Iso-Surface Rendering

» A closed surface separates ‘outside’ from ‘inside’ (Jordan theorem)

« Iniso-surface rendering we say that all voxels with values > some threshold are ‘inside’,
and the others are ‘outside’

» The boundary between ‘outside’ and ‘inside’ is the iso-surface
« All voxels near the iso-surface have a value close to the iso-threshold or iso-value
« Example:

iso-boundary

cross-section of a smooth sphere 1so-value = 50 1so-value = 200
will render a large sphere will render a small sphere

STONY BROOK
UNIVERSITY

Iso-Surface Rendering

« To render an iso-surface we cast the rays as usual...
« But we stop once we have interpolated a value iso-threshold

A Opacity o
@ voxel value = iso-threshold
1.0+ —
(O voxel value < iso-threshold
/ T stop here /‘ derTsity
ray iso-value

« The easiest way to select the iso-surface is with the transfer function for o

« We would like to illuminate (shade) the iso-surface based on its orientation to the
light source

 Recall that we need a normal vector for shading
« The normal vector N is the local gradient, normalized

STONY BROOK 3
UNIVERSITY

Iso-Surfacing Example

Foot of the Visible Woman

1so-value = 30 1so-value = 80 1so-value = 200

STONY BROOK
UNIVERSITY

Different Iso-Levels

« Same data-sets, different
extracted 1so-surfaces

* Note that like all surfaces, the
interior of the foot 1s “empty”

STONY BROOK
UNIVERSITY

Surface Rendering with Polygons

* \We have looked at several direct rendering algorithms for volume
visualization

 Process volume itself with no conversion to other formats
« Speed and efficiency issues for software-based ray-casting
« Much of splatting can be implemented with commodity hardware

« Modern graphics hardware is all triangle-based since much of
computer graphics is still surface-only

« Most applications require only surface rendering

« Today we will see algorithms for exploiting triangle-rendering
hardware for volume visualization

STONY BROOK
UNIVERSITY

Motivations for Iso-surface Polygonization

« Take advantage of surface graphics technigues
« Exploit inexpensive, yet powerful graphics hardware
« Use OpenGL (DirectX, etc.) to specify shading parameters

* Incorporate polygonized surfaces into other polygon-based software
systems easily

« Familiar object representation format used widely across graphics
and visualization

« Use object-order polygon mesh projection algorithms for rendering
(described next)

STONY BROOK v
UNIVERSITY

Polygon Mesh Definitions

vl

el

V2

nl

« Rule: if all edge vectors in a face are
ordered counterclockwise, then the
face normal vectors will always point
towards the outside of the object.

« This enables quick removal of back-
faces (back-faces are the faces hidden
from the viewer):
back-face condition: vp *n >0

STONY BROOK
UNIVERSITY

vl, v2. v3: vertices (3D coordinates)
el, e2, e3: edges

el=v2-vl and e2=v3-v2
f1: polygon or face

el xe2

nl: face normal nl = —
le1 x e2|

view pl

nl

nl = ell xel2
lellxel2]
N .99
n2 = L e2]l =-el2
- |€21 xe22|’ -
ane (screen)

ell

backface

n4

n2

view vector vp

Polygon Mesh Data Structure

o Vertex list (v1, v2, v3, v4, ...):
— (x1,vy1, z1), (X2, y2, z2), (X3, y3, 23), (x4, y4, z4),

« Edge list (el, e2, e3, e4, e5, ...):
— (vl,v2), (v2,v3), (v3,Vvl), (v1,v4), (v4,Vv2), ...

« Face list (f1, 2, ...):
— (el, e2,e3), (e4, e5, -el), ... or
— (v1,v2,v3), (v1, v4,Vv2), ... &

« Normal list (n1, n2, ...), one per face or per vertex
— (n1x, nly, nl1z), (n2x, n2y, n2z), ...

« Use pointers or indices into vertex and edge list arrays, when appropriate
« Winged-edge / quad-edge / half-edge data structures

STONY BROOK 9
UNIVERSITY

Hypothetical Polygonal Data Structure

 Your application determines which data you should store in order to
maximize the cost/benefit of memory usage & computation time.

Vertex
List of adjacent edges
List of adjacent triangles

Edge
Pair of end-points
Pair of adjacent triangles (or one triangle if on the boundary)

Triangle
Ordered list of edges

STONY BROOK 10
UNIVERSITY

Polygon Shading Methods — Flat Shading

* How are the pixel colors determined?
» The simplest method is flat or faceted shading:
« Each polygon has a constant color

« Compute color at one point on the polygon (e.g., at center) and use
everywhere

« Assumption: light source and eye are far away, i.e., N-L = const.
» Problem: discontinuities are likely to appear at face boundaries

STONY BROOK 11
UNIVERSITY

Polygon Shading Methods — Gouraud Shading

« Colors are averaged across polygons along common edges — no more

discontinuities

Steps:

Determine average unit normal at each poly vertex: N,
n: number of faces that have vertex v in common
Apply illumination model at each poly vertex — C,
Linearly interpolate vertex colors across edges

Linearly interpolate edge colors across scan lines

« Downside: may miss specular highlights at off-vertex
positions or distort specular highlights

Al A

STONY BROOK
UNIVERSITY

1
=y N,/

k=1

h

1
2 Nk

k=1

AN

TSy

12

Polygon Shading Methods — Phong Shading

« Phong shading linearly interpolates normal vectors, not colors — more realistic
specular highlights

Steps:

Determine average normal at each vertex

Linearly interpolate normals across edges

Linearly interpolate normals across scanlines

Apply illumination model at each pixel to calculate pixel color

« Downside: need more calculations since need to do illumination model at each
pixel

I

STONY BROOK 13
UNIVERSITY

Rendering Polygonal Objects — Hidden Surface Removal

« \We have removed all faces that are definitely hidden: the back-faces
« But even the surviving faces are only potentially visible
» They may be obscured by faces closer to the viewer

« Face A of object 1 is partially
obscured by face B of object 2 obj 1

* Problem of identifying those face A
portions that are visible is called G

b o o P

the hidden surface problem B
e Solutions: screen

— Pre-ordering of the faces and subdivision into their visible parts
before display (expensive)

— The z-buffer algorithm (cheap, fast, implementable in hardware)

obj 2

STONY BROOK 14
UNIVERSITY

Overview and Motivation

Algorithms extract surface of constant density (iso-surfaces) from
3D data and convert it into polygonal mesh

Divide-and-conguer algorithm

Process each row of voxels to build the triangulated surface in an
Incremental fashion

Use table to decide on a case-by-case basis how each cell (group of
8 voxels) i1s used to generate triangles

Normalized gradient will provide normal direction for the triangles
so we can shade the surface

Marching Cubes algorithm — developed in 1987, still very widely
used

Several enhancements since then, but fundamental algorithm
remains the same

STONY BROOK

UNIVERSITY

15

The Marching Cubes Polygonization Algorithm

« The Marching Cubes (MC) algorithm converts a volume into a polygonal model

« Allows us to render the iso-surfaces quickly and shade them using flat, Gouraud
or Phong shading (or others)

o Steps:
« Imagine all voxels above the iso-value are set to 1, all others are set to 0

« The goal is to find a polygonal surface that includes all 1-voxels and excludes all
0-voxels

« Look at one volume cell (a cube) at a time — hence the term Marching Cubes
« Hereare2of possible configurations:

the reverse case:

1
1
|
9——;7@
-
-

only 1 voxel > iso-value the polygon that separates 7 voxels > 1so-value
inside from outside the same polygon results

STONY BROOK 16
UNIVERSITY

Marching Cubes

One can identify 15 base cases and use
symmetry and reverses to get the other 241
cases

The exact position of the polygon vertex on a
cube edge is found by linear interpolation:

v, —is0
Vi =V,

Iso=v,-(1-u)+Vv,-Uu > U=

Now interpolate the vertex color by:

c, = uc, + (1 -u)c,

Interpolate the vertex normal by:

n; =ug, + (1-u)g,

g, and g, are the gradient vectors at v, and v,
obtained by central differencing

STONY BROOK
UNIVERSITY

17

Marching Cubes — Ambiguous Cases

« 2D: ambiguous case:

ﬂ

both versions are plausible

« 3D: what happens when cases are arbitrarily chosen: hole

case 3 case 6 (complementary) connected

» Remedy: add 6 alternative cases for
3,6,7,10, 12, 13 to prevent holes
Example: case 3¢

STONY BROOK
UNIVERSITY

Problem with Marching Cubes

 Sharp features, like corners and hard edges, tend to be smoothed
away by the Marching Cubes algorithm

 Finite grid — some details will be lost

« Continuous model discretized onto grid and Marching Cubes
applied:

STONY BROOK

UNIVERSITY 19

Model Conversion

« Suppose we wish to represent (convert) a surface model on a
volumetric raster (grid)

 Possible motivation: sculpting operations to modify the object
« This means we need to discretize the 3D geometric shape

« After we have finished our work, we need to convert the 3D
volume back to a surface model

 This can be done with Marching Cubes
« However, at what grid resolution do we store the shape?
 Certain features of the

surface will always be lost ’)‘

by the regular MC
algorithm

STONY BROOK
UNIVERSITY

20

Cause of the Problem

« When we discretize the object, at each voxel we store a distance of
the voxel from the object surface

« Hence, the volume i1s what we call a volumetric distance field that
approximates a smooth, continuou:

 Consider two neighboring grid
points (green) in the vicinity of
a sharp feature (corner) of the
contour S (red)

« Sampling the scalar valued distance function f at both grid points
(blue) and estimating the sample point by linear interpolation leads
to a bad estimation (black) of the true intersection point between the
red contour and the green cell edge

STONY BROOK 21
UNIVERSITY

How About Storing a Directed Distance?

« Suppose instead of just storing a scalar value at each voxel, we
store a vector that indicates the directed distance?

- |

« This is still not enough and we replace sharp corners and other
features with diagonal lines

=

STONY BROOK
UNIVERSITY

22

Scalar Distances vs. Directed Distances

 First image: original model
« Second image: discretized and MC applied to a scalar distance field
« Third image: discretized and MC applied to directed distance field

STONY BROOK

UNIVERSITY 23

Solution to Loss of Features Problem

« The solution to this problem involves use more information inferred by the data

« During discretization, we compute and store tangent vectors that we compute
using the surface normal

« These vectors basically tell you in what the direction(s) the surface is moving

« Then, when we are left with only the discrete grid, we extend these tangents into
the center of the cells to approximate the character of the surface inside the cell

« Where these tangents intersect, we create a feature point we use to polygonize the

surface
 Blue: original contour we discretized
 Red: extended tangents d L

« Vertex: feature point we will use
to build polygons

« Black: what directed distances would
have given us -+ = - T+

STONY BROOK 24
UNIVERSITY

Extended Marching Cubes

« Algorithm:

« If cell contains a sharp feature, determine if an edge feature (green)
or a corner feature (red) is present

« [f yes, apply the new technique for selecting vertex positions
« Otherwise, apply the normal Marching Cubes algorithm

STONY BROOK o5
UNIVERSITY

Application — Remeshing

« Remeshing of a polygonal mesh

» Generally speaking, skinny or sliver
triangles are bad

« Poor rendering quality
« Interfere with mechanical simulation

« Often too many triangles present to
represent the given object: wastes
computation time, memory, storage
space, etc.

« Extended MC algorithm takes
discretized version of original mesh
and extracts a new surface that has
fewer triangles and also higher
quality triangles

STONY BROOK
UNIVERSITY

Application — CSG

» Constructive Solid Geometry (CSG) is a shape design technique
» Objects defined as the addition and subtraction of other objects
« Typically difficult to achieve accurately over a discrete grid

« Usually we have to compute intersections between design primitives exactly
(spheres, cylinders, boxes, splines, etc.)

« \ery expensive process that involves root-finding

« Indiscrete grid, problem much simpler by
performing set inclusion/exclusion tests

« The extended Marching Cubes algorithms
makes CSG feasible on a discrete grid
because we can recover these intersected
regions almost exactly

STONY BROOK 27
UNIVERSITY

Marching Tetrahedra

« Another iso-surface extraction algorithm is
called Marching Tetrahedra

« Divide each cell into five tetrahedra
» Apply one of the three unique cases

« No ambiguity problem, as with Marching
Cubes

« Easier to implement . o001 o019
« But surface quality is usually not as good
since less information is taken into .

» Also generates more triangles than MC, the
latter of which might be able to generate a
single large triangle instead of several small
ones to cover the same surface area

o1
1001

consideration (four values used for "o 1000
interpolation instead of eight) %

STONY BROOK o8
UNIVERSITY

Use Volume Rendering to Handle Iso-surfaces

« \We saw earlier how we can use ray-casting to
render iso-surfaces by using an alpha transfer
function with a sharp drop-off

* Suppose we don’t have a ray-casting system .
available? / density

: _ _ 1so-value
« \We can instead use an 1so-surface extraction
algorithm to generate a polygonal
approximation of the iso-surface implied by the
volumetric data

 Pre-processing step, possibly slow

« User specifies the designed iso-level, and the
algorithm produces the corresponding
triangular iso-surface

A Opacity o
1.0+

STONY BROOK 29
UNIVERSITY

Gradient Modulation

* One use of the gradient is in a process known
as gradient modulation in which we modulate
the opacity/color of a voxel by the gradient

« First we look up the voxel’s opacity/color,
given by the transfer function

« Then we multiply the opacity and color by
some function of the gradient magnitude (also
given by a transfer function, #5)

« Regions of high gradient magnitude cause an
increase in opacity, whereas regions of low
gradient magnitude cause the opacity to drop
to near zero

« Remind us: what does a high magnitude
signify?
« How does this explain the image on the right?

STONY BROOK 30
UNIVERSITY

Iso-Surface Shading

 The normal vector is the normalized
gradient vector g

N =g/|g| (normal vector always has unit
length)

e Once the normal vector has been
calculated we shade the iso-surface at the
sample point

« The color so obtained is then written to

the pixel that is due to the ray

« Colors are computed using one of the
standard illlumination models

 Let’s see a short movie to see this in
practice (9)

STONY BROOK 31
UNIVERSITY

Iso-Surface Rendering — Algorithm (Perspective)

RenderlsoSurface(Volume V, int stepSize)
for each image pixel p(i, j)
ray = (p(i, j) - eye) /| (p(i, j) - eye) |; /] the ray direction vector, normalized
t = 0; // start at the eye point
do forever
sampleLoc = eye +t - stepSize - ray // step along the ray
int\Val = Interpolate(V, sampleLoc)
If opacityTransferFunction(intVal) > isoThreshold // found the iso-surface
Il interpolate 6 samples around sampleLoc and compute the gradient
gradVec = ComputeGradient\ector(V, sampleLoc);
I/ shade the surface using standard illumination model and color transfer functions
{r, g, b} = Shade(gradVec, lightSource, eye, sampleLoc, {R, G, B} TransFunc(intVal));
value(p(i, J)) = {r, g, b}; // write color into image pixel p(i, j)
break; // terminate this ray and go to next image pixel
t=t+ 1; // iso-surface not found yet, get ready to step to next sample point

STONY BROOK
UNIVERSITY

32

Iso-Surface Rendering — Tips and Tricks (1)

» Finding a good iso-value is not always easy

« Make a histogram of the volume densities and look for peaks (iso-value = onset
of peak)

skin
#voxels ‘muscle

histogram head dataset

density

« (Good shading requires good gradients around iso-surface

* Need smooth degradations at iso-surface for good
gradient estimation

» Else get aliasing >

sz:m:gm'(Copyright © 2004 Kevin McDonnell, Hong Qin and Klaus Mueller 33

Iso-Surface Rendering — Tips and Tricks (2)

» Ray stepsize must be chosen sufficiently small

« Choose stepsize of less than or equal to 1.0 voxel units (or we may get aliasing in the ray
direction)

« But even for small stepsizes, we may never exactly hit the isosurface
« |so-surface goes through a cell when at least one vertex, but not all, has a density >

iIsoValue o—eo—e
« Compute exact location of the iso-surface within \ ® > isovalue
a cell by solving a cubic function int. Thisis __—% O—¢—@ O < isovalue
usually impractical. \\ isosurface
i k

O O

« Avariety of acceleration methods are possible:

« Enclose the object in a bounding box and start rays at the bounding box intersection
(works also for general volume rendering) | | |

« Store distance values in voxels outside
the object — this enables quick space leaping ——y T o
« Multi-resolution volume representation (octree) Nt d
(works also for general volume rendering) space leaping & B
L 5
6 _
N7
™~
STONY BROOK 34

UNIVERSITY

