Iso-Surface Rendering

- A closed surface separates ‘outside’ from ‘inside’ (Jordan theorem)
- In iso-surface rendering we say that all voxels with values > some threshold are ‘inside’, and the others are ‘outside’
- The boundary between ‘outside’ and ‘inside’ is the iso-surface
- All voxels near the iso-surface have a value close to the iso-threshold or iso-value
- Example:

 - Cross-section of a smooth sphere
 - Iso-boundary
 - Iso-value = 50 will render a large sphere
 - Iso-value = 200 will render a small sphere
Iso-Surface Rendering

- To render an iso-surface we cast the rays as usual...
- But we stop once we have interpolated a value iso-threshold

The easiest way to select the iso-surface is with the transfer function for α
- We would like to illuminate (shade) the iso-surface based on its orientation to the light source
- Recall that we need a normal vector for shading
- The normal vector N is the local gradient, normalized
Iso-Surfacing Example

Foot of the Visible Woman

iso-value = 30 iso-value = 80 iso-value = 200
Different Iso-Levels

- Same data-sets, different extracted iso-surfaces
- Note that like all *surfaces*, the interior of the foot is “empty”
Surface Rendering with Polygons

• We have looked at several *direct rendering* algorithms for volume visualization
• Process volume itself with no conversion to other formats
• Speed and efficiency issues for software-based ray-casting
• Much of splatting can be implemented with commodity hardware
• Modern graphics hardware is all triangle-based since much of computer graphics is still surface-only
• Most applications require only surface rendering
• Today we will see algorithms for exploiting triangle-rendering hardware for volume visualization
Motivations for Iso-surface Polygonization

• Take advantage of surface graphics techniques
• Exploit inexpensive, yet powerful graphics hardware
• Use OpenGL (DirectX, etc.) to specify shading parameters
• Incorporate polygonized surfaces into other polygon-based software systems easily
• Familiar object representation format used widely across graphics and visualization
• Use object-order polygon mesh projection algorithms for rendering (described next)
Polygon Mesh Definitions

- Rule: if all edge vectors in a face are ordered counterclockwise, then the face normal vectors will always point towards the outside of the object.
- This enables quick removal of back-faces (back-faces are the faces hidden from the viewer):
 back-face condition: \(\mathbf{vp} \cdot \mathbf{n} > 0 \)

\[\mathbf{n}_1 = \frac{\mathbf{e}_1 \times \mathbf{e}_2}{|\mathbf{e}_1 \times \mathbf{e}_2|} \]

\[\mathbf{n}_2 = \frac{\mathbf{e}_2 \times \mathbf{e}_2}{|\mathbf{e}_2 \times \mathbf{e}_2|}, \quad \mathbf{e}_2 = -\mathbf{e}_1 \]
Polygon Mesh Data Structure

- **Vertex list** \((v_1, v_2, v_3, v_4, ...):\)
 - \((x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4), ...\)

- **Edge list** \((e_1, e_2, e_3, e_4, e_5, ...):\)
 - \((v_1, v_2), (v_2, v_3), (v_3, v_1), (v_1, v_4), (v_4, v_2), ...\)

- **Face list** \((f_1, f_2, ...):\)
 - \((e_1, e_2, e_3), (e_4, e_5, -e_1), ...\) or
 - \((v_1, v_2, v_3), (v_1, v_4, v_2), ...\)

- **Normal list** \((n_1, n_2, ...),\) one per face or per vertex
 - \((n_{1x}, n_{1y}, n_{1z}), (n_{2x}, n_{2y}, n_{2z}), ...\)

- Use pointers or indices into vertex and edge list arrays, when appropriate
- Winged-edge / quad-edge / half-edge data structures
Hypothetical Polygonal Data Structure

• Your application determines which data you should store in order to maximize the cost/benefit of memory usage & computation time.

Vertex
 List of adjacent edges
 List of adjacent triangles

Edge
 Pair of end-points
 Pair of adjacent triangles (or one triangle if on the boundary)

Triangle
 Ordered list of edges
Polygon Shading Methods – Flat Shading

• How are the pixel colors determined?
• The simplest method is *flat or faceted shading*:
• Each polygon has a constant color
• Compute color at one point on the polygon (e.g., at center) and use everywhere
• Assumption: light source and eye are far away, i.e., $N \cdot L = \text{const.}$
• Problem: discontinuities are likely to appear at face boundaries
Polygon Shading Methods – Gouraud Shading

- Colors are averaged across polygons along common edges → no more discontinuities
- Steps:
 1. Determine average unit normal at each poly vertex:
 $$N_v = \frac{\sum_{k=1}^{n} N_k}{\sum_{k=1}^{n}}$$
 2. \(n\): number of faces that have vertex \(v\) in common
 3. Apply illumination model at each poly vertex \(\rightarrow C_v\)
 4. Linearly interpolate vertex colors across edges
 5. Linearly interpolate edge colors across scan lines
- Downside: may miss specular highlights at off-vertex positions or distort specular highlights
Polygon Shading Methods – Phong Shading

- Phong shading linearly interpolates normal vectors, not colors → more realistic specular highlights
- Steps:
 1. Determine average normal at each vertex
 2. Linearly interpolate normals across edges
 3. Linearly interpolate normals across scanlines
 4. Apply illumination model at each pixel to calculate pixel color
- Downside: need more calculations since need to do illumination model at each pixel
Rendering Polygonal Objects – Hidden Surface Removal

- We have removed all faces that are *definitely* hidden: the back-faces
- But even the surviving faces are only *potentially* visible
- They may be obscured by faces closer to the viewer
- Face A of object 1 is partially obscured by face B of object 2
- Problem of identifying those face portions that are visible is called the *hidden surface problem*
- Solutions:
 - Pre-ordering of the faces and subdivision into their visible parts before display (expensive)
 - The z-buffer algorithm (cheap, fast, implementable in hardware)
Overview and Motivation

- Algorithms extract surface of constant density (iso-surfaces) from 3D data and convert it into polygonal mesh
- Divide-and-conquer algorithm
- Process each row of voxels to build the triangulated surface in an incremental fashion
- Use table to decide on a case-by-case basis how each cell (group of 8 voxels) is used to generate triangles
- Normalized gradient will provide normal direction for the triangles so we can shade the surface
- Marching Cubes algorithm – developed in 1987, still very widely used
- Several enhancements since then, but fundamental algorithm remains the same
The Marching Cubes Polygonization Algorithm

- The *Marching Cubes* (MC) algorithm converts a volume into a polygonal model.
- Allows us to render the iso-surfaces quickly and shade them using flat, Gouraud or Phong shading (or others).
- Steps:
 - Imagine all voxels above the iso-value are set to 1, all others are set to 0.
 - The goal is to find a polygonal surface that includes all 1-voxels and excludes all 0-voxels.
 - Look at one volume cell (a cube) at a time → hence the term *Marching Cubes*.
- Here are 2 of ___ possible configurations:

 only 1 voxel > iso-value
 the polygon that separates inside from outside
 the reverse case:
 7 voxels > iso-value
 the same polygon results
Marching Cubes

- One can identify 15 base cases and use symmetry and reverses to get the other 241 cases.
- The exact position of the polygon vertex on a cube edge is found by linear interpolation:

\[iso = v_1 \cdot (1 - u) + v_2 \cdot u \rightarrow u = \frac{v_1 - iso}{v_1 - v_2} \]

- Now interpolate the vertex color by:
 \[c_1 = uc_2 + (1 - u)c_1 \]
- Interpolate the vertex normal by:
 \[n_1 = ug_2 + (1 - u)g_1 \]
g_1 and g_2 are the gradient vectors at v_1 and v_2 obtained by central differencing.
Marching Cubes – Ambiguous Cases

- 2D: ambiguous case:

- 3D: what happens when cases are arbitrarily chosen:

- Remedy: add 6 alternative cases for 3, 6, 7, 10, 12, 13 to prevent holes

Example: case 3c
Problem with Marching Cubes

- Sharp features, like corners and hard edges, tend to be smoothed away by the Marching Cubes algorithm
- Finite grid \rightarrow some details will be lost
- Continuous model discretized onto grid and Marching Cubes applied:
Model Conversion

• Suppose we wish to represent (convert) a surface model on a volumetric raster (grid)
• Possible motivation: sculpting operations to modify the object
• This means we need to discretize the 3D geometric shape
• After we have finished our work, we need to convert the 3D volume back to a surface model
• This can be done with Marching Cubes
• However, at what grid resolution do we store the shape?
• Certain features of the surface will *always* be lost by the regular MC algorithm
Cause of the Problem

• When we discretize the object, at each voxel we store a distance of the voxel from the object surface
• Hence, the volume is what we call a *volumetric distance field* that approximates a smooth, continuous distance function
• Consider two neighboring grid points (green) in the vicinity of a sharp feature (corner) of the contour \(S \) (red)
• Sampling the scalar valued distance function \(f \) at both grid points (blue) and estimating the sample point by linear interpolation leads to a bad estimation (black) of the true intersection point between the red contour and the green cell edge
How About Storing a *Directed* Distance?

• Suppose instead of just storing a scalar value at each voxel, we store a vector that indicates the directed distance?

![Diagram showing directed distance](image)

• This is still not enough and we replace sharp corners and other features with diagonal lines.

![Diagram showing diagonal lines](image)
Scalar Distances vs. Directed Distances

- First image: original model
- Second image: discretized and MC applied to a scalar distance field
- Third image: discretized and MC applied to directed distance field
Solution to Loss of Features Problem

• The solution to this problem involves using more information inferred by the data.
• During discretization, we compute and store tangent vectors that we compute using the surface normal.
• These vectors basically tell you in what direction(s) the surface is moving.
• Then, when we are left with only the discrete grid, we extend these tangents into the center of the cells to approximate the character of the surface inside the cell.
• Where these tangents intersect, we create a feature point we use to polygonize the surface.
• Blue: original contour we discretized.
• Red: extended tangents.
• Vertex: feature point we will use to build polygons.
• Black: what directed distances would have given us.
Extended Marching Cubes

- Algorithm:
 - If cell contains a sharp feature, determine if an edge feature (green) or a corner feature (red) is present
 - If yes, apply the new technique for selecting vertex positions
 - Otherwise, apply the normal Marching Cubes algorithm
Application – Remeshing

- Remeshing of a polygonal mesh
- Generally speaking, skinny or sliver triangles are bad
- Poor rendering quality
- Interfere with mechanical simulation
- Often too many triangles present to represent the given object: wastes computation time, memory, storage space, etc.
- Extended MC algorithm takes discretized version of original mesh and extracts a new surface that has fewer triangles and also higher quality triangles
Application – CSG

• Constructive Solid Geometry (CSG) is a shape design technique
• Objects defined as the addition and subtraction of other objects
• Typically difficult to achieve accurately over a discrete grid
• Usually we have to compute intersections between design primitives exactly (spheres, cylinders, boxes, splines, etc.)
• Very expensive process that involves root-finding
• In discrete grid, problem much simpler by performing set inclusion/exclusion tests
• The extended Marching Cubes algorithms makes CSG feasible on a discrete grid because we can recover these intersected regions almost exactly
Marching Tetrahedra

- Another iso-surface extraction algorithm is called Marching Tetrahedra
- Divide each cell into five tetrahedra
- Apply one of the three unique cases
- No ambiguity problem, as with Marching Cubes
- Easier to implement
- But surface quality is usually not as good since less information is taken into consideration (four values used for interpolation instead of eight)
- Also generates more triangles than MC, the latter of which might be able to generate a single large triangle instead of several small ones to cover the same surface area
Use Volume Rendering to Handle Iso-surfaces

• We saw earlier how we can use ray-casting to render iso-surfaces by using an alpha transfer function with a sharp drop-off
• Suppose we don’t have a ray-casting system available?
• We can instead use an iso-surface extraction algorithm to generate a polygonal approximation of the iso-surface implied by the volumetric data
• Pre-processing step, possibly slow
• User specifies the designed iso-level, and the algorithm produces the corresponding triangular iso-surface
Gradient Modulation

- One use of the gradient is in a process known as gradient modulation in which we modulate the opacity/color of a voxel by the gradient.
- First we look up the voxel’s opacity/color, given by the transfer function.
- Then we multiply the opacity and color by some function of the gradient magnitude (also given by a transfer function, #5).
- Regions of high gradient magnitude cause an increase in opacity, whereas regions of low gradient magnitude cause the opacity to drop to near zero.
- Remind us: what does a high magnitude signify?
- How does this explain the image on the right?
Iso-Surface Shading

- The normal vector is the *normalized* gradient vector g
- $N = g / |g|$ (normal vector always has unit length)
- Once the normal vector has been calculated we shade the iso-surface at the sample point
- The color so obtained is then written to the pixel that is due to the ray
- Colors are computed using one of the standard illumination models
- Let’s see a short movie to see this in practice (9)
Iso-Surface Rendering – Algorithm (Perspective)

RenderIsoSurface(Volume V, int stepSize)
for each image pixel p(i, j)
 ray = (p(i, j) - eye) / | (p(i, j) - eye) |; // the ray direction vector, normalized
 t = 0; // start at the eye point
 do forever
 sampleLoc = eye + t · stepSize · ray // step along the ray
 intVal = Interpolate(V, sampleLoc)
 if opacityTransferFunction(intVal) > isoThreshold // found the iso-surface
 // interpolate 6 samples around sampleLoc and compute the gradient
 gradVec = ComputeGradientVector(V, sampleLoc);
 // shade the surface using standard illumination model and color transfer functions
 {r, g, b} = Shade(gradVec, lightSource, eye, sampleLoc, {R, G, B} TransFunc(intVal));
 value(p(i, j)) = {r, g, b}; // write color into image pixel p(i, j)
 break; // terminate this ray and go to next image pixel
 t = t + 1; // iso-surface not found yet, get ready to step to next sample point
Iso-Surface Rendering – Tips and Tricks (1)

• Finding a good iso-value is not always easy
• Make a histogram of the volume densities and look for peaks (iso-value = onset of peak)

voxels

skin

muscle

fat

bone

density

histogram head dataset

• Good shading requires good gradients around iso-surface
• Need smooth degradations at iso-surface for good gradient estimation
• Else get aliasing
Iso-Surface Rendering – Tips and Tricks (2)

- Ray stepsize must be chosen sufficiently small
- Choose stepsize of less than or equal to 1.0 voxel units (or we may get aliasing in the ray direction)
- But even for small stepsizes, we may never exactly hit the isosurface
- Iso-surface goes through a cell when at least one vertex, but not all, has a density > isoValue
- Compute exact location of the iso-surface within a cell by solving a cubic function in t. This is usually impractical.
- A variety of acceleration methods are possible:
 - Enclose the object in a bounding box and start rays at the bounding box intersection (works also for general volume rendering)
 - Store distance values in voxels outside the object → this enables quick space leaping
 - Multi-resolution volume representation (octree) (works also for general volume rendering)