
STONY BROOK

UNIVERSITY

Fundamental Idea of Splatting

• Ray-casting is an image-order algorithm – the algorithm begins and operates on a
per-pixel basis

• For each pixel, we shoot a viewing ray and accumulate color and opacity

• This is known as a backward mapping process because pixels are mapped back
into the data-set

• An alternate way of addressing volume rendering is in object space and develop
object-order algorithms, in which the algorithm begins and operates on a per-
object basis

• This is called forward mapping

• The most popular object-order algorithm is calling splatting

• The idea is to think of each voxel in the data-set as a fuzzy ball that we project
onto the screen

• In ray-casting, we figure out, for each pixel, how every voxel might affect the
final image at that pixel

• In splatting, we figure out, for each voxel, how every pixel might be affected by
that voxel

• The ultimate goal is the same – image generation – but the approaches and
philosophies and converses of one another

1

STONY BROOK

UNIVERSITY

Splatting

• Recall from our study of display

hardware that we should think of each

pixel as a fuzzy circular ball of light on

the screen, and not as a square pixel with

sharp edges

• In splatting, we think of each voxel in the

same way: not as a discrete point, but

rather as a fuzzy spherical ball that

exhibits a (3D) Gaussian distribution

• This 3D Gaussian is called the

reconstruction kernel

• Hence, we think of the volume not as a

discrete object, but actually as a

continuous one defined as a collection of

smooth functions (Gaussians)

• At the center of each Gaussian we assign

the density of the voxel, and so…

• The density away from the voxel drops

off quickly, according to the distribution.

Typically we use μ = 0.0, σ = 1.0 and we

truncate the Gaussian outside of a radius

of 2.0

• We usually select the peak of the

distribution to take on a value of 1.0

2

STONY BROOK

UNIVERSITY

Splatting

• Note that the 3D kernels and their 2D splats overlap each other

• This is key when viewing the data-set from different camera angles and zoom

factors because it will guarantee that we see a continuous, smooth image from

any view direction

• Zooming affects splat size

3

image plane

STONY BROOK

UNIVERSITY

Splatting

• We will look at the original splatting algorithm proposed by Lee
Westover in 1990 and some later algorithmic enhancements

• Since then there have been many improvements to splatting

• Originally, splatting was thought of more as a clever trick for
performing volume rendering efficiently

• Could not generate images as high quality as could ray-casting

• Ray-casting is very computationally expensive and slow to execute
in software, even with today’s computers, but is very accurate since
it seeks to simulate the transport of light

• Since 1990, splatting has received a tremendous amount of
attention and is now able to generate images just as good as ray
casting for most modes of volume rendering

• Much of the advancement has come from various theoretical
improvements

4

STONY BROOK

UNIVERSITY

Splatting Algorithm Overview

5

STONY BROOK

UNIVERSITY

Splatting Algorithm Overview

6

• Transformations, Shading, Reconstruction, Visibility

• We traverse the volume one sheet of voxels at a time, from front to back

• We pick the sheet (x-y, x-z, y-z) nearest to being parallel with the image plane

• Each voxel in the sheet is transformed from <i,j,k> grid space into <x,y,z>
screen space via translation, rotation, etc.

• Then each voxel is shaded independently
(RGBα)

• Next we determine which portion of the
accumulation sheet each voxel affects;
this is done by projecting each voxel in
the sheet into the accumulation sheet

• When all voxels in the sheet are processed,
the accumulation sheet is composited with
the working (intermediate) image

• Once all sheets are processed, the
working image becomes the final image

STONY BROOK

UNIVERSITY

Footprint Function

• The 2D region of the screen covered the projected 3D Gaussian kernel Westover

dubbed the footprint (or splat)

• Remember, we should think of the data-set as a continuous function defined

piecewise by smooth Gaussian functions (a.k.a. kernels)

• The contribution of a voxel to the volume can be expressed succinctly as

contributionD(x,y,z) = hV(x-Dx, y-Dy, z-Dz) ρ(D)

• (x,y,z) is some position inside the volume as expressed in screen coordinates (i.e.,

the volume transformed to line up with the screen in some convenient coordinate

system)

• hV is the volumetric reconstruction kernel, which we will assume is the Gaussian

distribution.

• (Dx, Dy, Dz) gives the position of the voxel in screen coordinates

• Hence, points (x,y,z) that are far from the voxel (Dx, Dy, Dz) are influenced less

than those nearer the voxel

• Last, ρ(D) indicates the voxel’s density

7

STONY BROOK

UNIVERSITY

Footprint Function

dwDwDyDxhyxoncontributi yxVD)(),,(),(




8

• The projection or splatting of these continuous 3D kernels produces a continuous

2D shape that must be discretized for the purpose of display

• To figure out how much the 3D reconstruction kernel affects a 2D pixel, we

actually perform a line integration through the 3D kernel (modulated by the voxel

density)

• The resulting value is what we assign to the accumulation sheet at that position

• This pre-integration step is one of the major factors contributing to the efficiency

of splatting

• The contribution of a voxel to a screen pixel is

• Where w indicates the direction of the line integral and which we assume is along

the negative z axis, pointing into the screen

STONY BROOK

UNIVERSITY

Footprint Function

dwwDyDxhDyxoncontributi yxVD),,()(),(






9

• For a given voxel, ρ(D) is constant since ρ is independent of w, so
we can move the density term outside the integral:

• Note that the integral is independent of the voxel’s density

• Since it depends only on the voxel’s projected (x,y) position, we
can now define the footprint function as

• Remembering that this 2D shape is a projected
3D kernel, we can see that (x,y) now indicates
the displacement from the center of projection
of the 3D kernel

dwwyxhyxintfootpr VD),,(),(




. (x,y)

STONY BROOK

UNIVERSITY

Footprint Table

• If we are using a rectilinear volume
with uniform grid spacing (assume
unit spacing) and we are performing
orthographic projection, each 3D
reconstruction kernel (Gaussian) in
the volume will have the same
projection on the screen

• We can therefore build a 2D lookup
table, called the footprint table, that
tells you, for each pixel on the
screen, how much the splat will
contribute to that pixel

• Each entry contains some number
between 0.0 and 1.0 usually

• The table is centered over the center
of the splat

• The size of the table depends on
image resolution, volume size, and
desired accuracy

• Using larger tables allows for greater
accuracy, but at the expense of image
quality

10

Pi,j

STONY BROOK

UNIVERSITY

Using the Footprint Table

11

STONY BROOK

UNIVERSITY

Using the Footprint Table

12

• As we traverse each voxel and try to figure out how that voxel contributes to

the final image, we can think of ourselves as moving the footprint table over

the accumulation sheet and pasting copies of it onto the accumulation sheet

• This isn’t the whole story, however

• What we do is march through the volume from front-to-back, one sheet at a

time, and add all those footprints into the accumulation sheet

• Then, we composite the accumulation

sheet with the working image

• This ensures that each sheet of projected

voxels (splats) will have an effect on

the final image

STONY BROOK

UNIVERSITY

Using the Footprint Table

14

• For parallel projection, the extent (footprint) of each projected
voxel is the same, except for a screen space offset

• We can precompute the footprint and re-use it for each splat

• Then for each voxel, we can compute where and how much the
splat contributes to each pixel on the screen, according to:

• <Dx, Dy> denotes the voxel’s image plane projection
and <x, y> denotes the pixel’s image plane location

• The table itself is constructed by performing line
integrals through the 3D kernel

• This is how we project the 3D kernel onto a 2D sheet and tells us
how to spread or distribute the 3D density onto the 2D image plane

• The intensity written to the pixels is modulated by the density value
of the voxel: P(x,y) = weight(x,y) · ρ(D)

),(),(yxD DyDxintfootpryxweight 

STONY BROOK

UNIVERSITY

Classification and Compositing

• As with ray-casting, we can use transfer functions to assign color to

the voxels

• Hence, the accumulation sheet contains an (R,G,B,α) tuple for each

pixel

• Compositing then happens using the same formulas as in ray-

casting, except that it happens on a per-pixel basis

• Compare:

• Ray-casting: compositing is performed along rays, one interpolated

sample at a time, and one pixel at a time

• Splatting: compositing is performed along sheets, all pixels at once

for a particular set of voxels; hence, it’s like the examples of image

compositing we saw last class

15

STONY BROOK

UNIVERSITY

Shading in Splatting

16

• As with ray-casting, we can shade volumes using either pre-shading or post-
shading

• In pre-shading, we classify and shade each voxel before splatting and
compositing

• In post-shading, we maintain three sheet-buffers: previous, current, next

• We project the 3D kernels into the next sheet-buffer

• Now we have three sheet-buffers containing of grayscale pixels

• We use the central difference operator to estimate the gradient at a pixel in the
current sheet-buffer based on the values stored in the next and previous sheet-
buffers

• We assign colors to the pixels in the current sheet-buffer and then shade them
using the normalized gradient

• Last, we composite the current sheet-buffer with the working image

• Pre-shading is fast, but gives blurry results

• Post-shading can recover sharp features because after the 3D
kernels are projected, we can throw away uninteresting, fuzzy
portions via classification

STONY BROOK

UNIVERSITY

Splatting Summary

• Speed is the main advantage that splatting has over ray-casting

• The footprint table can be preintegrated and stored for look-up

during execution (preintegration not possible in ray-casting)

• Most of the splatting algorithm pipeline can be implemented on

commodity 3D graphics hardware using texture-mapping and

geometric transformations to compute the 3D→2D kernel

projection

• As with ray-casting, in splatting we need only to process

“interesting” voxels and ignore the rest

• We can perform classification, shading and compositing and do

basically everything ray-casting can do, but not necessarily ray-

tracing can (e.g., shadows, reflections are harder, but doable, in

splatting)

18

STONY BROOK

UNIVERSITY

Shortcoming in Original Splatting Algorithm

• Recall that we project kernels based

on the volume plane most parallel

with the image plane

• This is called axis-aligned sheet

buffered splatting because the sheet

buffers are aligned with or

parallel/perpendicular to the x, y and

z-axes

• Kernels that lie next to each other on

the sheet are added together when

they project to the image plane

• Kernels in consecutive sheets are

composited together

• The problem is that addition and

compositing are not equivalent

19

• Two kernels that are added

contribute much greater intensity to

the image than if we had merely

composited them

• So what’s the problem with this?

STONY BROOK

UNIVERSITY

Popping Artifacts

• When one volume face becomes

more parallel to the other, the

orientation of the sheet buffers

switch since they are axis-aligned

• Whereas two kernels before were

added (black arrow), now they are

composited (yellow)

20

• This causes a “popping”

phenomenon when the viewing angle

is changed around the 45° mark

• Neither rendering on the left is

correct because the light has been

placed directly in front

• The renderings should look like this:44.8° 45.2°

STONY BROOK

UNIVERSITY

Image-Aligned Sheet Buffered Splatting

• The solution is to align the sheet buffers so that they are parallel with the image

plane

• This is called image-aligned sheet buffered splatting

• This means that, regardless of the volume’s orientation, we will always slice it

into sheets that are parallel to the image plane

• Remember that in practice, the 3D kernels overlap each other

21

image plane

Old way

image plane

New way

STONY BROOK

UNIVERSITY

Slicing Slabs

• Note that our sheet buffers are not

the same width as the kernel radius

• Each thin slab represents a portion of

the line integral through the entire

kernel

• This portion of the kernel is added to

the sheet buffer and then composited

• This improves accuracy over

integrating the entire kernel and then

compositing the whole thing

• The popping artifacts are eliminated

because each kernel is added to the

image plane: in the axis-aligned

approach, some kernels are

composited only!

22

• Therefore, the image-aligned

approach more closely resembles

ray-casting, which is not affected

significantly by volume orientation

STONY BROOK

UNIVERSITY

Splatting Examples

23

STONY BROOK

UNIVERSITY

Enhancements to Splatting

• In ray-casting, perspective projection

is achieved by setting the eye a

distance from the image plane

• The rays diverge towards the back of

the volume

• We can simulate this in splatting by

using larger 3D kernels for distant

voxels

• However, their screen space

projections will have the same size as

nearer voxels

• This means that “many” distant

voxels affect the same number of

pixels as a “few” near voxels

24

• Larger splats also facilitate anti-aliasing,

which tries to mask artifacts caused by

under-sampling distant voxels

STONY BROOK

UNIVERSITY

Early Splat Termination

• In analogy with ray-casting’s early ray termination optimization, we

can perform early splat termination

• It works in pretty much the same way as early ray termination: we

project (splat) two volumes: the density volume itself and an

opacity volume

• When the opacity at a pixel reaches 1.0 (or near to 1.0) we can stop

processing that pixel further

• In practice, we project a voxel onto the screen and compute a (2D)

bounding box around the pixels that cover the splat

• If all pixels inside that box have full opacity, we can skip

processing this voxel and move on to the next

25

