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Traditional Computer Graphics

• Computer graphics deals primarily with surface representations and 

rendering

• Objects are defined by a

surface or boundary representation

• Explicit distinction between

the inside and the outside

• But the inside is empty – it has no

substance

• A surface is infinitesimally thin – zero thickness

• This is just an approximation of reality – even a sheet of paper or a 

human hair has a thickness, however small

• Volume graphics includes a set of techniques for rendering and 

visualizing volumetric data, data that have interior information
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Traditional Computer Graphics

Surface graphics advantages

+ fast rendering algorithms are available

+ acceleration in special hardware is relatively easy and cheap 

(~$100)

+ rich programming libraries like 

OpenGL and Microsoft’s Direct3D 

make it easy to develop surface 

graphics applications

+ surface realism can be added 

via texture mapping
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Traditional Computer Graphics

Surface graphics disadvantages

– Discards the object’s interior and just maintains a thin shell

– Does not facilitate real-world operations such as cutting, slicing, 

dissection

– Does not enable artificial viewing modes such as semi-

transparency, X-ray to let us peer into and through objects

– Amorphous phenomena like clouds, fog, and gas are hard to 

represent – amorphous = “without shape”

• Why would it be hard to represent such phenomena using only thin 

shells as our core representation?

• Such objects have no definite boundaries
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Volume Graphics Definitions

• A volume is sometimes called a 3D image

– Compare: image = 2D grid of intensities, volume = 3D grid of 

densities (also sometimes called intensities)

– A 3D array of point samples called voxels (volume elements)

– A 2D image on the computer screen is basically a 2D array of point 

samples

– 2D image: each pixel has a position on the screen (x,y) and an 

intensity (d)

– 3D image: each voxel has a position in space (x,y,z) and a density 

(d)

– Volume rendering techniques basically perform computations over 

these 3D densities to produce an image
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Real-World Volume Rendering Example

• An X-ray machine is actually a type of volume rendering 

architecture

• X-rays pass through the body (a volumetric data-set!) and produce a 

2D image

• Some rays pass through the body and strike X-ray film

• Others are absorbed (d’oh!)

• Others are deflected

• This idea of firing rays through

a volumetric (3D) space and

collecting information along the

way is the basic idea and process

used in volume rendering
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Volume Rendering

• In volume rendering, imaginary rays are passed through a 3D object that has been 
discretized (e.g., via CT or MRI)

• As these viewing rays travel through the data, they take into account of the 
intensity or density of each datum, and each ray keeps an accumulated value

• As the rays leave the data, they 
comprise a sheet of accumulated values

• These values represent the volumetric 
data projected onto a two-dimensional 
space (or image)

• Using transfer functions (mappings)
we can highlight certain important
features of the data-set using RGBα

• How was opacity (α) used in the
image on the right?  Hint: Is this what
we look like from the outside?  From
the inside?

• Let’s see a movie of stellar data (1)

Image courtesy Viatronix, Inc.
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Volume Rendering Applications – Medical Imaging

• Classic application for volume rendering since datasets are inherently 
volumetric

• Modalities are: CT, MRI, Ultrasound, others

• Doctors use volume rendering to visualize organs, structures, and tissue of 
interest

• Can render unimportant structures (semi-)
transparently and emphasize important ones

• For example: render a brain tumor opaque 
and the surrounding brain tissue as a faint hull

• The medical check-up of the future:

1. Get a full body scan with CT and MRI

2. Specialist doctors use volume visualization to investigate the state of the 
discretized patient:

3. A cardiologist checks coronary arteries for arteriosclerotic plaque

4. A radiologist flies through the virtual colon and checks for cancer, etc.

5. Simulate and plan a surgery or procedure on the digital patient if necessary

6. Keep the scan as a digital record of the patient for future reference
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Volume Rendering Applications – Paleontology

• Non-destructive exploration and dissection of:

• Prehistoric artifacts (dinosaur eggs, fossils embedded in soil)

• Artifacts from ancient cultures

The new way
The old way

1 2

3
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Volume Rendering Applications – CFD

• Computational fluid dynamics

• Fluid flow is governed by the Navier-Stokes system of simultaneous differential 

equations

• Velocity, pressure, temperature, viscosity

• These systems are solved using iterative methods on discrete grids

• The results are visualized with volume visualization
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Volume Rendering Applications – Simulation

• CFD is an example of a simulation frequently performed using 

high-performance computers, often supercomputers

• Simulation is often extremely useful for understanding and 

predicting reality

• Sometimes it’s impossible or too dangerous to setup a real-world 

experiment of that which you wish to view

• Let’s look at two movies to see examples of these

• Tornado vortex simulation (11)

• Heptane fire simulation (3)
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Volume Rendering Applications – Others

• Industrial CT:

• Reverse engineering

• Inspection for structural 

failures

• Security:

• Airport luggage CT

• Search for drugs,

weapons, etc.
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Modes of Volume Rendering

• We will explore a particular volume rendering 

algorithm called ray-casting

• We will explore other algorithms

later in the semester

• Four main volume rendering modes

exist:
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Volume Rendering Examples
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Famous Volumetric Data-Sets

• NIH (National Institutes of Health) Visible Human Project

• Visible Male and Visible Female

• http://www.nlm.nih.gov/research/visible/visible_human.html

• Visible Male:

• MRI and CT scans of a deceased prison who dedicated his body to science

• MRI slices taken at 4 mm intervals, 256 x 256 images, 12-bit grayscale

• CT slices taken at 1 mm intervals, 512 x 512 images, 12-bit grayscale

• Also, anatomical slices

• Cadaver frozen and physically 

sliced (!) in 1871 slices and 

photographed at 24-bit resolution 

color

• Used widely in research and

education

• Movies of a few others (10)

http://www.nlm.nih.gov/research/visible/visible_human.html
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Volume Graphics

• Advantages

+ Maintains a representation that is close to the underlying fully-3D 

object (but discrete) (What might be some problems associated with 

converting from a continuous representation to a discrete one?)

+ Can achieve a level of realism (and ‘hyper-realism’) that is 

unmatched by surface graphics

+ Allows easy and natural exploration 

of volumetric datasets

• Disadvantages

– High rendering complexity

– Hardware acceleration is complex

and expensive (~$3000)

Image courtesy Viatronix, Inc.
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Modes of Volume Rendering

• We will explore a particular volume rendering 

algorithm called ray-casting

• We will explore other algorithms

later in the semester

• Four main volume rendering modes

exist:
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Volume Rendering Framework

• Before we study how to perform volume rendering via ray-casting, we 

need to review some 3D geometry and its relationship with linear algebra

• In particular, we need to have a concise mathematical framework for 

indicating the position (x,y,z) and orientation (via rotation) of a volumetric 

data-set so that we can volume render it from all sides

• We also have to examine how to specify the viewing position, direction 

and orientation of the camera or eye

• For instance, if we took two X-rays of your body, one from the front and 

one from the side, the resulting images would be very different

• We need to be able to perform similar spatial transformations on volumes 

so that we can visualize the data from different viewing angles

• These transformations take place with respect to some coordinate system 

(e.g., translate an object by 3 units in the x direction; rotate an object 45°

around the z-axis)
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Object Representations

• An object may be represented in one of many ways:

• A vertex and polygon list

• A list of voxels (usually regular grids)

• A mesh structure (usually irregular grids)

• Many others…take CSE 530 

• These generic objects can now be scaled, rotated, 

translated to fit the desired shape (model space)

• This is called the modeling transformation:

• We then place the object in the world using the object-to-world transformation



20

Coordinate Systems

• 3D objects we wish to display on a computer screen must have an (x,y,z) position 

in Euclidean space (usually called the scene or the world space)

• Two kinds of coordinate systems: right-handed and left-handed

• We will use whichever coordinate system seems most natural in the given context

• In the absence of transformations, it is very easy to convert between the two

• If the object has been rotated or otherwise transformed, however, a little extra 

work is necessary to make sure the transformations are also converted properly 

from one coordinate system to the other
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Spatial Transformations

• Let’s assume for the moment we are using a right-handed system 

(this is what OpenGL uses by default)

• We need ways to translate, rotate and scale 3D objects

• Such transformations can be concisely defined using 4x4 matrices:

• The values for a-p depend on the particular transformation

• Usually, the elements d, h and l are 0, and p is 1
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Transforming a Spatial Location

• Now, if we want to transform a point at position (x,y,z) using the 

transformation matrix, it’s just a simple matter of multiplying the 

current position by the matrix to get the new position (x’,y’,z’):
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Identity Transformation

• Simplest transformation is the identity transformation

• Causes no change in position or orientation of object
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Scaling Transformation

• When sx = sy = sz, we call it uniform scaling

• If s > 1, the object looks bigger; if 0 < s < 1, object looks smaller

• What if s = 0?  s < 0?
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Rotation Transformations
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Translation Transformation

• You might be wondering why we don’t just use 3x3 matrices since the last 

column and row are [0 0 0 1]

• The reason is that translation of a point cannot be expressed as a 3x3 vector-

matrix multiplication

• Translation really just adds a displacement: x+tx, y+ty, z+tz

• This problem can be solved using homogeneous coordinates

• The idea is to express our point

in 4D and then project it back to 3D
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Composite Transformations

• One very convenient aspect of using 4x4 matrices to encode 

transformations is that they can be composed

• Given transformations M1 and M2, we can express the result of 

performing transformation M2 followed by M1 as M1(M2p) where 

p is the point to transform

• Note that we must right-multiply, not left-multiply! For this reason, 

in computer code we program the transformations in the reverse 

order of what we want

• Also note that matrix multiplication 

is not commutative, so

M1M2p ≠ M2M1p

• Example: rotation & translation
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Viewing Transformations

• So far we have been transforming the position and orientation of objects

• Suppose instead we transform the position and orientation of the camera or eye? 

(i.e., the viewing position and orientation)

• Compare:

1. Grabbing an object, turning it around in your hand, moving it around in space

2. Walking around a stationary sculpture, turning your head, looking up and down

• Both achieve the same effect: we can examine some 3D object from different 

vantage points, distances, etc.

• We can transform the object or the view – the effect is the same

• Models (objects) are transformed by modeling transformations, the camera is 

transformed by viewing transformations

• In OpenGL, modeling and viewing transformations are combined into the notion 

of a modelview matrix.  In other words, use whichever paradigm seems more 

natural in a given circumstance and application
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3D Viewing: Camera Metaphor

• A view is specified by:

– eye position (Eye)

– view direction vector (n)

– screen center position (Cop)

– screen orientation (u, v)

– screen width and height (W, H)

• u, v, n are orthogonal to each other

• All objects are transformed by the 

viewing transform 

• After the viewing transformation:

– the screen center is at the coordinate 

system origin

– the screen is aligned with the x, y axis

– the viewing vector points down the 

negative z-axis

– the eye is on the positive z-axis

Viewing

Transformation
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Viewing Transformation Steps

• The sequence of transformations is:

1. Translate the screen Center of Projection (Cop) to the coordinate system origin 
(Tview)

2. Rotate the translated screen such that the view direction vector n points down 
the negative z-axis and the screen vectors u, v are aligned with the x, y-axis 
(Rview)

• We get Mview = Rview · Tview

• We transform all object (points, vertices) by Mview:

• Now the objects are easy to project since the screen is in a convenient position

• But first we have to account for perspective distortion…

• Perspective what?
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Projection Transformations

• Now we need to see how to project a transformed object onto the 

screen so we can view it

• This process is conducted using a projection transformation, which 

is also defined as a 4x4 matrix

• We will look at two types: perspective projection and orthographic 

projection (also known as parallel projection)

• Perspective projection is like our own 

vision: distant objects appear smaller

• In parallel projection, this

perspective effect doesn’t

occur – distance does not

affect perceived object size
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Perspective Projection

• A view-transformed vertex with 

coordinates (x’, y’, z’) projects onto 

the screen as follows:

• Note: z’ <  0

• xp and yp can then be used to 

determine the screen coordinates of 

the object point (i.e., where to plot 

the point on the screen)
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Perspective Projection

• Perspective projection can also be 

captured in a matrix Mproj with a 

subsequent perspective divide by the 

homogeneous coordinate w:

• In volume rendering, the diverging 

rays cause the perspective effect and 

make distant objects look smaller 

than nearer objects

• So the entire world-to-screen 

transform is:

Mtrans = Mproj · Mview = 

Mproj · Rview · Tview

with a subsequent divide by the 

homogenous coordinate

• Mtrans is composed only once per 

view and all object points (vertices) 

are multiplied by it
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Parallel (Orthographic) Projection

• Sometimes we don’t want to use 

perspective projection because we 

want to preserve perceived relative 

object size (e.g., for comparison)

• In this case we can use orthographic

or parallel projection

• X-ray machine analog

• No separate projection matrix, as 

with perspective projection.  Just use 

the modelview matrix (i.e., xp = x’, 

yp = y’)

• But, like perspective, we need to 

apply the window transformation, 

which we’ll look at next
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Window Transform

• We have our desired pixel location (xp, yp), but it’s described in world coordinates, not 

screen coordinates

• Our display monitor is described on a pixel raster of size (Nx, Ny)

• Assume:

– we want to display the rendered screen image in a window of size (Nx, Ny) pixels

– the width and height of the camera screen in world coordinates are (W, H)

– the center of the camera is at the center of the screen coordinate system

• Then:

– the valid range of object coordinates is (-W/2 ... +W/2, -H/2 ... +H/2)

– these have to be mapped into (0 ... Nx-1, 0 ... Ny-1) using the following 

transformation:
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Window Transform

• The window transform can be written as the matrix Mwindow:

• After the perspective divide, all object points (vertices) are multiplied by Mwindow

• Note: we could incorporate the window transform into Mtrans

• In that case, there is only one matrix multiply per object point (vertex) with a 

subsequent perspective divide

• The OpenGL graphics pipeline does this
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Rotating Object or Camera?

• In volume rendering, most of the time we rotate the camera rather than the object

• Why?

• Much too expensive to apply the transformations to every voxel

• However, it’s more intuitive usually to think of the camera being fixed and the 

object being rotated (and/or translated)

• We can still formulate the rotation as though we would apply it to the object, but 

instead we will apply the inverse of the rotation matrix to the camera

• The rotation matrix is orthogonal (i.e., its inverse is its transpose, RRT=1)

• Then you rotate the camera by that inverted matrix (this entails rotating the u, v, n 

vectors and the image origin)

• The effect is the same as if you had rotated the object

• Note that we are assuming the camera has already been translated some distance 

away from the center of the volume.  If we rotate the camera and then translate it 

from the volume center, the camera would no longer be pointing at the volume in 

all likelihood!
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Summary on Viewing & Projection

• The viewing and projection transformations are critical in computer 

graphics (and hence, visualization) applications

• We have really only scratched the surface.  It would take several 

classes to cover all the details of the modeling, viewing, world-to-

screen, and projection transformations

• The good news is that you will not have to do very sophisticated 

transformations in the assignments, but you will have to implement 

the ones we have covered (except for perspective projection)

• Come talk to me if you have trouble, or see Yiping

• The Foley/van Dam book or Lichtenbelt are good references, but 

pretty much any other introductory computer graphics book will 

have the matrices and their derivations
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Transformations Recap

• We have looked at spatial transformations

• Modeling transformations, viewing transformations

• Projection transformations – perspective and parallel

• We defined the viewing transformations as happening to the camera, and 

modeling transformations as happening to objects

• This is a natural way of thinking of how to view an object

• In volumetric ray-casting practice, however, this is not precisely how things are 

done

• Too computationally expensive to rotate volumes

• Hence, transformations happen to the camera, or image plane

• We pretend we are rotating the volume and assemble the appropriate modeling

transformation matrix

• BUT, then we instead apply the inverse of this matrix (transpose if rotation only) 

to the image plane, thereby moving the camera instead of the object

• So, you can think of it as converting a modeling transformation into a viewing 

transformation
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Transformation Recap

• Implementing these transformations for ray-casting is actually not so hard

• Assume the volume is fixed in space and the camera is initially on the z-axis 

looking in the negative z direction (and we use parallel projection)

• The viewing rays point in the same direction, but start at different (x,y)

• Viewing rays begin at the pixels and shoot into the scene towards the volume

• Pixels and rays described in same coordinate system as the volume

• To change the perceived position and orientation of the voxels, translate and 

rotate the camera to achieve the same effect as though you had transformed the 

voxels – this is the opposite of what we usually do in traditional graphics

• This means that the (parallel) rays can be pointed in a direction different from the 

default (along negative z) so that we can see the volume from different views

• To rotate the view, we just rotate the

u, v and n vectors around the center

of the volume

n
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Volume Rendering – Continuous Case

• Let’s return to volume rendering

and see how transformations

are used in ray-casting

• We want to shoot a ray

through the volume and

accumulate or composite information 

about the volume as we travel along it

• In the continuous domain, this ray traversal is best expressed as a definite 

integral.  X-ray equation:
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Volume Rendering – Discrete Case (X-ray)

• In practice, we very rarely use 

“continuous” data

• Most of the time our data is discrete, 

i.e., sampled via CT, MRI or some 

similar scanning modality

• We can discretize the ray-casting 

integral and arrive at the notion of 

discrete ray-tracing
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Remember: these 

equations are only for 

X-ray rendering!
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Volume Rendering – Discrete Case (X-ray)

• X-ray rendering adds the densities 

as we step along the ray

• Some important things to note:

• Usually we take uniform steps along the ray 

(Δt = 1)

• Each sample we take from the volume 

(indicated by X) is given equal weight

• After ray-tracing the volume for each 

pixel, the intensity stored at each pixel may 

be greater than 255 (indicating pure white)

• Or, the maximum pixel intensity may be less than 255

• If so, the entire image should be normalized by dividing each pixel 

intensity by the maximum that appears in the image and multiplying by 

255
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Volume Rendering – Discrete Case (MIP)

• Another important mode of volumetric ray-tracing is called 
Maximum Intensity Projection or MIP (note, this is not the same as 
mip-mapping)

• In this case we find the maximum value of f along the ray and store 
that value in the pixel

• MIP is great for visualizing
bright structures in a data-set

• Bright, distant structures are not occluded
by nearer, dimmer objects

• Let’s watch a movie! (2)
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Courtesy Technische Universität Wien
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Interpolation

• Usually, the samples we take along the 

ray do not exactly coincide with the 

voxels on the grid

• They fall someplace between the grid 

points, whose values we know at the 

outset

• We need to estimate or approximate 

somehow what these in-between values 

probably were in the original, 

continuous object that was scanned

• This estimation process is called 

interpolation, which we saw earlier 

when we studied the human perceptive 

system

• We’ll see how interpolation can be 

expressed mathematically in 1D, then 

generalize it to 2D and finally, 3D

• Finally, we can incorporate 

interpolation into the volume rendering 

pipeline to generate both X-ray and 

MIP visualizations
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Interpolation – 1D

• The goal of interpolation is to 
approximate the true value of a 
function at some location by using 
nearby information to infer or 
approximate what the value should 
be or was in the original

• An interpolation function or 
interpolation kernel assigns weights 
to the neighbors to determine how 
much each neighbor should 
contribute to the interpolated value

• The function is centered over the 
position we want to interpolate

• For function on right: f [-1] = 0.4,
f [0]=1.05, f [1] = 0.9, f [2] = 0.57
(samples of the function f )

• Interpolation kernel values are 
-0.02, 0.38, 0.66, -0.07

• The interpolated value is therefore: 

(0.4 * -0.02) + (1.05 * 0.38) + 

(0.9 * 0.66) + (0.57 * -0.07) = 0.945

• Typically, the interpolation weights 

sum to 1.0 (but not always)
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Interpolation Functions

• There are many choices for interpolation functions

• The simplest (and crudest) method is called nearest neighbor interpolation

• Basically, all you do is look for the nearest point to your selected position and 

take that value

• In the following example, we have applied nearest neighbor interpolation across 

the entire domain in an attempt to recover the original function, which we 

sampled

• f(0.2) = f(trunc(0.2+0.5)) = f(round(0.2)) = f(0)
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Interpolation Functions

• A linear filter is another simple interpolation function

• We take a linear combination of the two neighboring grid values

• f(0.2) = 0.2 * f(1) + 0.8 * f(0)

• The fact that these three values are related is no coincidence, and 

we’ll see that this makes linear interpolation very attractive
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Interpolation Functions

• Cubic filters can give very good results, but are computationally 

expensive
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Back to Linear Interpolation

• Linear interpolation is by far the 

most popular interpolation method

• It’s very fast and usually gives 

adequate results

• If we assume unit spacing 

(i.e., (x1-x0)=1), then we can

simplify the formula

• The latter equation is how it’s usually 

written, but the first form is 

potentially more computationally 

efficient (depends on what f is)
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Bilinear Interpolation

• Linear interpolation generalizes to 2D very easily

• In 2D it’s called bilinear interpolation and works like this:

• f (Pu,0) = (1 - u) · f (P0,0) + u · f (P1,0)

• f (Pu,1) = (1 - u) · f (P0,1) + u · f (P1,1)

• f (Pu,v) = (1 - v) · f (Pu,0) + v · f (Pu,1)

• So, a bilinear interpolation consists of 3 linear interpolations

• Alternate form:

f (Pu,v) = (1-v)(1-u) f (P0,0) + (1-v)(u) f (P1,0) + 

(v)(1-u) f (P0,1) + (v)(u) f (P1,1)

1-v

v

u 1-u

P1,1
Pu,1

Pu,v

P1,0
P0,0

P0,1

Pu,0
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A Second Look at Bilinear Interpolation

You should view bilinear interpolation 

as consisting of two 1D interpolations 

followed by a linear interpolation of 

the two interpolated values.

You can already see already how this 

can be generalized to 3D.

1

?

2

3
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Trilinear Interpolation

• Linear interpolation: along a line

• Bilinear interpolation: inside a rectangle

• Trilinear interpolation: inside a…?

• Rectangular box, in general; a cube in particular

• Bilinear interpolation utilizes two 1D linear interpolations, followed 

by a linear interpolation of the two interpolated values

• Trilinear interpolation utilizes two (2D) bilinear interpolations, 

followed by a linear interpolation of the two interpolated values

• Hence, we should have 3 + 3 + 1 = 7 total 1D linear interpolations
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Trilinear Interpolation

• f (Pu,v,0) = BilinearInterpolation(P0,0,0 , P1,0,0 , P0,1,0 , P1,1,0)

• f (Pu,v,1) = BilinearInterpolation(P0,0,1 , P1,0,1 , P0,1,1 , P1,1,1)

• f (x,y,z) = f (Pu,v,w) = LinearInterpolation(Pu,v,0 , Pu,v,1)

• Hence, a trilinear interpolation

can be expressed as 7 linear interpolations 

(although simpler formulas exist)

• Alternate form:
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Trilinear Interpolation – Alternate Interpretation
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Trilinear Interpolation
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Trilinear Interpolation
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Trilinear Interpolation – Implementation Issues
• For fastest computation, pre-compute the interpolation weights once per sample point P:

u = P[0] - (int)P[0]; v = P[1] - (int)P[1]; w = P[2] - (int)P[2];

• Volume stored in 1D array as x-y-z (x index changes faster than y index, 
y index changes faster than z index)

• Now do the decomposition into 7 linear interpolations:

val1 = u * volData[(int)P[2] * nx*ny + (int)P[1] * nx + (int)P[0] +1 ] +

(1-u) * volData[(int)P[2] * nx*ny + (int)P[1] * nx + (int)P[0] ]);

val2 = u * volData[(int)P[2] * nx*ny + ((int)P[1] + 1) * nx + ((int)P[0]) +1 ] +

(1-u) * volData[(int)P[2] * nx*ny + ((int)P[1] + 1) * nx + (int)P[0] ]);

val3 = (1-v) * val1 + v * val2; ... 
val4, val5, val6, val7

(nx, ny = volume sizes in x and y, i.e., width and height)

• The array indexing takes many operations and will not be very efficient, try instead:

cptr=&(volume->data[(int)P[2] * nx*ny + (int)P[1] * nx + (int)P[0]]);

P000=*cptr; P100=*(cptr+1); P001=*(cptr+nx*ny); P101=*(cptr+nx*ny+1);
P010=*(cptr+nx); P110=*(cptr+nx+1); P011=*(cptr+nx*ny+nx); 
P111=*(cptr+nx*ny+nx+1);

intVal= (1-w) * ( (1-v) * (u * P100 + (1-u) * P000) + v * (u * P110 + (1-u) * P010)) 
+w * ( (1-v) * (u * P101 + (1-u) * P001) + v * (u * P111 + (1-u) * P011));
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Nearest-Neighbor Interpolation in 3D

• What one-line piece of code would 

implement nearest-neighbor 

interpolation?

• Nearest neighbor interpolation in 3D:   

f (x,y,z) = f (Pround(x), round(y), round(z))

where (round(X) = trunc(X+0.5))
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Putting It All Together: X-Ray Rendering Algorithm

RenderXRay(Volume V, int stepSize, Image I)

if (projectionMode == Orthographic)

ray = v × u / | v × u| // view direction vector is perpendicular to image plane 

for each image pixel (i, j)

P(i, j) = P(0, 0) + (i · v · ∆i) + (j · u · ∆j);

sum = 0;

if (projectionMode == Perspective)

ray = (P(i, j) - eye) / | (P(i, j) - eye); | // normalized view direction vector 

IntersectRayWithVolumeBoundingBox(V, ray, t_front, t_back);

for(t = t_front; t <= t_back; t += stepSize) // traverse the volume front to back 

sampleLoc = P(i, j) + t · ray; // step along the ray 

intVal = Interpolate(V, sampleLoc);

sum += intVal · stepSize; // add interpolated value to X-ray sum 

I(i, j) = sum;

NormalizeImage(I);
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Putting It All Together: MIP Rendering Algorithm

RenderMIP(Volume V, int stepSize, Image I)

if (projectionMode == Orthographic)

ray = v × u / | v × u| // view direction vector is perpendicular to image plane 

for each image pixel (i, j)

P(i, j) = P(0, 0) + i · v · Δi + j · u · Δ j;

if (projectionMode == Perspective)

ray = (P(i, j) - eye) / | (P(i, j) - eye) | // the ray direction vector, normalized 

max = 0;

IntersectRayWithVolumeBoundingBox(V, ray, t_front, t_back);

for(t = t_front; t <= t_back; t += stepSize) // traverse the volume front to back 

sampleLoc = P(i, j) + t · ray // step along the ray 

intVal = Interpolate(V, sampleLoc);

if(intVal > max)

max = intVal;

I(i, j) = max;
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Image Plane and Projection

65

• u and v vectors

• Initially, set u = (1,0,0), v = (0,1,0)

• Viewing ray n = (0,0,-1)

• Center the volume over (0,0,0)

• Put the center of the image plane at (0,0,k) where k is at least ½ the 

depth of the volume



Cross-Product Confusion

66

• The ray direction, n, is, in general, given by the normalized cross-

product of v and u:
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Ray-Casting & Interpolation Demo

• Let’s see an example of ray-casting and interpolation for a 

particular ray through a volumetric raster

• We’ll use parallel projection

• First we’ll use nearest-neighbor interpolation and then trilinear 

interpolation
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n

v

u

P(0,0)
P(4,1)

Orthographic (parallel) projection:

Finding the starting point of the ray

P(0,0): origin of image plane

P(4,1): image pixel at i=4, j=1



69

n

v

u

P(0,0)

(4,1) (0,0) 4 1P P u v    

P(4,1)

Orthographic (parallel) projection:

Finding the starting point of the ray

P(0,0): origin of image plane

P(4,1): image pixel at i=4, j=1
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n
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u
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(4,1) (0,0) 4 1

(4,1)[0] (0,0)[0] [0] [0]

(4,1)[1] (0,0)[1] 4 [1] 1 [1]
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P(4,1)

Orthographic (parallel) projection:

Finding the starting point of the ray

P(0,0): origin of image plane

P(4,1): image pixel at i=4, j=1

(places image plane 

into world space with 

the volume)
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P(0,0)

n

v

u

(6) (4,1) 6Q P n  

P(4,1)

Orthographic (parallel) projection:

Casting the ray

P(0,0): origin of image plane

P(4,1): image pixel at i=4, j=1

Q(6): ray sample point at k=6

Q(6)
nnn

n
n

n
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P(0,0)
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Orthographic (parallel) projection:

Casting the ray

P(0,0): origin of image plane

P(4,1): image pixel at i=4, j=1

Q(6): ray sample point at k=6
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P(0,0)

n
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P(4,1)

Orthographic (parallel) projection:

Casting the ray

P(0,0): origin of image plane

P(4,1): image pixel at i=4, j=1

Q(6): ray sample point at k=6

Q(6)
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P(0,0)

n

v

u

Orthographic (parallel) projection:

Interpolation

P(0,0): origin of image plane

P(4,1): image pixel at i=4, j=1

Q(6): ray sample point at k=6

Q(6)
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Orthographic (parallel) projection:

Interpolation
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Orthographic (parallel) projection:

Nearest Neighbor Interpolation

Q(6)
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Orthographic (parallel) projection:

Nearest Neighbor Interpolation
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Orthographic (parallel) projection:

Nearest Neighbor Interpolation

Q(6)

x

y

z

4

2

23

 
 
 
  

5

2

23

 
 
 
  

5

3

22

 
 
 
  

4.3

2.6

22.7

 
 
 
  

20 24

30

10

32

8

43
13

( (6)) ( ( (6))

(4.3) 4

( (6)) ( (6)) (2.6) 3

(22.7) 23

4

( (6)) 3

23

Val Q Val NearestNeighbor Q

Round

NearestNeighbor Q Round Q Round

Round

Val Q Val



   
   

     
   
   

 
 

  
 
 



79

Orthographic (parallel) projection:

Nearest Neighbor Interpolation
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Orthographic (parallel) projection:

Trilinear Interpolation
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Orthographic (parallel) projection:

Trilinear Interpolation

Q(6)
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Orthographic (parallel) projection:

Trilinear Interpolation
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Orthographic (parallel) projection:

Trilinear Interpolation

Q(6)

x

y

z

4

2

23

 
 
 
  

5

2

23

 
 
 
  

5

3

22

 
 
 
  4.3

2.6

22.7

 
 
 
  

20 24

30

10

32

8

43
13

(6)[0] ( (6)[0]) 4.3 4 0.3uu Q trunc Q

vv

ww

    





uu

vv

ww



84

Orthographic (parallel) projection:

Trilinear Interpolation
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Orthographic (parallel) projection:

Trilinear Interpolation
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Orthographic (parallel) projection:

Trilinear Interpolation

Q(6)

x

y

z

4

2

23

 
 
 
  

5

2

23

 
 
 
  

5

3

22

 
 
 
  4.3

2.6

22.7

 
 
 
  

20 24

30

10

32

8

43
13

(6)[0] ( (6)[0]) 4.3 4 0.3

(6)[1] ( (6)[1]) 2.6 2 0.6

uu Q trunc Q

vv Q trunc Q

ww

    

    



uu

vv

ww



87

Orthographic (parallel) projection:

Trilinear Interpolation
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Orthographic (parallel) projection:

Trilinear Interpolation
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Orthographic (parallel) projection:

Trilinear Interpolation
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Orthographic (parallel) projection:

Trilinear Interpolation
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Orthographic (parallel) projection:

1st linear interpolation: along x

Q(6)
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x

Q(6)
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x

Q(6)
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x
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Orthographic (parallel) projection:

1st linear interpolation: along x

Q(6)
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Orthographic (parallel) projection:

2nd linear interpolation: along y

Q(6)
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Orthographic (parallel) projection:

2nd linear interpolation: along y

Q(6)
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Orthographic (parallel) projection:

2nd linear interpolation: along y

Q(6)
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Orthographic (parallel) projection:

2nd linear interpolation: along y

Q(6)
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Orthographic (parallel) projection:

2nd linear interpolation: along y

Q(6)
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Orthographic (parallel) projection:

2nd linear interpolation: along y

Q(6)
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Orthographic (parallel) projection:

2nd linear interpolation: along y

Q(6)
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Orthographic (parallel) projection:

3rd linear interpolation: along z
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Orthographic (parallel) projection:

3rd linear interpolation: along z
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Orthographic (parallel) projection:

3rd linear interpolation: along z
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Orthographic (parallel) projection:

3rd linear interpolation: along z
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