
1

How Do We Add Color?

• We learned earlier in the term that color plays a vital role in visualization

• The skull in the right image was colored white, the skin a transparent orange

color

• Where did these colors come from?

• The input is just a grayscale, 8-bit volume,

after all

• Also, what happened to all the blood vessels,

muscles, and other biological structures? They

seem to have disappeared, but we know they

were in the original data-set

• Evidently there was some sort of mapping of

density to color and opacity

• Skull → white

• Skin → transparent orange

• Flesh → 100% transparent (0% opacity)

2

Classification

• So, in general, a voxel stores some density value

• This density can have many meanings, depending on the origin of the dataset:

– stress, strain, temperature (finite element applications, numerical simulations)

– X-ray absorption of a material (computed tomography (CT))

– magnetic spin relaxation property of a material (MRI)

– a material tag (voxelization)

• We would like to give certain aspects of the dataset meaningful visual attributes,

such as colors

• For this purpose, the raw values have to be translated into colors and attenuation

properties (opacity)

• These assignments are made based on the

voxel’s material

• This assignment process is formally

called classification

3

Classification

• Classification is the task of assigning

an (R,G,B,A) tuple to an 8-bit density

• But how do we do this?

• We use a set of four transfer functions

that map density to R, G, B and A

• In X-ray rendering, each interpolated sample along the ray was

assigned the same weight; all we did was add them up

• Now we will let the user decide how much each density level will

contribute to the final image

• Example: if we want to visualize high densities (e.g., bone), we

would assign a high opacity to such densities, and assign lower

opacities or even zero opacity (full translucency) to lower densities

• Let’s see an example

4

Classification

• In simple cases (such as CT), each material has a characteristic raw density range

• Some datasets (for example MRI) do not have unique density-material correspondences

• These require more sophisticated segmentation methods (seed growing, clustering)

segmentation render

5

Transfer Functions

• Think of the volume as a transparent gel that we are looking through

• With X-ray rendering, each sample along the rays are assigned the same

importance, in some sense

• Low densities contribute to the final image as much as high densities

• Transfer functions allow us to change the relative contributions of densities

• So, if we wanted to make high densities contribute more (e.g., to see bone), we

should assign higher importance to those densities

• In volume rendering, this importance is assigned by the opacity

• So, if we want to view bone, we assign high opacity to densities corresponding to

bone

• As the viewing rays traverse the volume, the system

will use those opacities (and colors) to modulate the

pixel value accordingly

• So even though the bone was given high opacity, since

the skin was assigned non-zero opacity and the color

orange, the skull has an orange cast to it

6

Transfer Functions

7

Transfer Functions

• Notice how transfer functions are similar to intensity transformations

• In both cases, the input is density (or intensity)

• For intensity transformations, the output is also intensity

• For transfer functions, the output is either color or opacity

• Unlike in X-ray rendering, can now assign arbitrary, non-negative weights to

voxels and generate interesting effects

• Interpolate density then assign color

• So what happens when our viewing ray accumulates full opacity (1.0)?

• In other words, it could happen that half-way through

traversing the volume, a ray hits full opacity

• What this means is every other sample we encounter

along the ray will be occluded by the opaque structures

in front that we have already processed

• This is why we can’t see the back side of the skull

• Early ray termination optimization

8

Transfer Function Design Galleries

• Transfer functions are somewhat
unintuitive to use at times

• Remember our motivation for
histogram equalization?

• That gave us an automatic process

• Unfortunately, there is no such
automatic process for transfer function
generation because of the wide variety
of volumetric data-sets and the wide
range of features people wish to
visualize from data-sets

• But, there is one way in which a
computer can help us: so-called
transfer function design galleries

• A set of randomly-generated transfer
functions that the system mutates
(based on user input) to generate a new
gallery

9

Transfer Function Design Galleries

10

Visible Male Visualization

• Let’s see a movie of transfer functions being used at real time to

visualize the visible male data-set (6)

• Watch the bottom of the two graphs, which shows the α transfer

function

11

Segmentation

• Related to the task of classification is

segmentation, the process of

extracting features from a data-set

• Basically, segmentation assigns a

material label to each voxel in a data-

set

• e.g., a voxel value of 100 might

indicate that a particular voxel is

muscle, but which muscle? Does a

density of 200 indicate a tooth or the

jaw in which the tooth is located?

• Classification can’t answer these

questions

• Segmentation – done manually or

with some algorithm – partitions a

data-set into logical pieces

12

Segmentation

• Segmentation is, in general, an extremely difficult and potentially time-
consuming process

• There is no single segmentation algorithm that can solve all or even most
segmentation problems

• Almost without exception, a certain level of human intervention is needed at
some point during execution

• Numerous algorithms for each particular application

• Can you think of some reasons why there is no single, really good way of
segmenting data? After all, classification, despite its faults, is actually a pretty
solution to the problem it addresses (assigning color to voxels)

• Consider the many domains in which volume rendering is used

• Many sources of data

• Many, many differences in the underlying structures of data

• Just look at the human body, especially the abdomen and all the organs and
complex structures (branching lungs/blood vessels, tubular gastrointestinal tract,
etc.)

• Movie of brain tumor segmentation (4)

How About Shading

13

• We haven’t seen yet how to employ
shading with volume rendering to make
objects look 3D

• In fact, we aren’t required to shade our
volumetric objects, but it sure helps in
revealing structure

• The lobsters on the right are not shaded

• Note that we can distinguish different
materials, but it’s hard to discern 3D shape

• So, we can use transfer functions in
volume rendering and omit shading, but
let’s take a look at how we can incorporate
shading into volume rendering

• Let’s look at some traditional computer
graphics shading techniques and extend
them to volumetric ray-casting

Illumination and Shading

14

• Now we’ll look at how to shade surfaces to make them look 3D

• We’ll see different shading models, or frameworks that determine a surface’s
color at a particular point

• These shading models can be easily modified
to incorporate illumination and shading into
the volume rendering pipeline

• A shading model checks what the lighting
conditions are and then figures out what the
surface should look like based on the lighting
conditions and the surface parameters:

• Amount of light reflected
(and which color(s))

• Amount of light absorbed

• Amount of light transmitted
(passed through)

• Thus, we can characterize a surface’s shading
parameters by how much incoming light that
strikes a surface is reflected to the eye, absorbed by the object, and transmitted

Reflected Light

15

• Typically in computer graphics, unless

we are trying to create effects like

refraction, diffraction and

translucency, we are mostly concerned

with the reflected light – that light

which bounces off the object and

enters the eye (camera, really)

• We’ll use equations to make it easy to

compare one shading model to another

Ambient Reflection

16

• Ambient reflection refers to reflected light that
originally came from the “background” and has
no clear source

• Models general level of brightness in the scene

• Accounts for light effects that are difficult to
compute (secondary diffuse reflections, etc)

• Constant for all surfaces of a particular object
and the directions it is viewed from

• Directionless light

• One of many hacks or kludges used in computer
graphics since every ray of light or photon has
to come from somewhere!

• Imagine yourself standing in a room with the curtains drawn and the lights off

• Some sunlight will still get through, but it will have bounced off many objects
before entering the room

• When an object reflect this kind of light, we call it ambient reflection

• Ia = ka · IA IA = ambient light ka = material’s ambient reflection coefficient

Ambient-lit sphere

Diffuse Reflection

17

• Models dullness, roughness of a surface

• Equal light scattering in all directions

• For example, chalk is a diffuse reflector

• Unlike ambient reflection, diffuse reflection is
dependent on the location of the light relative to
the object

• So, if we were to move the light from the front of
the sphere to the back, there would be little or no
diffuse reflection visible on the near side of the
sphere

• Compare with ambient light, which has no
direction

• With ambient, it doesn’t matter where we position
the camera since the light source has no true
position

• Computer graphics purists don’t use ambient lights
and instead rely on diffuse light sources to give
some minimal light to a scene

Ambient & diffuse

Diffuse only

Diffuse Reflection

18

• Diffuse reflection is also called Lambertian reflection

• Lambertian cosine law:

Id = kd IL cos φ = kd IL N·L

• IL: intensity of light source

• N: surface normal vector

• L: light vector (unit length)

• φ: angle of light incidence

• kd: diffuse reflection coefficient
(material constant)

• Note: Id = 0 for N·L < 0

• What does this inequality mean intuitively?

dot product: (Nx · Lx + Ny · Ly + Nz · Lz)

222)()()('

'
,

'
,

'

zzyyxx

zzyyxx

PLightPLightPLightL

L

PLight

L

PLight

L

PLight

PLight

PLight
L










 







Specular Reflection

19

• Models reflections on shiny surfaces

(polished metal, chrome, plastics, etc.)

• Specular reflection is view-dependent – the

specular highlight will change as the

camera’s position changes

• This implies we need to take into account

not only the angle the light source makes

with the surface, but the angle the viewing

ray makes with the surface

• Example: the image you perceive in a mirror

changes as you move around

• Example: the chrome on your car shines in

different ways depending on where you

stand to look at it

Specular Reflection

20

Specular & diffuse & ambient Specular & diffuse

Specular & ambient Specular only

21

• Ideal specular reflector (perfect mirror)

reflects light only along reflection vector R

• Non-ideal reflectors reflect light in a lobe

centered about R

• Phong specular reflection model:

Is = ks IL (cos α)ns = ks IL (E·R)ns

• cos(α) models this lobe effect

• The width of the lobe is modeled by Phong

exponent ns, it scales cos(α)

• IL: intensity of light source

• L: light vector

• R: reflection vector = 2 N (N·L) - L

• E: eye vector = (Eye-P) / |Eye-P|

• α: angle between E and R

• ns: Phong exponent

• ks: specular reflection coefficient

increasing ns value

Total Reflected Light

22

• Total reflected light (for a white object):

• Multiple light sources:

• Usually, I is a color vector of RGB

• Object has color Cobj = (Robj, Gobj, Bobj)

• Object reflects I, modulated by Cobj

• Color C reflected by object:

• In many applications, the specular color is not modulated by object color

– specular highlight has the color of the light source

• ks, kd, ka in [0.0, 1.0]

• R,G,B in [0.0, 1.0]. Remapped to [0, 255] for display

• See Foley chapter 16 for the various formulae and computations

ns

LsLdAa R)(EIkLNIkIkI 

 
i

iiii))R(EIkLNI(kIkI ns

sdAa

  
i i

iiii))R(EIk())LNI(kI(kCC ns

sdAaobj

Other Shading and Illumination Concepts/Effects

23

• Area lights

• Shadows

• Refraction

• Reflection

• Caustics

• Color bleeding

• Radiosity

• Camera effects

• …and many, many more!

• Most fall under the general area of global illumination, which is capable of
generating all those photorealistic images you see in movies and special effects

• Most require the use of ray-tracing, rather than ray-casting, and radiosity

• Want to try it yourself? Go to www.povray.org and try out the free POV-Ray
surface ray-tracing program

• Later in the term we may have time to see how these sophisticated effects can be
generalized and used in volume visualization

http://www.povray.org/

Shadows

24

• Hard shadows and soft shadows

• Hard shadows: caused by very distance

light sources, like the sun

• Soft shadows: caused by close light sources,

usually area light sources, like light bulbs

• Different techniques for generating

shadows

• Depend on whether we are using traditional

graphics rendering techniques or ray-tracing

• Ray-tracing techniques often

employ shadow volumes

• Cast rays from light source

to the object: occluded objects

lie in a volumetric region of

space that is in shadow

Global Illumination for Volume Visualization

25

Integrating Shading Model with Volume Visualization

26

• All of these shading models can be adapted

to generate very effective volume renderings

• In polygon rendering, we compute the

shading information for each vertex or pixel

• In volume rendering, we perform the shading

calculations for each voxel

• But what about the normal vectors?

• We can assign a direction at each voxel using

the voxel’s gradient, which is the indication

of greatest change of the dataset

• Let’s look at what the gradient is and how to

compute it

What is the Gradient

27

• Gradient is a vector that measures how quickly

voxel intensities in a data set change

• Evaluated at some 3D point in space

• Useful for revealing certain characteristics about

the data set

• Consider the engine with the two different types

of metal of differing densities

• The gradient will be high at those voxels at the

boundary where the two metals meet

• In regions where the material is constant, the

gradient is zero because there is no change

• Hence, gradient is the vector of first derivatives

in the x, y and z directions

X

low or zero gradient

Gradient Definition

28

• Let’s define a function f (x,y,z) that returns the value of the data-set

at the given position

• If (x,y,z) lies on the grid, then we just return its value

• Otherwise, interpolate the value

• The gradient is therefore:



























dz

df

dy

df

dx

df

zyxf),,(

Gradient Interpolation

29

• As we march along the ray, we interpolate
the densities in order to assign colors to
samples

• We can also interpolate the gradients

• At the start of the algorithm, we compute
the gradient at each voxel

• During ray traversal, we employ trilinear
interpolation to estimate the gradient at the
sample position

• Note that gradient is invariant of the
illumination model, light positions, etc.

• Like the densities, the gradients are
intrinsic attributes of the models

• In contrast, colors and opacities can be
changed at run-time since they are actually
not part of the data

• Later we will look at compositing
more closely to see exactly how we
mathematically accumulate colors
and opacities, and how shading is
incorporated

Gradient Magnitude

30

• The gradient gives both the direction and magnitude of the rate of change in the

intensities

• Sometimes we need only the magnitude, sometimes just the direction, sometimes

we need both

• It depends on the volume rendering algorithm we are using and which stage of

the algorithm we are currently executing

• Gradient magnitude:

222

),,(



























dz

df

dy

df

dx

df
zyxf

Same direction, different magnitude Same magnitude, different direction

Gradient Computation

31

• In calculus, often we can calculate the gradient analytically because we are given
a continuous function

• 99% of the time in volume visualization we are dealing with discrete data, so we
need to estimate the gradient somehow

• The most popular technique is called central differences

• The central difference gradient operator at point (x,y,z) is defined as
Dx = f (x-1, y, z) – f (x+1, y, z)
Dy = f (x, y-1, z) – f (x, y+1, z)
Dz = f (x, y, z-1) – f (x, y ,z+1)

• The gradient at (x,y,z) is therefore: D(x,y,z) = [Dx Dy Dz]
T

• Note that sometimes we normalize the gradient by dividing it by its length to
generate a unit vector: D/|D|

• Our decision to normalize the gradient depends on our reason for computing the
gradient in the first place

• Throughout future discussion it will be clear when we are using the normalized
or un-normalized gradient

Why Volumetric Shading (What’s the Point)?

32

• The gradient allows us to assign a direction

vector to each voxel

• This (normalized) vector is used just like the

normal vector in surface graphics

• It will modulate the color we assign to samples

and thereby allow us to create 3D effects

• Look at the skull on the right

• It looks 3D because we have incorporated diffuse

reflection into the illumination model

• The light source is in front of the volume, which

causes the top and sides of the skull to look

rounded, which they are!

• Voxels whose gradient vectors make a large

angle with the light ray appear darker

Volumetric Shading

33

• Volumetric shading is useful not only

for viewing surfaces implied by the

data (e.g., skull/skin boundary), but

also for semitransparent renderings,

especially when combined with good

R, G, B, A transfer functions

• Compare:

Volumetric Shading

34

• When we looked at X-ray and maximum

intensity projection, we learned about

compositing, which is the process for

accumulating data along the viewing rays

• But how do we incorporate color, opacity

and shading information?

• First we interpolate the density at a given

sample position

• Then we assign a color and opacity to

each the sample, and shade using the

interpolated gradient

• When we shoot the rays through the

volume, we have to blend all these

samples together, …

34

• We’ll see how this is done in the near

future

Handling Ambient and Diffuse Shading

35

• You should be capable of implementing ambient and diffuse

shading for a single light source

• Extra credit to implement Phong shading terms

• The normal vector N is replaced by the estimated gradient D

• Make sure you remember to normalize the gradients for the shading

computations or else the volumes will come out either much darker

or much brighter than you expect

• The dot product (N · L) should be between [-1, +1]

• What if it’s 0? What does that mean?

• How about if it’s negative? What should you do in this situation?

L)NIkI(kCC LdAaobj 

More Volume Shading Examples

36

Summary So Far

37

• Density and gradient interpolation

• Color specification via transfer functions

• Shading and illumination models

• Q: How do we put this all together?

• A: Compositing.

• Compositing is what will enable us to shoot the viewing rays

through the volume, accumulating color and opacity as we go, in

order to generate the final rendered image

Compositing Overview

38

Compositing

39

• Recall the continuous and discretized forms of the X-ray integral:

• Compositing (i.e., accumulation of densities) was simply the
addition of interpolated densities along the ray

• In essence, each sample was assigned the same opacity

• We know now that in general volume rendering, we can use transfer
functions to assign opacities and colors as desired

• Compositing in general is a more sophisticated process, which we
need to investigate carefully

• Without a proper formulation for accumulating colors and opacities,
our rendered images won’t turn out as we expect







tL

k
jijiji trtkPfI

/

0
,,,)(

dtrtPfI ji

L

jiji)(,
0

,,  

Compositing

40

• More specifically, compositing is the accumulation of colors weighted by
opacities; we weight by opacity in order to support semitransparent rendering

• Suppose we had two images we wanted to composite (blend) together

• Colors and opacities of back pixels are attenuated by opacities of front pixels:

rgbnew = RGBback · αback (1 - αfront) + RGBfront · αback

αnew = αback · (1 - αfront) + αfront

• By combining terms for efficiency we get:

rgbback = RGBback · αback

rgbfront = RGBfront · αfront

two recursive equations that can be used to
composite any number of objects front-to-back:

rgbnew_front = rgbback · (1 - αfront) + rgbfront

αnew_front = αback · (1 - αfront) + αfront

• Volume rendering uses this recursive expression
to combine (=composite) the samples taken along the ray

• You can see why opacity plays such an important role in this process

(RGBα)front

(RGBα)back

composite

front

image back

image

Compositing Example

41

composite

Area 1:

{r, g, b}front = {0.0, 0.0, 0.0}

{r, g, b}back = {1.0, 0.0, 0.0}

{r, g, b}new_front =

{1.0 (1 - 0.0) + 0.0,

0.0 (1 - 0.0) + 1.0,

0.0 (1 - 0.0) + 0.0}

= {1.0, 0.0, 0.0}

αnew_front = 1.0 (1 - 0.0) + 0.0 = 1.0 = αback

Area 2:

{r, g, b}front = {0.0, 0.5, 0.0}

{r, g, b}back = {1.0, 0.0, 0.0}

{r, g, b}new_front =

{1.0 (1 - 0.5) + 0.0,

0.0 (1 - 0.5) + 1.0,

0.0 (1 - 0.5) + 0.0}

= {0.5, 0.5, 0.0}

αnew_front = 1.0 (1 - 0.5) + 0.5 = 1.0

rgbnew_front = rgbback (1 - αfront) + rgbfront

αnew_front = αback (1 - αfront) + αfront

Ray Casting Integral

42

• We’ve looked at particular ray casting integrals: for X-ray rendering, and MIP

rendering

• These are special cases of the general ray casting integral, which incorporates

user-defined color, opacity and shading information

• The general ray casting integral is:

• I(a,b) is the intensity (not exactly color) of one pixel

• ds is the direction of the ray

• The ray runs from a to b

• g(s) is the source term (describes the illumination model)

• τ(x) is the extinction coefficient that describes the rate that light is occluded per

unit length due to scattering or extinction of light (i.e., voxel transparency)

• g(s) incorporates the color transfer functions, τ(x) incorporates the opacity

transfer function

dsesgbaI
s
a

dxsb

a




)(

)(),(


Integral Discretization

43

• In order to evaluate any definite integral in a

computer, we need to discretize it

• One popular technique is to use a Riemann sum:

• Step size is Δx, and we assume the value inside

an interval is constant

• Suppose we have computed the color and opacity

on one ray at discrete sample points

• The discrete ray integral becomes:

• Ii is the total light emitted (intensity) of a point at

position i on the ray

• Tj is the transparency (1 – opacity or 1 – α)

  


d
n

i
i xxhdxxh

0
0

)()(

 






n

i

i

j
jj TIbaI

0

1

0

),(

Compositing

44

• Intuitively, the equation tells us that the total intensity I accumulated on one ray

at the current sample point is the intensity Ii multiplied with all the transparencies

(1 – αj) encountered so far on the ray

• Thus, Ii is weighted by all preceding sample points

• The intensity is not the color,

but rather the color times opacity

at the sample point: Ii = Ci • αi

• This is not the only way to define

intensity, but it is the most common

• The colors are determined using

the transfer functions and modulated

using the illumination model, if any

• So we composite samples that have

been both classified and shaded

 






n

i

i

j
jj TIbaI

0

1

0

),(

Compositing Implementation

45

Trans = 1.0;

Inten = I[0]; // I[0..n] stores the intensities of the sample points

for (i = 1; i <= n; i++)

{

Trans = Trans * T[i-1]; // T[0..n] stores sample point transparencies

Inten = Inten + Trans * I[i];

}

• We should break the loop when Trans equals zero or gets very close. This is the

same as saying we should stop when opacity hits almost 1.0

• This optimization is called early ray termination

• Remember that intensity is color times opacity

 






n

i

i

j
jj TIbaI

0

1

0

),(

Full Volume Rendering

46

• We have looked a number of tasks:

• Interpolation

• Classification

• Shading

• Compositing

• In volume rendering, we will use them in the following algorithm:

• Along each viewing ray:

1. Interpolate density at current ray position

2. Classify interpolated density to assign color and opacity

3. Shade interpolated density to modulate color, depending on the shading and

illumination parameters/model

4. Composite the classified and shaded sample

5. Advance ray to the next interpolated position and go to step 1

• We stop when the accumulated opacity reaches 1.0 on the ray

Full Volume Rendering

47

interpolate

sample
classify shade composite

advance

ray

write

pixel
start

ray

for all rays:

density

volume

output

image

Full Volume Rendering: Algorithm for Orthographic

Viewing

48

FullVolRenOrtho(Volume V, int stepSize, Image I)

ray = u x v / | u x v| // vector perpendicular to camera plane

for each image pixel i, j

P(i, j) = P(0, 0) + i · v + j · u; // the location of image pixel (i, j) in world (volume) space

{r, g, b} = 0, α = 0; // initialize red, green, blue color and opacity α to 0

for (t = t_front; t <= t_back; t += stepSize) // traverse the volume front to back

sampleLoc = P(i, j) + t · stepSize · ray; // step along the ray

intVal = Interpolate(V, sampleLoc);

if (AlphaTransFunc(intVal) > 0.05) // only do work for non-transparent samples

gradVec = ComputeGradientVector(V, sampleLoc);

{R,G,B}=Shade(gradVec, lightSource, eye, sampleLoc, {R,G,B}TransFunc(intVal));

{r, g, b}=AlphaTransFunc(intVal) · {R,G,B} · (1 - α) + {r, g, b}; // composite color

α = AlphaTransFunc(intVal) · (1 - α) + α; // composite opacity

if (α > 0.95) // everything further is hidden and can’t be seen, so stop the ray

I(i, j) = {r, g, b}; break; // write color to image pixel and go to next pixel

Full Volume Rendering: Algorithm for Perspective

Viewing

49

FullVolRenPersp(Volume V, int stepSize, Image I)

for each image pixel i, j

ray = (P(i, j) - eye) / | (P(i, j) - eye) | // the ray direction vector, normalized

P(i, j) = P(0, 0) + i · v + j · u; // the location of image pixel (i, j) in world (volume) space

{r, g, b} = 0, α = 0; // initialize red, green, blue color and opacity α to 0

for (t = t_front; t <= t_back; t += stepSize) // traverse the volume front to back

sampleLoc = P(i, j) + t · stepSize · ray; // step along the ray

intVal = Interpolate(V, sampleLoc);

if (AlphaTransFunc(intVal) > 0.05) // only do work for non-transparent samples

gradVec = ComputeGradientVector(V, sampleLoc)

{R,G,B}=Shade(gradVec, lightSource, eye, sampleLoc, {R,G,B}TransFunc(intVal));

{r, g, b}=AlphaTransFunc(intVal) · {R,G,B} · (1 - α) + {r, g, b}; // composite color

α = AlphaTransFunc(intVal) · (1 - α) + α; // composite opacity

if (α > 0.95) // everything further is hidden and can’t be seen, so stop the ray

I(i, j) = {r, g, b}; break; // write color to image pixel and go to next pixel

Full Volume Rendering

50

• This volume rendering framework is known as the post-shaded pipeline

• Classification and shading are performed after interpolation and sampling

interpolate

sample
classify shade composite

advance

ray

write

pixel
start

ray

for all rays:

density

volume

output

image

Pre-shaded Pipeline

51

• The other possibility is to perform interpolation after classification and shading

• This is known as the pre-shaded pipeline

interpolate

sample
classify shade

composite

advance

ray

write

pixel
start

ray

for all rays:

density

volume

output

image

for all voxels:

color volume

opacity volume

Which one is Better: Pre vs Post-Shading?

52

• Pre-shading is potentially faster because we can classify and shade

all voxels before ray casting starts and then just interpolate the

colors along the rays at sample positions

• With post-shading, we perform the classification during ray-

traversal, which is more expensive

• However, pre-shading introduces blurring artifacts

pre-shaded post-shaded

What Causes the Blurring?

53

(i.e., iso-surface rendering)

