the subdivision process.

2.1. Set definitions

Our domain of choice is a simplicial complex in Rn (see
Fig. 2). A k-simplex S can be defined as a set in Rn ,

S =

{
x ∈ Rn

∣∣∣∣∣x =

k∑
i=1

ci (xi − x0)

}
, (1)

where

ci ≥ 0,

k∑
i=1

ci = 1, xi ∈ Rn . (2)

Since S can be uniquely determined by k + 1 points x0,
x1, . . . , xk , and is independent of their ordering, we simply use
a set notation S := {x0, x1, . . . , xk}. In this paper, we limit k to
be less than or equal to three. Also, we consider each simplex as
a closed set. Note that any subset of S also represents a simplex.
Geometrically, each subset can be considered as a face, an edge,
or a vertex. We call k the dimension of the simplex S, or dim(S).

A simplicial complex, or a complex, C is a finite collection
of simplex representing sets S where every non-empty subset
of S is also an element of C. Its geometric interpretation is as
follows: (1) the simplices represented by the subsets of each
S in C is in C; (2) the intersection of any two simplices of
C is a subsimplex of both. The second property prevents the
introduction of T-junctions or the improper incursion among
simplices. Also, a nonempty subset D of a simplicial complex
C is called a simplicial subcomplex if it also satisfies the
properties. We simply call it a subcomplex. The dimension of a
complex is defined by the highest dimension of simplices in it.
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Fig. 3. The subsimplices of a 3-simplex. (a) The 2-subsimplices, (b) the 1-
subsimplices, and (c) the 0-subsimplices.

In the complex C, we call a simplex a subsimplex if it is a
subset of other members of the complex (see Fig. 3). Likewise,
it is called a proper subsimplex if it is a proper subset of a
simplex. In addition, a simplex is called a maximal simplex if it
is not a subsimplex of any other simplices in C.

In summary, the domain space of our framework can be
expressed as a pair of the following sets (| · | represents the
number of elements in a set):

• Set of vertices

V = {xi | xi ∈ R3, i ∈ I }, (3)

• A simplicial complex:

C = {S ⊂ V | S 6= ∅, |S| ≤ n + 1}, (4)

with the following property:

If S ∈ C, then T ∈ C for all T ⊂ S, T 6= ∅. (5)

2.2. Complex decomposition

A complex C can contain simplices of different dimensions
(see Fig. 4). Since each k-simplex is to be used as a part of the
initial control points of a k-manifold, we need to decompose
C with respect to the dimensions of the simplices. We define
Ck as the largest subcomplex of C, whose maximal simplices
always have the dimension k. In other words, Ck comprises of
all maximal k-simplices and their subsimplices in C. We call it
a k-subcomplex. Therefore, we can express C as:

• k-subcomplex decomposition

C =

⋃
k=1,...,m

Ck, (6)

where each Ck satisfies the following property:

If S ∈ Ck and is maximal in Ck, then dim(S) = k. (7)

We should mention that each Ck can contain several
components, or maximal subcomplexes. In our approach, this
information will not be utilized, even though it can be useful
for other applications. In Section 3, we define k-manifolds (with
boundary) over the k-subcomplex using appropriate subdivision
rules. However, the Ck are not mutually exclusive. This fact
leads us to the need for special rules across the intersections
of the k-subcomplexes. In fact, the intersections represent non-
manifold regions in the result. Moreover, some non-manifold
regions could appear within C1 and C2, since the complex is
defined over R3.
Fig. 4. Complex decomposition. A complex C can be decomposed into Cks
with k = 1, 2, 3.

2.3. Boundary simplex

A face of a k-simplex S is simply defined as a (k − 1)-
subsimplex of S. Even for k 6= 3 cases, we still opt to use the
word “face” for any immediate subsimplices of k-simplex, due
to its geometric implication. A boundary of a complex can be
defined as follows:

• Boundary simplex: If (k − 1)-simplex S ∈ C is a face of
a maximal k-simplex, and is not a subsimplex of any other
simplices, than S defines a boundary. We call it a k-boundary
simplex.

It is clear that boundary simplices and their subsimplices
form a subcomplex of C. It is denoted by ∂C.

2.4. Non-manifold simplex

If our domain consists of a single k-simplex, it is trivial to
establish a manifold map from the simplex to a k-manifold.
However, it is not always possible to define a manifold map
over a complex. For instance, if the domain consists of a 2-
simplex and a 3-simplex joined by an edge, it is not possible to
define either a single 1- or 2-dimensional Euclidean map across
the edge. Also, if three or more 2-splices share a single edge in
general position, we cannot find any single Euclidean map that
can be well-defined across the edge. These cases occur only on
the intersections of the simplices that comprise the domain. We
call a simplex a non-manifold simplex, if we cannot define a
Euclidean map on the simplex. The following definition covers
all the possibilities of non-manifold simplices:

• Non-manifold simplex: A k-simplex S ∈ C is a non-
manifold simplex, if it satisfies any of the following
properties.
(1) S ∈ Ck ∩ Cl where k 6= l (see Fig. 5 (a)).
(2) S ∈ Ck exclusively, dim(S) = k −1 and S = S1 ∩S2 ∩S3

for some distinct k-simplices S1, S2, S3 ∈ Ck (see Fig. 5
(b)).

(3) S ∈ Ck exclusively, dim(S) < k − 1, S = S1 ∩ S2 for
some maximal k-simplices S1, S2 ∈ Ck , S1 6= S2 and S
is not a proper subsimplex of any non-manifold simplex
(see Fig. 5 (c)).

(4) S ∈ Ck exclusively, dim(S) < k − 1 and S is a
subsimplex of a non-manifold simplex.

Any given non-manifold simplex should satisfy one of the
properties, but not both. We call the first three cases type 1,
type 2 and type 3 non-manifold simplices, respectively. Type
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Fig. 5. Examples of complexes containing non-manifold simplices. (a) Type 1,
(b) type 2, and (c) type 3. The vertices or edges in gray are the non-manifold
simplices. The vertices of the gray edge in (b) are categorized as type 4.

4 explains the subsimplex cases of non-manifold simplices,
which are not non-manifold simplices by themselves. We
employ various strategies to tackle the non-manifold cases.
Generally, non-manifold simplices create ill-posed problems.
To be exact, there could be several different solutions to
meet a particular requirement in certain applications. We rely
on a user-specific preference to resolve the problems. If no
rule is specified by the user, we use the subdivision rules
for 3-manifolds to spatially blend the manifolds of different
dimensions. The fourth case can be dealt with the same as the
solutions for the other three cases. Fig. 5 shows examples of
these cases.

3. Subdivision scheme

In the previous section we defined the domain of the
framework as a simplicial complex. Our object can be
represented by the sum of smooth basis functions that are
defined locally over the simplices in the complex:

f (x) =

∑
pN (x), (8)

where p ∈ S ∈ C with dim(S) = 1. Therefore, the 1-
simplices (or vertices) in the complex act as the control points
of the shape. N (x) is a basis function with local support
defined over the complex. Basis functions form a partition of
unity on C. As the function N (x), we choose the box spline
whose support lies in the 1 vertex neighbors of simplices.
Otherwise specified, we use the term 1-ring of a vertex v
to represent the adjacent vertices of v where the complex
which only contains these neighbor vertices does not have the
boundary of its own. For multivariate cases, we do not use the
tensor-product generalization of splines in strong contrast to
many other subdivision schemes, since our domain is based
on a complex. Instead, we introduce multivariate box splines
with simplex support. One example is Loop’s scheme [16] for
surfaces. For 3-D, we use the box spline solid that has been
employed in our previous work [4]. Non tensor-product box
splines are particularly useful in the subdivision process, since:
(1) Their subdivision rules are obtained intuitively from their
definitions; (2) They can achieve comparable smoothness with
relatively low polynomial degree; (3) The choice of domain is
more flexible.

3.1. Box splines

Box splines can be understood as projections of hypercubes
into Rn . Because of this, each box spline ND(x) can be
Fig. 6. The domain support for the box splines. The upper images are the unit
cubes whose projections are taken. The thick arrows are the direction vectors.
For (c), we only display the support, since it is hard to visualize a 4-hypercube.

represented by the collection of direction vectors D =

[δ1, . . . , δd ]. Note that each δi ∈ Rn is the projection of an edge
of a hypercube, and thus, is not necessarily distinct. We employ
the double (k + 1)-directional box spline for each k-manifold
defined over Ck , except k = 0. Each double (k + 1)-directional
box spline has the properties as follows:

(1) For k = 1, the direction vectors are chosen to be D =

[1, 1, 1, 1], where each 1 is a unit vector lying in a 1-
simplex, or a line segment. It is double 2-directional, but
the two directions coincides in a 1-simplex. In fact, this is
exactly the same spline as the cubic B-spline. As such, it
follows the same properties as cubic B-splines.

(2) For k = 2, D = [(1, 0), (1, 0), (0, 1), (0, 1), (1, 1), (1, 1)].
The box spline ND is the double 3-directional box spline.
As shown in Fig. 6(b), its domain lies in the 1-ring of 2-
simplices, or triangles. Loop’s scheme is based on this box
spline.

(3) For k = 3, D = [e1, e1, e2, e2, e3, e3, u, u], where ek is a
unit vector for each axis in R3 and u =

∑
ek . The support

of the box spline is shown in Fig. 6(c). Unfortunately, it is
not embedded in the 1-ring of 3-simplices, or tetrahedra.
However, by adding few more edges and faces, we can turn
it into a simplicial complex.

Generally, the box splines satisfy the following properties,
as proven in [7]:

(1) The box spline ND is piecewise polynomial of degree
|D| − k.

(2) The box spline ND is a Cm function where m = |D| −

|D′
| − 2, and D′ is a maximal subset of D that does not

span Rk .

For instance, the double (k + 1)-directional box splines are
piecewise polynomials of degree k + 2.

3.2. Subdivision meshes

The box splines can be expressed as a sum of the box splines
with the half-sized supports (see Fig. 7). Using this property,
we can find out the rules for the subdivision scheme for regular
cases. We first consider the split of the domain. As mentioned
in the previous sections, our box splines are defined over the
1-ring of k-simplices. It is easy to subdivide the domain if it
is comprised of only 1-, or 2-simplices as shown in Fig. 7(b)
and (d). Trivial edge bisection results in the half-sized simplices
of the originals in these cases. However, it is not so simple
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Fig. 7. Subdivision of the box splines. (a) and (c) show the cubes and their
projected domains. (b) and (d) show the trivial subdivision of the cubes and the
domains. The linear case spline is drawn in (a) and (b).

Fig. 8. Split a tetrahedron and an octahedron.

for 3-simplices. A 3-simplex, or a tetrahedron, does not split
into congruent tetrahedra by edge bisecting. In fact, there is no
way to obtain congruent tetrahedra from any subdivision of a
tetrahedron. This is also related to the problem that a single
type of tetrahedra can not fill the entire R3, unlike 2-simplices,
or triangles in R2 (see [6,32]). We resolve this problem with the
regular case by the following approaches:

(1) The boundary of the projection of a 4-hypercube on R3 (see
Fig. 6(c)) is a rhombic dodecahedron. It is well-known that
this polytope can tile the space.

(2) By introducing a few additional edges, we can decompose
the dodecahedron into several tetrahedra.

(3) A single tetrahedron can be split into four congruent
tetrahedra and one octahedron, as shown in Fig. 8(b). Also,
an octahedron can be split into eight tetrahedra and six
congruent octahedra (see Fig. 8(d)).

(4) If we keep continuing this process, then we get a semi-
regular space-filling structure called an octet-truss (see
Fig. 9). It is not difficult to figure out that the simplicial
split of the dodecahedron can be embedded in the truss, and
thus can provide us with the subdivision of the 3-simplex
domain.

(5) We store one diagonal inside an octahedron, as shown in
Fig. 8(c), to keep track of the adjacency of each vertex. In
fact, each octahedron can be considered as a family of four
tetrahedra.

Please remind that this approach is only for the regular rules.
Extraordinary cases will be discussed and analyzed in the latter
part of the paper.

3.3. Regular subdivision rules

Even though it is possible to figure out the subdivision rules
using the definitions of the box splines, it is more convenient
to use the generating functions of the box splines and their
recursive relations. We follow the generating function method,
first explored by Dyn and Micchelli [9]. It is known that the
Fig. 9. Octet-truss.

coefficients of the generating functions can provide us the
coefficients for the subdivision rules, as proven in [28]. In
general, the generating function SD(z) for the box spline ND(x)

can be expressed as:

SD(z) =
1

2d−k

d∏
i=1

(1 + zδi ), (9)

where d = |D|. Note that the power of z follows the multi-index
notation. For each k, the generating functions of the double
(k + 1)-directional box splines are:

• k = 1:

SD(z) =
1
8
(1 + z)4. (10)

• k = 2:

SD(z1, z2) =
1

16
(1 + z1)

2(1 + z2)
2(1 + z1z2)

2. (11)

• k = 3:

SD(z1, z2, z3)

=
1
32

(1 + z1)
2(1 + z2)

2(1 + z3)
2(1 + z1z2z3)

2. (12)

We can find the subdivision rules for the regular simplicial
meshes by assigning the coefficients of the zδi to the vertex with
the coordinates δi . We can summarize the rules as follows:

• Regular k-simplex subdivision rules:
Vertex points (for each vertex xi ):

vnew =
1

2k+2

(2k+1
+ 2)xi +

∑
x j ∈ρ(xi )

x j

 . (13)

Edge points (for each edge ei = [xi , xi+1]):

enew =
1

2k+1

(2k−1
+ 1)(xi + xi+1) +

∑
x j ∈ρ(ei )

x j

 .

(14)
Cell points (for each octahedral cell [xi , . . . , xi+3, x j ,

x j+1], with the diagonal [x j , x j+1]):

cnew =
1
8
{(xi + · · · + xi+3) + 2(x j + x j+1)}. (15)

Figs. 10 and 11 summarizes the regular configuration and
the rules. Here, we use more conventional names for 0-, 1-,
2-, and 3-simplices, namely, vertices, edges, faces, and cells,
respectively. ρ(·) denotes the 1-ring of neighboring vertices of
a vertex or an edge. In the regular k-simplicial meshes, |ρ(x)| =

2k+1
− 2, and |ρ(e)| = 2k

− 2 for each vertex x or edge e. Note
that each k-manifold generated by the subdivision rules on the
regular mesh satisfies C2 smoothness as mentioned above.
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Fig. 10. Regular subdivision rules. (a) The 1-simplex rules. (b) The 2-simplex rules.
Fig. 11. Regular 3-simplex subdivision rules. (a) Vertex point, (b) edge point, and (c) cell point rules.
Fig. 12. Modified k-simplex subdivision rules.
3.4. Extraordinary subdivision rules

In practice, a complex C could contain a vertex or an edge,
that does not have a regular number of neighbors |ρ(·)| (or
valences for vertices). We call them the extraordinary cases.
They require modified rules to accommodate the lack (or
the excessiveness) of neighbors. Fortunately, the extraordinary
cases become isolated during the subdivision processes. Also,
some of the regular rules do not require any extraordinary rule.
For instance, the 1-simplex rules do not have any extraordinary
case. For the 2-simplex rules, there could be only extraordinary
vertices. Likewise, no extraordinary cell point rule is required
for the 3-simplex rules.

The extraordinary vertex rule for a 2-simplex has been
well studied and there is a considerable amount of literature
suggesting the coefficients for the rule that guarantee at least
C1 smoothness in the limit. For instance, the original Loop
scheme [16] suggests the coefficients for a vertex with valence
m that are derived from the discrete Fourier analysis and the
eigenvalue analysis of the subdivision matrix. We adopt the
values proposed by Warren et al. (see [28, Section 7.3.2]):

• Modified 2-simplex subdivision rules:
Vertex points (|ρ(xi )| = m):

vnew = (1 − mc)xi + c
∑

x j ∈ρ(xi )

x j , (16)

where c =
3
16 for m = 3, c =

3
8m , otherwise.

Similar modifications are required for the 3-simplex
subdivision rules:

• Modified 3-simplex subdivision rules:
Vertex points (|ρ(xi )| = m):

vnew =
9

16
xi +

7
16m

∑
x j ∈ρ(xi )

x j . (17)

Edge points (|ρ(ei )| = m):

enew =
5

16
(xi + xi+1) +

3
8m

∑
x j ∈ρ(ei )

x j . (18)

Fig. 12 illustrates the modified rules in general configurations.

3.5. Boundary and non-manifold rules

The rules introduced in the previous section cannot be
applied to some special cases, such as boundaries, non-
manifold regions and singularities. We will discuss the



Y.-S. Chang, H. Qin / Computer-Aided Design 38 (2006) 770–785 777
Fig. 13. Examples of manifolds with boundary. (a) A 1-manifold with
boundary. (b) A 2-manifold with boundary. (c) A 3-manifold with boundary.

Fig. 14. The 1-ring neighbors with the relieved topology condition. (a) shows
an example of the 1-ring of the vertex x for type 3 non-manifold vertices. Under
the relieved condition, we choose all its adjacent vertices. (b) shows an example
of the 1-ring neighbors of the edge [x1, x2].

singularities in Section 4.1. The boundaries of k-manifolds
cannot be represented by the k-simplex subdivision rules,
because they are defined by the faces of k-simplices. Instead,
we use the (k − 1)-simplex subdivision rules to represent the
boundaries. Since all of the subdivision rules rely only on the
1-rings of neighbors, this approach causes no additional trouble
between the boundary and the interior simplices. It is, in fact,
a standard approach for most subdivision surface schemes.
Fig. 13 demonstrates examples of such boundary cases. Non-
manifold regions require special rules. We categorize the cases
into three types, as explained in Section 2.3. In each case, we
rely on user input to determine which rules to apply. If the user
has not provided a choice, we try to find the best possible way to
deal with it. Ying and Zorin [30] proposed detailed approaches
to overcome non-manifold topology with subdivision surfaces.
They involve the specially modified Loop’s scheme and a
geometric fitting process. Since our domain is in R3 and we
have the 3-simplex subdivision rules that can accept an arbitrary
manifold with lower dimension, our solution is much simpler,
as described below. For each case, we can apply either specific
rules (N-1 and N-2) or general rules (G-1 and G-2):
• The following three rules are specific for type 1 and type 2
cases.
Rule N-1. Type 1 is a region where the manifolds with

different dimensions meet. In this case, we can follow the
subdivision rules for a single simplex of a user’s choice.
The region is only explained by the subdivision rules
of the chosen dimension, and other cells with different
dimensions only maintain the connectivity.

Rule N-2. Type 2 is a region where a multiple manifold of
a single dimension intersects by their faces. This region
can be considered as a self-intersection. Our suggested
solution is to choose one pair of the simplices on which
we apply the subdivision rule.

• Type 3 is a region where multiple manifolds of a single
dimension intersect, but they do not share faces. In this case,
we found that the general rules described below yield the
best results.

• Regardless of the type, we can apply one of the general rules
as follows:
Rule G-1. Treat the intersection as a 0-, or 1-singularity.
Rule G-2. Use the 3-simplex subdivision rules with the

relieved topology condition.

By a subdivision rule with the relieved topology condition,
we mean that the rule only considers the connectivity between
each vertex when acquiring the 1-ring of neighbors, even if it
does not satisfy the condition for a 1-ring that is defined in the
previous section. Fig. 14 shows examples of neighbor choices
by the relieved topology condition. Since the intersection
between simplices with different dimensions always occurs on
the boundary complex ∂C, we only choose the neighbors in ∂C.
Figs. 15 and 16 illustrate examples of non-manifold cases. In
Fig. 15(a), a 1-manifold (Part A) intersects with a 3-manifold
(Part B). Therefore, it forms a type 1 case. Also, a type 3
non-manifold case is shown between Parts B and C. For these
particular cases, a user has not specified the rule. Thus, the
system follows rule G-2, which results in the smooth blending
of the manifolds. Fig. 15(b) and (c) show typical type 2 cases.
In Fig. 15(b), four 2-manifolds intersect together at a line (Line
AA′). A surface self-intersects in Fig. 15(c). For both cases, we
use rule G-2 to blend non-manifold parts into the bodies. Fig. 16
shows the effects of the different rules. In Fig. 16(b), the user
selects vertex A to be a singularity (rule G-1). Hence, we only
apply the 0-mask (i.e., the 1 × 1 identity matrix) on the vertex
during the subdivision process. Thus, it preserves the position
Fig. 15. Examples of non-manifold cases. (a) A type 1 case by the 1- and 3-manifold intersection. Also, a type 3 case is shown between two solid parts. Rule G-2
is applied in both the cases. (b) A type 2 case by 2-manifold intersection. (c) The cross-section of another type 2 case.
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Fig. 16. Type 3 non-manifold rules. (a) The initial complex. (b) The
subdivision by rule G-1. (c) The subdivision by rule G-2. Vertex A preserves its
position in (b), while it is blended in (c).

during the subdivision. However, in Fig. 16(c), we follow rule
G-2. As a result, the vertex has been moved (A′) according
to the positions of the 1-ring neighbors because we use the
subdivision rules for 3-simplices. In the end, the final shape is
much smoother and all the boundaries are well blended. Fig. 17
lists all the solutions provided by our subdivision scheme for
a single configuration. Overall, rule G-2 provides the most
visually pleasing results. We should mention that the suggested
rules do not represent all the possible solutions. Nonetheless,
we can introduce a new rule depending on the requirement of a
particular application.

3.6. Subdivision analysis

Smoothness analysis is required only for the extraordinary
cases, since the regular rules are based on the recursive
property of the box splines and the generating functions.
The convergence and smoothness of the regular cases
are well documented in [7,28]. For the 1-simplex rules,
there is no extraordinary case, and thus, no extraordinary
analysis is required. The 2-simplex rules require analysis of
the extraordinary vertex case. This analysis, based on the
spectral analysis technique, has been developed by Doo and
Sabin [8] and improved by many researchers. For instance,
Micchelli [18], Prautzsch [22,23], Reif [25,24], and more
recently, Zorin [33,31] investigated the sufficient and necessary
conditions of convergence and the C1 smoothness. Since our 1-
and 2-simplex rules exactly follow the rules that already have
been analyzed by other research, we focus ourselves on the 3-
simplex, i.e., the solid subdivision rules.

Since the subdivision process is a linear combination, in
essence, we can represent the rules locally by the subdivision
matrix S,

p`+1
= Sp`, (19)

where p` consists of a vertex x` at the subdivision level `

and its neighbors x`
= [x`

1, . . . , x`
m]. We assume that the λi

are the (left) eigenvalues of S in non-increasing order. If the
set of the initial vertices p0 is expressed by the corresponding
eigenvectors vi in the eigenspace of the matrix S,

p0
= a0v0 + a1v1 + · · · + anvn, (20)

the limit process can be expressed as

p`
= S`p0

= λ`
0a0v0 + λ`

1a1v1 + · · · + λ`
nanvn . (21)

Hence, the limit position x∞ of x0 can be expressed by,

x∞
=

λ0x0
1 + · · · + λmx0

m

λ0 + · · · + λm
, (22)

under the condition:

λ0 = 1 > λ1 ≥ λ2 > λ3, . . . , λn . (23)

As shown in Fig. 12(a), the matrix S has a cyclic structure
due to its planar symmetry in the 2-simplex case. Therefore,
after reordering p0, it is possible to apply the discrete
Fourier transform on S to obtain the closed form of the
eigenvalues. Combined with the condition (23), this leads us
to the coefficients of the subdivision rule (16). Accompanying
Fig. 17. Comparison between the non-manifold rules. (a) The initial control points. The complex consists of one 3-simplex (octahedron) and two 2-simplices
(triangles T1 and T2). The intersection between the 3-simplex and 2-simplices form type 1 cases. (b) Rule N-1 is applied. In this case, we consider the intersection
as a part of the boundaries of the 2-simplices (triangles). (c) Rule N-1 is applied. But, instead of using 2-simplex boundary rules, we utilize the intersection as a part
of the boundary of the 3-simplex. As a result, the boundary of the 3-simplex region does not change at all. (d) We apply rule G-1 with the vertices as 1-singularities.
(e) We apply rule G-1 with the edges as 2-singularities. The intersection creates a 1-singular curve on the surface of the 3-simplex boundary. (f) Finally, rule G-2
is applied to the intersection. No information is specified by the user. Only connectivity and the 3-simplex subdivision rule is used. In the end, the intersection is
smoothly blended.
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Fig. 18. The invariant neighborhood of an extraordinary vertex and their indices.
analysis on the characteristic map suggested by Reif [25] can
guarantee the C1 smoothness around the vertex. However,
the subdivision matrix for the 3-simplex rules does not have
any symmetry at all in general. This results in the failure of
the application of the discrete Fourier transform, and only a
numerical process can be employed to acquire the eigenvalues.
In fact, Bajaj et al. [1] suggested the condition for C1

smoothness of the three dimensional case as:

λ0 = 1 > λ1 ≥ λ2 ≥ λ3 > λ4, . . . , λn, (24)

through their empirical analysis. We begin our analysis with
computing the subdivision matrices for 3-simplex cases.

3.7. Subdivision matrix

We first examine the case of extraordinary vertices. This
case involves a vertex with k vertices adjacent to it. As shown
in Fig. 18, we can establish a correspondence between the
k adjacent vertices and k vertices on the sphere centered
by the extraordinary vertex p j

0. By considering different
triangulations of the k vertices, we can understand the different
configurations of the extraordinary vertex subdivision matrix.
Each triangle is associated with the tetrahedral area that is
surrounding the extraordinary vertex. Because we need 2-ring
vertex neighbors to acquire the invariant system, we subdivide
each tetrahedron once, as illustrated in Fig. 18. Using the
Poincaré formula and the relation between triangular faces and
edges:

v − e + f = 2, (25)

2e = 3 f, (26)

we can deduce that the number of such tetrahedral areas
surrounding the vertex is f = 2(k − 2). In addition, the 1-
ring vertex neighbor contains k vertices and each subdivided
triangular face on the 2-ring vertex neighbor contains six
vertices, three of which are shared by each edge. Therefore, the
actual number N of vertices including the extraordinary vertex
to form the invariant system is:

N = 1 + k + 6 f − 3e + k

= 1 + k + 6(2k − 4) − 3(3k − 6) + k = 5k − 5. (27)
Hence, we can conclude that the size of the subdivision matrix
for each extraordinary vertex with the valence k is N ×N where
N = 5k − 5. With a proper reordering of the indexes of the
vertices, the matrix Sv can be written as:

Sv =

(
M O
A B

)
, (28)

where M is a (k + 1) × (k + 1) matrix associated with the
extraordinary vertex and k adjacent vertices and O is the zero
matrix with the size of (4k − 6) × (k + 1). It is important
to know that the dominant and the subdominant eigenvalues
of the Sv , especially the first five largest eigenvalues, are
identical to those of the submatrix M. Since the matrix M
can be easily acquired by the k 1-ring vertex neighbors of the
vertex p j

0, we can reduce the amounts of the computations
during the analysis process significantly. It is worth mentioning
that, unlike the surface cases, there exist several different
configurations of neighboring vertices for each valence k. Since
each configuration yields a unique subdivision matrix, it is
difficult to compute the eigensystem systematically.

The extraordinary edge with the valence k is surrounded
by k tetrahedra sharing the edge e = [p j

0, p j
2], as shown in

Fig. 19. Again, we subdivide each tetrahedron once to make
the neighbor invariant. It is easy to deduce that the size of the
subdivision matrix Se is (4k + 3) × (4k + 3). Similar to the
extraordinary vertex subdivision matrix, the matrix Se can be
described as:

Se =

(
L O
P Q

)
, (29)

with the proper index reordering. In the edge case, L is a
(2k + 3) × (2k + 3) matrix. It consists of the subdivision
coefficients of the 1-ring neighbors of the extraordinary edge.
Once more, the dominant and subdominant eigenvalues of the
subdivision matrix Se can be acquired from the submatrix L.

3.8. Eigenvalues and characteristic maps

Once we acquire the subdivision matrix of an individual
case, we numerically compute the eigenvalues to confirm the
satisfaction of the condition (24). In Tables 1 and 2, we list a
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Fig. 19. The invariant neighborhood of an extraordinary edge and their indices.
Table 1
Eigenvalues for a selection of the extraordinary vertex cases

Valence λ0 λ1 λ2 λ3 λ4 λ5

5 1.0 0.3125 0.292083 0.15 0.125 0.125
6 1.0 0.312499 0.25 0.25 0.25 0.15
7 1.0 0.327254 0.327254 0.3125 0.275888 0.15
8 1.0 0.480205 0.3125 0.3125 0.249998 0.2375
9 1.0 0.405872 0.405872 0.3125 0.26545 0.19437

10 1.0 0.477404 0.418566 0.418566 0.2375 0.206434
11 1.0 0.441511 0.441511 0.3125 0.293412 0.293412
12 1.0 0.480205 0.480205 0.480205 0.250002 0.2375
13 1.0 0.460313 0.460313 0.353854 0.353854 0.3125
14 1.0 0.577132 0.449431 0.449431 0.34832 0.3125
15 1.0 0.471364 0.471364 0.392016 0.392016 0.3125
16 1.0 0.541169 0.541169 0.480204 0.372645 0.372645
17 1.0 0.571212 0.511703 0.511703 0.371472 0.358853
18 1.0 0.623289 0.463128 0.463128 0.457191 0.374739
20 1.0 0.571212 0.549072 0.549072 0.3875 0.3875
22 1.0 0.616629 0.525774 0.525774 0.4625 0.427853
Table 2
Eigenvalues for a selection of the extraordinary edge cases

Valence λ0 λ1 λ2 λ3 λ4 λ5

4 1.0 0.477404 0.418566 0.418566 0.2375 0.206434
5 1.0 0.480205 0.480205 0.480205 0.25 0.2375
6 1.0 0.517404 0.517404 0.480205 0.3125 0.3125
7 1.0 0.541169 0.541169 0.480204 0.372645 0.372645
8 1.0 0.557148 0.557148 0.480205 0.418566 0.418566
9 1.0 0.568361 0.568361 0.480206 0.453454 0.453454
selection of eigenvalues that we examined. They all satisfy the
suggested eigenvalue condition.

In addition to the eigenvalue condition, we have performed
the characteristic map analysis for extraordinary vertex
cases. For the 2-simplex vertex cases, it is possible to do
the analysis symbolically due to their symmetry. However,
as mentioned earlier, the 3-simplex vertex cases do not
have such symmetry. Therefore, we rely on the numerical
results. We choose an extraordinary vertex or edge case.
Then, we compute the eigenvectors vi from the subdivision
matrix S. Afterwards, we follow the steps explained by
Reif [25]. Figs. 20 and 21 show the control nets for
selected extraordinary cases. Nonetheless, our experiments
strongly suggest that there are no visible degenerations of the
3-manifold even after the very large number of subdivision
processes.

For non-manifold cases, all the non-manifold rules, except
the rule G-2, intentionally introduce singularities. For the case
of rules N-1 and N-2, the limit object is smooth only along the
chosen direction, whose smoothness can be easily explained by
the analysis of a single dimensional subdivision rule. Across
all the other directions, it is clear that it is continuous, since
the rules form a convergent and surjective mapping. However,
the limit region is not smooth along those directions, which is
intentional. For rule G-2, we assume that all the vertices are
spatially embedded in a 3-manifold, therefore the same analysis
can be applied as the 3-simplex case. In this case, our limit
object is C1 smooth along all the directions.
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Fig. 20. Control nets for a selection of the characteristic maps of the extraordinary vertex with the valences from 7 to 22.
Fig. 21. Control nets for a selection of the characteristic maps of the extraordinary edges with the valences from 4 to 9.
4. Singularity and adaptivity

Even though the subdivision rules that we have presented
so far are ideal for representing smooth objects, it is desirable
to have a model with sharp features, such as cusps, creases,
or corners, especially in real-world applications. Also, we may
want to have more details in some part of the model without
subdividing the whole complex. In the following sections, we
discuss the extensions of the framework that can increase its
benefit in practical solid modeling.

4.1. Singularity representation

Hoppe et al. [13] suggested a modification of Loop’s scheme
to represent sharp features within smooth surfaces. Our basic
idea is similar to theirs. However, we generalize the approach
to apply to multi-dimensional models.

A manifold defined by the subdivision rules is C1 smooth
over the complex C except in non-manifold regions. To
represent features within the manifold: (1) We need to specify
the area of the domain where the features occur; (2) We need
to specify the subdivision rules to represent the features in the
manifold. Among many types of features, we only consider
“sharp” features, where the manifold is continuous, but is not
differentiable. We call this type of features a singularity for
convenience. We define a k-singular simplex by:

• k-singular simplex: A k-simplex S ∈ C is a k-singular
simplex, if and only if: (1) There exists no C1 map to l-
manifolds defined over any simplex T ∈ C, where S ⊂ T
and k < l. (2) It is possible to define a differentiable map on
the singular simplex to k-manifolds.

We consider a subcomplex S ⊂ C, which is a collection of
all singular simplices and their subsimplices in C. Since they are
a complex by themselves, all definitions and subdivision rules
that are applied to the complex C are also applicable to S. Basi-
cally, S generates embedded manifolds within the original man-
ifolds on C. When applying the subdivision rules, if a vertex x
or an edge e belongs to a maximal simplex in S, we only follow
the subdivision rules that match the dimension of the simplex,
and ignore any other simplices that may contain the singular
simplex. Fig. 22 illustrates examples of singularities which our
framework can represent. As shown in Fig. 22(a), if a vertex
(a 1-simplex) is assigned to be singular, then the scheme only
applies the 0-mask on the vertex during the subdivision. There-
fore, the vertex does not change its position at each subdivision
level. However, other vertices around it follow the normal rules.
As a result, we can obtain an object which is smooth except at
one singular vertex and in its local area. This singularity is par-
ticularly useful to generate a cusp on the part of a manifold.
In Fig. 22(b), a user has assigned one vertex and all edges that
go through it as singular. The 0-mask is applied to the vertex,
and each edge follows the 1-simplex edge rule. It effectively
produces a corner and three creases starting from it. The case
shown in Fig. 22(c) is more subtle. The user has introduced a
2-manifold singular region in the middle of the 3-manifold. As
a result, the 3-manifold is split into two parts along the singu-
lar surface. Both parts have smooth surfaces as well as smooth
interior, but the internal intersection is only smooth along with
the tangent direction of the singularity. These types of singu-
larities are especially useful if we want to design or fit objects
with heterogeneous material. For instance, we can model a ge-
ological image containing streams and mineral veins (1- and
2-singularities) with ease.

4.2. Local adaptive refinement

During the process of modeling an object represented by our
framework, a situation can occur, that requires finer simplices
than originally given. For instance, we may want to generate



782 Y.-S. Chang, H. Qin / Computer-Aided Design 38 (2006) 770–785
Fig. 22. Examples of singularities in manifolds. (a) A singular vertex. (b) A corner and creases. (c) A 2-manifold embedded in the 3-manifold.
Fig. 23. Local refinement rules. (a) Red rule and (b) Green rule for local
triangulation. (c) Red rule, (d) Green-III rule, and (e) Green-I rule for local
tetrahedralization. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

very fine details on a certain region of the manifold that is
defined over one simplex originally. Since the subdivision rules
generate a C1 smooth box spline on a single simplex, it is not
possible to achieve high level of detail without splitting the
simplex itself. One obvious solution is a global refinement of
the entire complex. This surely would work, but at the expense
of the size of the complex and the memory consumption. If
we simply split a single simplex, the integrity of the complex
will be broken, since the neighboring simplices become non-
simplicial by the introduction of cracks, or T-junctions. We
follow typical Red–Green split rules to avoid the situation (see
Fig. 23). For the 1-simplex case, no special rule is needed. For
the 2-simplex case, only the 1-ring of the adjacent simplices is
affected by the Green rule (see Fig. 23(b)). For 3-simplices, the
1-ring of the adjacent simplices is split by the Green-III rule
(see Fig. 23(d)), while the 2-ring of the neighboring simplices
and the edge-sharing simplices are modified by the Green-I rule
(see Fig. 23(e)). For an octahedral cell, we simply split it into
four tetrahedra, without affecting the neighbors. Then we can
apply Red–Green rules as usual.

5. Implementation

In this section, we discuss detailed issues related to the
implementation of the framework and some of results that are
from our experimental design system.

5.1. Input data

As an input, the framework takes a combination of the
vertex set V , the complex C, and the singular subcomplex S.
However, since subsimplices can be induced from maximal
simplices, we do not need all the simplices in C. So, in the
implementation, we only take the data in Algorithm 1 as
an input. These are the minimum data that are required to
reconstruct the complex and the other information. Additional
Algorithm 1 MULTI-DIMENSIONAL-SUBDIVISION.
1: MULTI-DIMENSIONAL-SUBDIVISION (V , Cmax, Smax)

{V = {xi | xi ∈ R3
}

Cmax = max(C) = {S ∈ C | S : maximal}
Smax = max(S) = {T ∈ S | T : maximal}}

2: set M = Cmax ∪ Smax

input can include user-specific preferences for each non-
manifold cases. Since we heavily rely on set operations on the
complex, an efficient data structure is necessary. To minimize
the time complexity, each simplex can contain the information
about its neighbors and subsimplices, which increases memory
consumption exponentially during the subdivision process. We
compromise both time and memory by intensive usage of hash
tables and other data structure to allow fast neighbor search.

5.2. Complex construction

In Algorithm 2, we reconstruct the complex C, the
decomposition Ck , and mark the type 1 non-manifold simplices
according to the following process. Remember that ρ(S) is
1-ring neighbors of S. After the process, newly generated
subsimplices are checked to verify whether they are boundary
or type 2 non-manifold simplices. The procedure is explained
in Algorithm 3.

Algorithm 2 COMPLEX-CONSTRUCT.
1: COMPLEX-CONSTRUCT (V , M)

{ρ(S): 1-ring neighbor of S}

2: initialize each Ck as empty
3: for all k = 0, 1, 2, 3 do
4: for all k-simplex S ∈ M do
5: put S in Ck .
6: for all l-subsimplex T ⊂ S with l < k do
7: put T in Ck
8: if T ∈ Ck′ , k 6= k′ then
9: tag T as non-manifold type 1

10: end if
11: construct ρ(S) if l = 0, or 1
12: end for
13: end for
14: end for
15: return all Ck

We still need to figure out non-manifold type 3 non-manifold
simplices and subsimplices of type 1 and type 2 non-manifold
simplices. This has to be done at the end, because the process
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Algorithm 3 FIND-BOUNDARY-AND-NON-MANIFOLD.
1: FIND-BOUNDARY-AND-NON-MANIFOLD (Ck)
2: for all k = 1, 2, 3 do
3: for all new (k − 1)-subsimplex (face) T ∈ Ck do
4: if T belongs to only one k-simplex then
5: tag T as boundary
6: else if T belongs to more than two k-simplex then
7: tag T as non-manifold type 1
8: end if
9: end for

10: end for

requires type 1 and type 2 information. Here, we denote
by µ(S) a number of maximal simplices that contains S.
Algorithm 4 shows the steps to this process. Once the complex

Algorithm 4 FIND-TYPE-THREE-NON-MANIFOLD.
1: FIND-TYPE-THREE-NON-MANIFOLD (Ck)

{µ(S): A number of maximal simplices that contains S}

2: for all k = 0, 1 do
3: for all l-simplex T ∈ Ck with l < k − 1 do
4: for all l ′-simplex S ∈ Ck with l < l ′ ≤ k do
5: if T is a subsimplex of S and dim(S) = k then
6: increase µ(T )

7: if µ(T ) ≥ 2 then
8: tag T as non-manifold type 3
9: end if

10: else if T is a subsimplex of S and dim(S) < k then
11: if S is non-manifold then
12: tag T as the same non-manifold type as S
13: end if
14: end if
15: end for
16: end for
17: end for

construction is complete, we are ready to choose the appropriate
subdivision rules for each vertex and edge. Note that the
subsimplices induced from maximal simplices are required
only for the neighborhood, the boundary, and the manifold test.
They can be safely removed from the memory once every step
is done.

5.3. Subdivision process

In Algorithm 5, we construct the subdivision matrix and
the 1-ring neighbors for each vertex and edge using the
information gathered in the previous steps. Additional user
input is considered to treat the non-manifold region. Then, we
output Vnew as the next level of the vertices. We follow the
exactly same steps for each edge to obtain a set of new edge
points, Enew. Once the new vertex and edge points have been
computed, we split each simplex. The process is detailed in
Algorithm 6. As a result, we obtain the finer complex C′ with
the new vertices V ′. We may continue the steps from Section 5.2
to achieve more subdivision levels.
Algorithm 5 NEW-VERTEX-POINTS.
1: NEW-VERTEX-POINTS (V , C)

{C =
⋃
Ck}

2: for all vertex x in V do
3: filter ρ(x) so that it contains only the same type of

vertices as x.
4: choose the subdivision matrix Sx
5: compute the vertex point vnew by Sx and the filtered ρ(x)

6: associate vnew with x
7: put vnew in Vnew
8: end for
9: return Vnew

Algorithm 6 SPLIT-SIMPLEX.
1: SPLIT-SIMPLEX (Vnew, Enew, C)
2: initialize V ′ and C′ as empty
3: for all k = 0, 1, 2, 3 do
4: for all k-simplex S ∈ C do
5: if k == 0 or 1 then
6: put vnew or enew associated with S in V ′.
7: else
8: if S is an octahedron cell then
9: compute the cell point cnew

10: put cnew in V ′

11: end if
12: split S by vnew, enew and cnew if required
13: put the split simplices in C′

14: end if
15: end for
16: end for
17: return V ′, C′

5.4. Results

We have implemented a basic design system based on
our framework. We present a few examples from the results
of our system. Fig. 24(a)–(c) show non-manifold models. In
Fig. 24(a), the non-manifold region is explicitly defined by a
1-singular simplex. On the other hand, rule G-2 is used to blend
the region in Fig. 24(b). A similar effect is demonstrated in
Fig. 24(c). In real-world application, such as manufacturing,
the 2-manifold only parts can be converted to solids by
adding a certain thickness toward their normal direction. In
Fig. 25(a)–(c), we use a simple spiral equation to generate the
solid spring part. The valve part comprises a solid cap and a
cylinder which is a surface model. All parts are represented
within a single complex mesh and the non-manifold parts
are smoothly blended. Fig. 26(a)–(c) illustrate a mechanical
part with non-trivial topology. The handle is a 2-manifold
surface model, whereas the other parts are all solid. We use the
singularity rules to make the rounded corners, the sharp corners,
the flat surfaces and the round holes. Finally, Fig. 27(a)–(c)
show an experiment with material properties. We can apply
the subdivision rules on geometric coordinates, as well as their
associated material values. In this case, we assign pseudo-
temperature values at the initial level, and the subdivision rules
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Fig. 24. Various non-manifold models by the combination of 2- and 3-
manifolds.

Fig. 25. A valve model with a spring.

smoothly blend them into the structure. Because of its C1

smoothness, the result is superior to linear blending. Also, it
is naturally extended to non-manifold regions.

6. Conclusion and future work

We have presented a new framework for multi-dimensional
adaptive subdivision objects based on simplicial complexes and
subdivision schemes. A simplicial complex as a parametric
domain provides us great flexibility for the topology of models.
It can contain simplices of multiple dimensions simultaneously.
Thus, it provides an excellent control mesh for the subdivision
rules of different dimensionality. Querying and probing on the
complex in our framework offers us information on topological
structure of the resulting manifold. The subdivision rules based
on the box splines are generalized and modified to generate
manifolds of different dimensions in the limit. Unlike the
tensor-product schemes, our scheme is well-defined over a
simplicial domain. The subdivision rules naturally result in
highly smooth manifolds, except for the extraordinary cases,
where they converge to satisfy C1 smoothness. The general
rules and the user specific rules are selectively applied to
the non-manifold region to model special shapes in practice.
The boundary representation for each manifold is based on
the subdivision rules of one lesser dimension. Therefore, the
result is consistent throughout the framework. Singularities
are defined as an embedded subcomplex of the domain, and
the appropriate subdivision rules are applied only on the
subcomplex, so that sharp features can be also represented
as manifolds within manifolds. Furthermore, local refinement
rules are also illustrated, which affords a user a mechanism for
selective detail control on the objects. In the implementation,
the properties of the complex domain are extensively employed
to obtain various topological information. We also briefly
discuss the analysis of the subdivision schemes, which is
mostly based on well-established mathematical and numerical
techniques.

Our new subdivision scheme has great potential for the
modeling of very complex, real-world objects. The subdivision
rules can be used to approximate not only geometric models,
but also material attributes of heterogeneous objects. In
particular, if combined with a proper approximating algorithm,
the framework can be applied to reconstruct and compress
large heterogeneous models, like bio-medical images, or geo-
scientific data. We are pursuing this and other directions such
as data fitting, modeling of physical attributes, and model
segmentation. In addition, although we have implemented
tools for the basic modeling purposes, more practical
operations would enable us to push the framework toward
many practical applications in computer-aided design and
manufacturing. These operations include, but are not limited to,
set operations between manifolds, direct sculpting, and material
painting.
Fig. 26. A model of a mechanical part with the complex topology.

Fig. 27. A material property representation with a ship model.
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[33] Zorin D, Schröder P, Sweldens W. Interpolating subdivision for
meshes with arbitrary topology. In: Computer graphics (SIGGRAPH’96
Conference Proceedings). 1996. p. 189–92.

Dr. Yu-Sung Chang is a Software Engineer and a Mathematician in Kernel
Technology Department at Wolfram Research, Inc, the makers of Mathematica.
He received his Ph.D. in Computer Science at Stony Brook University in
Computer Science in 2005. He earned his B.S. degree in Mathematics from
Seoul National University, Korea in 1996. He received his M.S. degree in
Mathematics from Courant Institute at New York University in 2000. During
1991-97, he received an Honor Scholarship and was awarded the Honor for
Excellent Graduation in 1996 from Seoul National University. In 2000, he
received a Presidential Fellowship from Stony Brook University. His current
projects at Wolfram Research include Scientific Visualization, Geometric
Modeling, Large Dataset Processing and Multi-dimensional Analysis. He is a
member of ACM and SIAM.

Dr. Hong Qin is an Associate Professor (with tenure) of Computer Science
at State University of New York at Stony Brook. He received his B.S. (1986)
degree and his M.S. degree (1989) in Computer Science from Peking University
in Beijing, China. He received his Ph.D. (1995) degree in Computer Science
from the University of Toronto. During his years at the University of Toronto
(UofT), he received UofT Open Doctoral Fellowship. In 1997, Professor Qin
was awarded NSF CAREER Award from the National Science Foundation
(NSF). In December 2000, Professor Qin received Honda Initiation Grant
Award. In February 2001, Professor Qin was selected as an Alfred P. Sloan
Research Fellow by the Sloan Foundation. In June 2005, Professor Qin served
as the general Co-Chair for Computer Graphics International 2005 (CGI’2005).
At present, he is an associate editor for IEEE Transactions on Visualization and
Computer Graphics (IEEE TVCG), and he is also on the editorial board of The
Visual Computer (International Journal of Computer Graphics).


	A unified subdivision approach for multi-dimensional non-manifold modeling
	Introduction
	Motivation
	Background

	Simplicial complex domain
	Set definitions
	Complex decomposition
	Boundary simplex
	Non-manifold simplex

	Subdivision scheme
	Box splines
	Subdivision meshes
	Regular subdivision rules
	Extraordinary subdivision rules
	Boundary and non-manifold rules
	Subdivision analysis
	Subdivision matrix
	Eigenvalues and characteristic maps

	Singularity and adaptivity
	Singularity representation
	Local adaptive refinement

	Implementation
	Input data
	Complex construction
	Subdivision process
	Results

	Conclusion and future work
	Acknowledgments
	References


