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Shear-Warp Volume Rendering Algorithm

• So far we have seen ray-casting, an image-order algorithm; and splatting, 

an object-order algorithm

• Today we will see a hybrid volume rendering algorithm that exhibits 

characteristics of both image-order and object-order algorithms

• We will see the shear-warp algorithm, which is a very efficient algorithm 

for volume rendering that can be implemented in software (and hardware) 

and generate several frames per second

• The downside is that we lose a small amount of quality

• The idea is to render the volume onto an image plane parallel to one of 

the volume faces, and then warp or distort this intermediate image to 

generate the desired image

• It avoids the computational expense involved in rendering volumes at 

arbitrary rotations

• This process is often referred to as a “shear-warp factorization of the 

viewing matrix” in the literature
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Motivation of this Approach (1994)

• Image-order algorithms involve traversing the volume and 

processing voxels encountered along the ray

• Hence, each voxel is visited many times

• This means that if a hierarchical data structure is used to accelerate 

the ray traversal (to skip transparent voxels), we wind up 

performing the same computations over and over

• Object-order algorithms (as of 1994) could not perform the ray-

casting equivalent of early ray termination

• Hence, although splatting was faster than ray-casting, it still could 

not generate images at real-time frame rates

• The shear-warp algorithm was proposed to avoid these two 

problems and to be an efficient software-only solution

• We will look at hardware-based rendering next week
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2D Shear

• In 2D, shearing can take 
place along the x direction or 
along the y direction

• Note that x shearing is 
proportional to the y
coordinate
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3D Shear

• In 3D, shearing can take place 

along x, y or z

• (x,y)-shear, (x,z)-shear,

(y,z)-shear
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Image Warp

• An image warping is simply a 

mapping from the pixels in one 

image to pixels in another

• If the two images are not of 

exactly the same resolution (as 

is the case above) we need to 

use interpolation

• Bilinear interpolation is one 

possibility

• If high-res to low-res, we 

perform some kind of image 

shrinking

• Otherwise, it’s image 

stretching
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Shear-Warp Algorithm Overview

• The main process in the shear-

warp algorithm is to simulate 

rotations by shearing the 

volume, rendering this sheared 

volume onto an intermediate 

image plane parallel to the 

near face, and then warping

the intermediate image to the 

final image plane

• Sheared object space

Overhead view (orthographic projection)

• By construction, in sheared 

object space all viewing rays 

are parallel to the third 

coordinate axis, which we will 

assume is z
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Perspective Projection

• It also works for perspective rendering if we also scale the distant 

slices



STONY BROOK

UNIVERSITY
8

Shear-Warp Algorithm Overview

1. Transform the volume data to 

sheared object space by 

translating and resampling each 

slice. For perspective 

transformations, also scale each 

slice. 

2. Composite the resampled slices 

together in front-to-back order. 

This step projects the volume into 

a 2D intermediate image in 

sheared object space.

3. Transform the intermediate image 

to image space by warping it. This 

second resampling step produces 

the correct final image.
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Properties of Shear-Warp Algorithm

1. Scanlines of pixels in the intermediate image are parallel to 
scanlines of voxels in the volume data.

2. All voxels in a given voxel slice are scaled by the same factor. 

3. For parallel projection, every voxel slice has the same scale factor, 
and this factor can be chosen arbitrarily. In particular, we can 
choose a unity scale factor so that for a given voxel scanline there 
is a one-to-one mapping between voxels and intermediate-image 
pixels.

• This third property initially avoids the problem of how to map 
multiple voxel scanlines to a single pixel scanline and vice versa 
(e.g., to specify an arbitrary image size).

• The warping step actually takes care of this issue, as we’ll see 
later.
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Voxel Scanline Traversal

• Since we have a very strict procedure for traversing the voxels, we 

can exploit this knowledge and incorporate some optimizations to 

speed things up

• First optimization: use run-length encoding (RLE)

• Run-length encoding stores a sequence like

44444999933222555788

as

54 49 23 32 35 17 28

• For very large data-sets that exhibit very high spatial coherence, 

RLE can save a lot of information

• Plus it is a form of lossless compression – no information is 

discarded during the compression process (as opposed to lossy 

compression)
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Run-Length Encoding

• In particular, we will take a classified volume, and perform RLE to 

compute runs of transparent and opaque voxels

• Remembering that we will traverse the volume one scanline at a 

time, can you think of why it might be useful to run-length encode 

the voxels in this manner?

• So we can process only “interesting” voxels, those that will affect 

the final rendered image

• We are likely to have large regions that are opaque or transparent, 

so we should take advantage of spatial coherence whenever 

possible

• Aside: spatial coherence vs. temporal coherence – what’s temporal 

coherence?

• Where might we find temporal coherence in volume visualization?
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Offsets

• In addition to performing RLE on the volume, we will also store a 

series of offsets that link non-transparent voxels together

• We classify each voxel before rendering begins

• Perform RLE

• Then we chain together all the opaque or mostly opaque voxels

• The combination of RLE and offsetting lets us process only the 

“important” voxels and skip through the scanlines very quickly

• These voxels are resampled and composited into the image scanline 

very easily then, as we will see now
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Scanline Traversal

• With these two optimizations at our disposal, we can traverse the 
voxel and pixel scanlines very efficiently because we can 
substantially reduce the amount of addressing arithmetic we 
perform both in the volume and the intermediate image

• We perform our work only on those voxels and pixels that will 
affect the final image

• By skipping opaque pixels, we can perform early ray termination

• Pixel run-length encoding is computed on-the-fly
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Parallel Projection with Shear-Warp Algorithm

• We will assume that the voxels 

have been classified and shaded 

already (pre-shaded pipeline 

since we interpolate already-

shaded samples)

• Since the voxel and pixel 

scanlines (in the intermediate 

image) are parallel and have a 1-

to-1 correspondence, we will 

process them in tandem.

• Due to translation, however, the 

scanlines of the volume and 

intermediate image may not line 

up exactly.

• However, since each volume 

scanline will be displaced with 

respect to the intermediate image 

plane by the same amount, we 

can use the same bilinear 

interpolation weights for all 

resampled voxels (i.e., 

interpolated values that do line up 

exactly with the pixels).
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Parallel Projection with Shear-Warp Algorithm

• Given a particular view direction, we pick the face of the volume is 
most parallel to our image plane (or most perpendicular to the 
viewing direction)

• Usually it’s not exactly parallel, which is why we warp the image

• To make things simple, suppose we implement our algorithm 
assuming our view direction is in the general direction of z

• If, after determining which volume face is most parallel, we find 
that our view direction is along x or y (or negative x or y), we 
actually need to re-order the voxel’s by transposing the coordinate 
axes

• How does this affect the RLE?  Our RLE algorithm assumes the 
scanlines run in a particular direction (along x or y or z)!

• To avoid this problem, we pre-compute three RLE volumes, one for 
each direction
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Examples

• Movie time! (13)
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Observations about Shear-Warp Rendering

• Advantage: fast (for 1994) when opacity transfer function is kept 

constant (to preserve the RLE volume)

• Disadvantages:

• Need to encode the volume after each opacity transfer function 

change

• Not good for interactive iso-surface modification (i.e. when opacity 

transfer function is varied)

• Need 3 encoded volumes, one for each main viewing axis

• True sampling rate in z varies between [1.0, 1.72] due to shearing

• Thus Nyquist theorem is almost always violated

• Leads to staircasing artifacts for diagonal views (e.g., at 45°)

• Blurring for magnified views, since volume is pre-shaded
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Fast Classification

• The inability to modify the opacity transfer function is a serious 

limitation of the usefulness and applicability of the algorithm

• But there is hope!

• We will have to use something other than our RLE volume data 

structure and traverse the voxel scanlines in a different manner

• Let us assume we have some opacity transfer function 

α = f (p, q, …) on a multi-dimensional scalar domain, such as

• Using this function we want to figure out which portions of a 

scanline are opaque and which portions we can just ignore it

• This discernment will be made using a recursive algorithm

|)|,( ddf 
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Fast Classification Algorithm

1. For some block of the volume that contains the current scanline, 

find the extrema of the parameters of the opacity transfer function 

(dmin, dmax,                        ). These extrema bound a rectangular 

region of the feature space.

2. Determine if the region is transparent, i.e., f evaluated for all 

parameter points in the region yields only transparent opacities. If 

so, then discard the scanline since it must be transparent.

3. Subdivide the scanline and repeat this algorithm recursively. If the 

size of the current scanline portion is below a threshold then render 

it instead of subdividing.

• In a nutshell, we replace pre-processing with a recursive process 

used during the rendering algorithm

maxmin
, dd 
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Octree

• We partition the volume into a 

recursive data structure known as an 

octree

• Binary tree: each child has 2 nodes

• Quadtree: each child has 4 nodes

• Octree: each child has 8 nodes

• The octree is probably the single most 

important non-trivial data structure in 

all of volume visualization because…

• It can reduce certain algorithms from 

O(n3) to O(log2 n3)=O(3 log2 n) =

O(log2 n)!

• Volume/volume intersection, 

ray/volume intersection, etc.
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Min-Max Octree

• To accommodate step 1, we will construct a min-max octree, an 

octree that contains in their nodes the extrema of the parameter 

values (opacities).  Note that these values are independent of the 

view, or view-independent

• To accommodate step 2, we integrate the function f of opacities 

over each region in a recursive fashion.  Note, if a large area is 

determined to have zero opacity, there is no need to check its 8 

children (three cheers for recursion)

• During scanline traversal, we employ the octree and corresponding 

integrals to recursively determine which portions of a scanline we 

should process and which parts we can skip

• This whole algorithm is more complicated than using RLE, but is 

(believe it or not) substantially faster
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Enhancements to Shear-Warp Algorithm

• Convert from pre-shaded to post-shaded pipeline

• Standard way in shear-warp is to classify and shade before 

rendering starts, which makes it a classic pre-shaded algorithm

• At run time, when we resample and composite voxel scanlines into 

the pixel scanlines, we perform bilinear interpolation on the colors 

and opacities

• Instead, we can interpolate the densities inside each voxel scanline 

during resampling, perform the classification and shading, and then 

composite the results into the intermediate image

• The same amount of work is done in terms of interpolations 

performed and does not degrade performance

• In retrospect it seems like an obvious solution, but no one seriously 

compared pre- and post-shading until a few years later
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Perspective Projection

• Relatively easy to implement 

perspective projection using a shear-

warp approach

• Voxels must be scaled as well as 

translated (as usual)

• This complicates the resampling 

process, which is no longer uniform 

across the volume since two or more 

voxel scanlines may project onto an 

image scanline

• However, it’s still much faster than 

ray-casting since we can still march 

through the volume and image 

scanlines in a fairly rigid order that 

doesn’t change much from one 

viewpoint to the next


