Iso-Surface Rendering

» A closed surface separates ‘outside’ from ‘inside’ (Jordan theorem)

« Iniso-surface rendering we say that all voxels with values > some threshold are ‘inside’,
and the others are ‘outside’

» The boundary between ‘outside’ and ‘inside’ is the iso-surface
« All voxels near the iso-surface have a value close to the iso-threshold or iso-value
« Example:

iso-boundary

cross-section of a smooth sphere 1so-value = 50 1so-value = 200
will render a large sphere  will render a small sphere
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Iso-Surface Rendering

« To render an iso-surface we cast the rays as usual...
« But we stop once we have interpolated a value iso-threshold

A Opacity o
@  voxel value = iso-threshold
1.0+ —
(O voxel value < iso-threshold
/ T stop here /‘ derTsity
ray iso-value

« The easiest way to select the iso-surface is with the transfer function for o

« We would like to illuminate (shade) the iso-surface based on its orientation to the
light source

 Recall that we need a normal vector for shading
« The normal vector N is the local gradient, normalized
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Iso-Surfacing Example

Foot of the Visible Woman

1so-value = 30 1so-value = 80 1so-value = 200
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Different Iso-Levels

« Same data-sets, different
extracted 1so-surfaces

* Note that like all surfaces, the
interior of the foot 1s “empty”
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Surface Rendering with Polygons

* \We have looked at several direct rendering algorithms for volume
visualization

 Process volume itself with no conversion to other formats
« Speed and efficiency issues for software-based ray-casting
« Much of splatting can be implemented with commodity hardware

« Modern graphics hardware is all triangle-based since much of
computer graphics is still surface-only

« Most applications require only surface rendering

« Today we will see algorithms for exploiting triangle-rendering
hardware for volume visualization
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Motivations for Iso-surface Polygonization

« Take advantage of surface graphics technigues
« Exploit inexpensive, yet powerful graphics hardware
« Use OpenGL (DirectX, etc.) to specify shading parameters

* Incorporate polygonized surfaces into other polygon-based software
systems easily

« Familiar object representation format used widely across graphics
and visualization

« Use object-order polygon mesh projection algorithms for rendering
(described next)
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Polygon Mesh Definitions

vl

el

V2

nl

« Rule: if all edge vectors in a face are
ordered counterclockwise, then the
face normal vectors will always point
towards the outside of the object.

« This enables quick removal of back-
faces (back-faces are the faces hidden
from the viewer):
back-face condition: vp *n >0

STONY BROOK
UNIVERSITY

vl, v2. v3: vertices (3D coordinates)
el, e2, e3: edges

el=v2-vl and e2=v3-v2
f1: polygon or face

el xe2

nl: face normal nl = —
le1 x e2|

view pl

nl

nl = ell xel2
lellxel2]
N .99
n2 = L e2]l =-el2
- |€21 xe22|’ -
ane (screen)

ell

backface

n4

n2

view vector vp




Polygon Mesh Data Structure

o Vertex list (v1, v2, v3, v4, ...):
— (x1,vy1, z1), (X2, y2, z2), (X3, y3, 23), (x4, y4, z4), ....

« Edge list (el, e2, e3, e4, e5, ...):
— (vl,v2), (v2,v3), (v3,Vvl), (v1,v4), (v4,Vv2), ...

« Face list (f1, 2, ...):
— (el, e2,e3), (e4, e5, -el), ... or
— (v1,v2,v3), (v1, v4,Vv2), ... &

« Normal list (n1, n2, ...), one per face or per vertex
— (n1x, nly, nl1z), (n2x, n2y, n2z), ...

« Use pointers or indices into vertex and edge list arrays, when appropriate
« Winged-edge / quad-edge / half-edge data structures
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Hypothetical Polygonal Data Structure

 Your application determines which data you should store in order to
maximize the cost/benefit of memory usage & computation time.

Vertex
List of adjacent edges
List of adjacent triangles

Edge
Pair of end-points
Pair of adjacent triangles (or one triangle if on the boundary)

Triangle
Ordered list of edges
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Polygon Shading Methods — Flat Shading

* How are the pixel colors determined?
» The simplest method is flat or faceted shading:
« Each polygon has a constant color

« Compute color at one point on the polygon (e.g., at center) and use
everywhere

« Assumption: light source and eye are far away, i.e., N-L = const.
» Problem: discontinuities are likely to appear at face boundaries
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Polygon Shading Methods — Gouraud Shading

« Colors are averaged across polygons along common edges — no more

discontinuities

Steps:

Determine average unit normal at each poly vertex: N,
n: number of faces that have vertex v in common
Apply illumination model at each poly vertex — C,
Linearly interpolate vertex colors across edges

Linearly interpolate edge colors across scan lines

« Downside: may miss specular highlights at off-vertex
positions or distort specular highlights

Al A
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Polygon Shading Methods — Phong Shading

«  Phong shading linearly interpolates normal vectors, not colors — more realistic
specular highlights

Steps:

Determine average normal at each vertex

Linearly interpolate normals across edges

Linearly interpolate normals across scanlines

Apply illumination model at each pixel to calculate pixel color

« Downside: need more calculations since need to do illumination model at each
pixel

I
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Rendering Polygonal Objects — Hidden Surface Removal

« \We have removed all faces that are definitely hidden: the back-faces
« But even the surviving faces are only potentially visible
» They may be obscured by faces closer to the viewer

« Face A of object 1 is partially
obscured by face B of object 2 obj 1

* Problem of identifying those face A
portions that are visible is called G

b o o P

the hidden surface problem B
e Solutions: screen

— Pre-ordering of the faces and subdivision into their visible parts
before display (expensive)

— The z-buffer algorithm (cheap, fast, implementable in hardware)

obj 2
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Overview and Motivation

Algorithms extract surface of constant density (iso-surfaces) from
3D data and convert it into polygonal mesh

Divide-and-conguer algorithm

Process each row of voxels to build the triangulated surface in an
Incremental fashion

Use table to decide on a case-by-case basis how each cell (group of
8 voxels) i1s used to generate triangles

Normalized gradient will provide normal direction for the triangles
so we can shade the surface

Marching Cubes algorithm — developed in 1987, still very widely
used

Several enhancements since then, but fundamental algorithm
remains the same

STONY BROOK
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The Marching Cubes Polygonization Algorithm

« The Marching Cubes (MC) algorithm converts a volume into a polygonal model

« Allows us to render the iso-surfaces quickly and shade them using flat, Gouraud
or Phong shading (or others)

o Steps:
« Imagine all voxels above the iso-value are set to 1, all others are set to 0

« The goal is to find a polygonal surface that includes all 1-voxels and excludes all
0-voxels

« Look at one volume cell (a cube) at a time — hence the term Marching Cubes
« Hereare2of  possible configurations:

the reverse case:

1
1
|
9——;7@
-
-

only 1 voxel > iso-value  the polygon that separates 7 voxels > 1so-value
inside from outside the same polygon results
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Marching Cubes

One can identify 15 base cases and use
symmetry and reverses to get the other 241
cases

The exact position of the polygon vertex on a
cube edge is found by linear interpolation:

v, —is0
Vi =V,

Iso=v,-(1-u)+Vv,-Uu > U=

Now interpolate the vertex color by:

c, = uc, + (1 -u)c,

Interpolate the vertex normal by:

n; =ug, + (1-u)g,

g, and g, are the gradient vectors at v, and v,
obtained by central differencing

STONY BROOK
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Marching Cubes — Ambiguous Cases

« 2D: ambiguous case:

ﬂ

both versions are plausible

« 3D: what happens when cases are arbitrarily chosen: hole

case 3 case 6 (complementary) connected

» Remedy: add 6 alternative cases for
3,6,7,10, 12, 13 to prevent holes
Example: case 3¢
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Problem with Marching Cubes

 Sharp features, like corners and hard edges, tend to be smoothed
away by the Marching Cubes algorithm

 Finite grid — some details will be lost

« Continuous model discretized onto grid and Marching Cubes
applied:

STONY BROOK
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Model Conversion

« Suppose we wish to represent (convert) a surface model on a
volumetric raster (grid)

 Possible motivation: sculpting operations to modify the object
« This means we need to discretize the 3D geometric shape

« After we have finished our work, we need to convert the 3D
volume back to a surface model

 This can be done with Marching Cubes
« However, at what grid resolution do we store the shape?
 Certain features of the

surface will always be lost ’)‘

by the regular MC
algorithm

STONY BROOK
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Cause of the Problem

« When we discretize the object, at each voxel we store a distance of
the voxel from the object surface

« Hence, the volume i1s what we call a volumetric distance field that
approximates a smooth, continuou:

 Consider two neighboring grid
points (green) in the vicinity of
a sharp feature (corner) of the
contour S (red)

« Sampling the scalar valued distance function f at both grid points
(blue) and estimating the sample point by linear interpolation leads
to a bad estimation (black) of the true intersection point between the
red contour and the green cell edge
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How About Storing a Directed Distance?

« Suppose instead of just storing a scalar value at each voxel, we
store a vector that indicates the directed distance?

- |

« This is still not enough and we replace sharp corners and other
features with diagonal lines

=
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Scalar Distances vs. Directed Distances

 First image: original model
« Second image: discretized and MC applied to a scalar distance field
« Third image: discretized and MC applied to directed distance field

STONY BROOK
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Solution to Loss of Features Problem

« The solution to this problem involves use more information inferred by the data

« During discretization, we compute and store tangent vectors that we compute
using the surface normal

« These vectors basically tell you in what the direction(s) the surface is moving

« Then, when we are left with only the discrete grid, we extend these tangents into
the center of the cells to approximate the character of the surface inside the cell

« Where these tangents intersect, we create a feature point we use to polygonize the

surface
 Blue: original contour we discretized
 Red: extended tangents d L

« Vertex: feature point we will use
to build polygons

« Black: what directed distances would
have given us -+ = - T+
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Extended Marching Cubes

« Algorithm:

« If cell contains a sharp feature, determine if an edge feature (green)
or a corner feature (red) is present

« [f yes, apply the new technique for selecting vertex positions
« Otherwise, apply the normal Marching Cubes algorithm

STONY BROOK o5
UNIVERSITY



Application — Remeshing

« Remeshing of a polygonal mesh

» Generally speaking, skinny or sliver
triangles are bad

« Poor rendering quality
« Interfere with mechanical simulation

« Often too many triangles present to
represent the given object: wastes
computation time, memory, storage
space, etc.

« Extended MC algorithm takes
discretized version of original mesh
and extracts a new surface that has
fewer triangles and also higher
quality triangles
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Application — CSG

» Constructive Solid Geometry (CSG) is a shape design technique
» Objects defined as the addition and subtraction of other objects
« Typically difficult to achieve accurately over a discrete grid

« Usually we have to compute intersections between design primitives exactly
(spheres, cylinders, boxes, splines, etc.)

« \ery expensive process that involves root-finding

« Indiscrete grid, problem much simpler by
performing set inclusion/exclusion tests

« The extended Marching Cubes algorithms
makes CSG feasible on a discrete grid
because we can recover these intersected
regions almost exactly
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Marching Tetrahedra

« Another iso-surface extraction algorithm is
called Marching Tetrahedra

« Divide each cell into five tetrahedra
» Apply one of the three unique cases

« No ambiguity problem, as with Marching
Cubes

« Easier to implement . o001 o019
« But surface quality is usually not as good
since less information is taken into .

» Also generates more triangles than MC, the
latter of which might be able to generate a
single large triangle instead of several small
ones to cover the same surface area

o1
1001

consideration (four values used for "o 1000
interpolation instead of eight) %
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Use Volume Rendering to Handle Iso-surfaces

« \We saw earlier how we can use ray-casting to
render iso-surfaces by using an alpha transfer
function with a sharp drop-off

* Suppose we don’t have a ray-casting system .
available? / density

: _ _ 1so-value
« \We can instead use an 1so-surface extraction
algorithm to generate a polygonal
approximation of the iso-surface implied by the
volumetric data

 Pre-processing step, possibly slow

« User specifies the designed iso-level, and the
algorithm produces the corresponding
triangular iso-surface

A Opacity o
1.0+
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Gradient Modulation

* One use of the gradient is in a process known
as gradient modulation in which we modulate
the opacity/color of a voxel by the gradient

« First we look up the voxel’s opacity/color,
given by the transfer function

« Then we multiply the opacity and color by
some function of the gradient magnitude (also
given by a transfer function, #5)

« Regions of high gradient magnitude cause an
increase in opacity, whereas regions of low
gradient magnitude cause the opacity to drop
to near zero

« Remind us: what does a high magnitude
signify?
« How does this explain the image on the right?
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Iso-Surface Shading

 The normal vector is the normalized
gradient vector g

N =g/|g| (normal vector always has unit
length)

e Once the normal vector has been
calculated we shade the iso-surface at the
sample point

« The color so obtained is then written to

the pixel that is due to the ray

« Colors are computed using one of the
standard illlumination models

 Let’s see a short movie to see this in
practice (9)
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Iso-Surface Rendering — Algorithm (Perspective)

RenderlsoSurface(Volume V, int stepSize)
for each image pixel p(i, j)
ray = (p(i, j) - eye) /| (p(i, j) - eye) |; /] the ray direction vector, normalized
t = 0; // start at the eye point
do forever
sampleLoc = eye +t - stepSize - ray // step along the ray
int\Val = Interpolate(V, sampleLoc)
If opacityTransferFunction(intVal) > isoThreshold // found the iso-surface
Il interpolate 6 samples around sampleLoc and compute the gradient
gradVec = ComputeGradient\ector(V, sampleLoc);
I/ shade the surface using standard illumination model and color transfer functions
{r, g, b} = Shade(gradVec, lightSource, eye, sampleLoc, {R, G, B} TransFunc(intVal));
value(p(i, J)) = {r, g, b}; // write color into image pixel p(i, j)
break; // terminate this ray and go to next image pixel
t=t+ 1; // iso-surface not found yet, get ready to step to next sample point

STONY BROOK
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Iso-Surface Rendering — Tips and Tricks (1)

» Finding a good iso-value is not always easy

« Make a histogram of the volume densities and look for peaks (iso-value = onset
of peak)

skin
#voxels ‘muscle

histogram head dataset

density

« (Good shading requires good gradients around iso-surface

* Need smooth degradations at iso-surface for good
gradient estimation

» Else get aliasing >
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Iso-Surface Rendering — Tips and Tricks (2)

» Ray stepsize must be chosen sufficiently small

« Choose stepsize of less than or equal to 1.0 voxel units (or we may get aliasing in the ray
direction)

« But even for small stepsizes, we may never exactly hit the isosurface
« |so-surface goes through a cell when at least one vertex, but not all, has a density >

iIsoValue o—eo—e
« Compute exact location of the iso-surface within \ ® > isovalue
a cell by solving a cubic function int. Thisis __—% O—¢—@ O < isovalue
usually impractical. \\ isosurface
i k

O O

« Avariety of acceleration methods are possible:

« Enclose the object in a bounding box and start rays at the bounding box intersection
(works also for general volume rendering) | | |

« Store distance values in voxels outside
the object — this enables quick space leaping ——y T o
« Multi-resolution volume representation (octree) Nt d
(works also for general volume rendering) space leaping & B
L 5
6 _
N7
™~
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