
STONY BROOK

UNIVERSITY
1

Shear-Warp Volume Rendering Algorithm

• So far we have seen ray-casting, an image-order algorithm; and splatting,

an object-order algorithm

• Today we will see a hybrid volume rendering algorithm that exhibits

characteristics of both image-order and object-order algorithms

• We will see the shear-warp algorithm, which is a very efficient algorithm

for volume rendering that can be implemented in software (and hardware)

and generate several frames per second

• The downside is that we lose a small amount of quality

• The idea is to render the volume onto an image plane parallel to one of

the volume faces, and then warp or distort this intermediate image to

generate the desired image

• It avoids the computational expense involved in rendering volumes at

arbitrary rotations

• This process is often referred to as a “shear-warp factorization of the

viewing matrix” in the literature

STONY BROOK

UNIVERSITY
2

Motivation of this Approach (1994)

• Image-order algorithms involve traversing the volume and

processing voxels encountered along the ray

• Hence, each voxel is visited many times

• This means that if a hierarchical data structure is used to accelerate

the ray traversal (to skip transparent voxels), we wind up

performing the same computations over and over

• Object-order algorithms (as of 1994) could not perform the ray-

casting equivalent of early ray termination

• Hence, although splatting was faster than ray-casting, it still could

not generate images at real-time frame rates

• The shear-warp algorithm was proposed to avoid these two

problems and to be an efficient software-only solution

• We will look at hardware-based rendering next week

STONY BROOK

UNIVERSITY
3

2D Shear

• In 2D, shearing can take
place along the x direction or
along the y direction

• Note that x shearing is
proportional to the y
coordinate

along x

along y





































z

y

xa

100

010

01

shear in x

direction





































z

y

x

b

100

01

001

shear in y

direction

STONY BROOK

UNIVERSITY
4

3D Shear

• In 3D, shearing can take place

along x, y or z

• (x,y)-shear, (x,z)-shear,

(y,z)-shear























1000

0100

010

001

y

x

sh

sh

(x,y) shear

STONY BROOK

UNIVERSITY
5

Image Warp

• An image warping is simply a

mapping from the pixels in one

image to pixels in another

• If the two images are not of

exactly the same resolution (as

is the case above) we need to

use interpolation

• Bilinear interpolation is one

possibility

• If high-res to low-res, we

perform some kind of image

shrinking

• Otherwise, it’s image

stretching

STONY BROOK

UNIVERSITY
6

Shear-Warp Algorithm Overview

• The main process in the shear-

warp algorithm is to simulate

rotations by shearing the

volume, rendering this sheared

volume onto an intermediate

image plane parallel to the

near face, and then warping

the intermediate image to the

final image plane

• Sheared object space

Overhead view (orthographic projection)

• By construction, in sheared

object space all viewing rays

are parallel to the third

coordinate axis, which we will

assume is z

STONY BROOK

UNIVERSITY
7

Perspective Projection

• It also works for perspective rendering if we also scale the distant

slices

STONY BROOK

UNIVERSITY
8

Shear-Warp Algorithm Overview

1. Transform the volume data to

sheared object space by

translating and resampling each

slice. For perspective

transformations, also scale each

slice.

2. Composite the resampled slices

together in front-to-back order.

This step projects the volume into

a 2D intermediate image in

sheared object space.

3. Transform the intermediate image

to image space by warping it. This

second resampling step produces

the correct final image.

STONY BROOK

UNIVERSITY
9

Properties of Shear-Warp Algorithm

1. Scanlines of pixels in the intermediate image are parallel to
scanlines of voxels in the volume data.

2. All voxels in a given voxel slice are scaled by the same factor.

3. For parallel projection, every voxel slice has the same scale factor,
and this factor can be chosen arbitrarily. In particular, we can
choose a unity scale factor so that for a given voxel scanline there
is a one-to-one mapping between voxels and intermediate-image
pixels.

• This third property initially avoids the problem of how to map
multiple voxel scanlines to a single pixel scanline and vice versa
(e.g., to specify an arbitrary image size).

• The warping step actually takes care of this issue, as we’ll see
later.

STONY BROOK

UNIVERSITY
10

Voxel Scanline Traversal

• Since we have a very strict procedure for traversing the voxels, we

can exploit this knowledge and incorporate some optimizations to

speed things up

• First optimization: use run-length encoding (RLE)

• Run-length encoding stores a sequence like

44444999933222555788

as

54 49 23 32 35 17 28

• For very large data-sets that exhibit very high spatial coherence,

RLE can save a lot of information

• Plus it is a form of lossless compression – no information is

discarded during the compression process (as opposed to lossy

compression)

STONY BROOK

UNIVERSITY
11

Run-Length Encoding

• In particular, we will take a classified volume, and perform RLE to

compute runs of transparent and opaque voxels

• Remembering that we will traverse the volume one scanline at a

time, can you think of why it might be useful to run-length encode

the voxels in this manner?

• So we can process only “interesting” voxels, those that will affect

the final rendered image

• We are likely to have large regions that are opaque or transparent,

so we should take advantage of spatial coherence whenever

possible

• Aside: spatial coherence vs. temporal coherence – what’s temporal

coherence?

• Where might we find temporal coherence in volume visualization?

STONY BROOK

UNIVERSITY
12

Offsets

• In addition to performing RLE on the volume, we will also store a

series of offsets that link non-transparent voxels together

• We classify each voxel before rendering begins

• Perform RLE

• Then we chain together all the opaque or mostly opaque voxels

• The combination of RLE and offsetting lets us process only the

“important” voxels and skip through the scanlines very quickly

• These voxels are resampled and composited into the image scanline

very easily then, as we will see now

STONY BROOK

UNIVERSITY
13

Scanline Traversal

• With these two optimizations at our disposal, we can traverse the
voxel and pixel scanlines very efficiently because we can
substantially reduce the amount of addressing arithmetic we
perform both in the volume and the intermediate image

• We perform our work only on those voxels and pixels that will
affect the final image

• By skipping opaque pixels, we can perform early ray termination

• Pixel run-length encoding is computed on-the-fly

STONY BROOK

UNIVERSITY
14

Parallel Projection with Shear-Warp Algorithm

• We will assume that the voxels

have been classified and shaded

already (pre-shaded pipeline

since we interpolate already-

shaded samples)

• Since the voxel and pixel

scanlines (in the intermediate

image) are parallel and have a 1-

to-1 correspondence, we will

process them in tandem.

• Due to translation, however, the

scanlines of the volume and

intermediate image may not line

up exactly.

• However, since each volume

scanline will be displaced with

respect to the intermediate image

plane by the same amount, we

can use the same bilinear

interpolation weights for all

resampled voxels (i.e.,

interpolated values that do line up

exactly with the pixels).

STONY BROOK

UNIVERSITY
15

Parallel Projection with Shear-Warp Algorithm

• Given a particular view direction, we pick the face of the volume is
most parallel to our image plane (or most perpendicular to the
viewing direction)

• Usually it’s not exactly parallel, which is why we warp the image

• To make things simple, suppose we implement our algorithm
assuming our view direction is in the general direction of z

• If, after determining which volume face is most parallel, we find
that our view direction is along x or y (or negative x or y), we
actually need to re-order the voxel’s by transposing the coordinate
axes

• How does this affect the RLE? Our RLE algorithm assumes the
scanlines run in a particular direction (along x or y or z)!

• To avoid this problem, we pre-compute three RLE volumes, one for
each direction

STONY BROOK

UNIVERSITY
16

Examples

• Movie time! (13)

STONY BROOK

UNIVERSITY
17

Observations about Shear-Warp Rendering

• Advantage: fast (for 1994) when opacity transfer function is kept

constant (to preserve the RLE volume)

• Disadvantages:

• Need to encode the volume after each opacity transfer function

change

• Not good for interactive iso-surface modification (i.e. when opacity

transfer function is varied)

• Need 3 encoded volumes, one for each main viewing axis

• True sampling rate in z varies between [1.0, 1.72] due to shearing

• Thus Nyquist theorem is almost always violated

• Leads to staircasing artifacts for diagonal views (e.g., at 45°)

• Blurring for magnified views, since volume is pre-shaded

STONY BROOK

UNIVERSITY
18

Fast Classification

• The inability to modify the opacity transfer function is a serious

limitation of the usefulness and applicability of the algorithm

• But there is hope!

• We will have to use something other than our RLE volume data

structure and traverse the voxel scanlines in a different manner

• Let us assume we have some opacity transfer function

α = f (p, q, …) on a multi-dimensional scalar domain, such as

• Using this function we want to figure out which portions of a

scanline are opaque and which portions we can just ignore it

• This discernment will be made using a recursive algorithm

|)|,(ddf 

STONY BROOK

UNIVERSITY
19

Fast Classification Algorithm

1. For some block of the volume that contains the current scanline,

find the extrema of the parameters of the opacity transfer function

(dmin, dmax,). These extrema bound a rectangular

region of the feature space.

2. Determine if the region is transparent, i.e., f evaluated for all

parameter points in the region yields only transparent opacities. If

so, then discard the scanline since it must be transparent.

3. Subdivide the scanline and repeat this algorithm recursively. If the

size of the current scanline portion is below a threshold then render

it instead of subdividing.

• In a nutshell, we replace pre-processing with a recursive process

used during the rendering algorithm

maxmin
, dd 

STONY BROOK

UNIVERSITY
20

Octree

• We partition the volume into a

recursive data structure known as an

octree

• Binary tree: each child has 2 nodes

• Quadtree: each child has 4 nodes

• Octree: each child has 8 nodes

• The octree is probably the single most

important non-trivial data structure in

all of volume visualization because…

• It can reduce certain algorithms from

O(n3) to O(log2 n3)=O(3 log2 n) =

O(log2 n)!

• Volume/volume intersection,

ray/volume intersection, etc.

STONY BROOK

UNIVERSITY
21

Min-Max Octree

• To accommodate step 1, we will construct a min-max octree, an

octree that contains in their nodes the extrema of the parameter

values (opacities). Note that these values are independent of the

view, or view-independent

• To accommodate step 2, we integrate the function f of opacities

over each region in a recursive fashion. Note, if a large area is

determined to have zero opacity, there is no need to check its 8

children (three cheers for recursion)

• During scanline traversal, we employ the octree and corresponding

integrals to recursively determine which portions of a scanline we

should process and which parts we can skip

• This whole algorithm is more complicated than using RLE, but is

(believe it or not) substantially faster

STONY BROOK

UNIVERSITY
22

Enhancements to Shear-Warp Algorithm

• Convert from pre-shaded to post-shaded pipeline

• Standard way in shear-warp is to classify and shade before

rendering starts, which makes it a classic pre-shaded algorithm

• At run time, when we resample and composite voxel scanlines into

the pixel scanlines, we perform bilinear interpolation on the colors

and opacities

• Instead, we can interpolate the densities inside each voxel scanline

during resampling, perform the classification and shading, and then

composite the results into the intermediate image

• The same amount of work is done in terms of interpolations

performed and does not degrade performance

• In retrospect it seems like an obvious solution, but no one seriously

compared pre- and post-shading until a few years later

STONY BROOK

UNIVERSITY
23

Perspective Projection

• Relatively easy to implement

perspective projection using a shear-

warp approach

• Voxels must be scaled as well as

translated (as usual)

• This complicates the resampling

process, which is no longer uniform

across the volume since two or more

voxel scanlines may project onto an

image scanline

• However, it’s still much faster than

ray-casting since we can still march

through the volume and image

scanlines in a fairly rigid order that

doesn’t change much from one

viewpoint to the next

