
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Computer Graphics
• (Realistic) pictorial synthesis of real and/or imaginary

objects from their computer-based models (datasets)

• It typically includes modeling, rendering (graphics
pipeline), and human-computer interaction

• So, we are focusing on computer graphics hardware,
software, and mathematical foundations

• Computer Graphics is computation
– A new method of visual computing

• Why is Computer Graphics useful and important?

• Course challenges: more mathematics oriented,
programming requirements, application-driven, inter-
disciplinary in nature, etc.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computer Graphics Systems

CSE564 Lectures

Graphical

Models

Rendering

Output Device

Rendering

Parameters

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Output Devices

• Vector Devices

– Lasers (for example)

• Raster Devices

– CRT, LCD, bitmaps, etc.

– Most output devices are 2D

– Can you name any 3D output devices?

CSE564 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Graphical Models
• 2D and 3D objects

– Triangles, quadrilaterals, polygons

– Spheres, cones, boxes

• Surface characteristics

– Color, reaction to light

– Texture, material properties

• Composite objects

– Other objects and their relationships to each other

• Lighting, fog, etc.

• Much, much more…

CSE564 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering

• Conversion of 3D model to 2D image

– Determine where the surfaces “project” to

– Determine what every screen pixel might see

– Determine the color of each surface

CSE564 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering Parameters

• Camera parameters

– Location

– Orientation

– Focal length

CSE564 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

2D Graphics vs. 3D Graphics

• 2D

– X, Y - 2 dimensions only

– We won’t spend time on 2D graphics in this course

• 3D

– X, Y, and Z

– Space

• Rendering is typically the conversion of 3D to

2D
CSE564 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

3D Coordinate Systems

CSE564 Lectures

X

Y

Z
Right-Hand Coordinate System

OpenGL uses this!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

X

Y
Z

Left-Hand Coordinate System

Direct3D uses this!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

How to Model/Render This?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Render/Display a Box in OpenGL

• We render the 6 faces as polygons

– Polygons are specified as a list of vertices

– Vertices are specified in counter-clockwise order

looking at the surface of the face!

A B

C
D

E F

GH

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Visualizing in 3D

X

Y

Z

1.0

z=1.0

x=1.0

y=1.0

A B

CD

E F

GH

Counter-clockwise

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Conventions

• C library

– All function names start with gl

• OpenGL is a retained mode graphics system

– It has a state

– glBegin(GL_POLYGON) puts us into a polygon

rendering state

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Polygon Rendering

GLdouble size = 1.0;

glBegin(GL_POLYGON); // front face

glVertex3d(0.0, 0.0, size);

glVertex3d(size, 0.0, size);

glVertex3d(size, size, size);

glVertex3d(0.0, size, size);

glEnd();

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Types

• Basic numeric types

– GLdouble = double

– GLfloat = float

– GLint = int

– GLshort = short

• Mostly, you’ll use GLdouble and GLfloat

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Defined glVertex3fv

Prefix

gl

glu

wgl

agl

Function

Vertex

Begin

End

Lighting

…

Parms

1

2

3

4

…

Type

f (float)

d (double)

i (integer)

b (byte)

s (short)

Suffix

v (vector)

Only if varying arguments

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Function Suffixes

• Many functions have alternatives

– Alternatives are specified by the suffix

– glVertex2d

• 2 double parameters

• void glVertex2d(GLdouble x, GLdouble y);

– glVertex3f

• 3 float parameters

• void glVertex3f(GLfloat x, GLfloat y, GLfloat z);

– glVertex3fv
• void glVertex3fv(const GLfloat *v);

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

All of Them…
• glVertex2d, glVertex2f, glVertex2i, glVertex2s,

glVertex3d, glVertex3f, glVertex3i, glVertex3s,

glVertex4d, glVertex4f, glVertex4i, glVertex4s,

glVertex2dv, glVertex2fv, glVertex2iv, glVertex2sv,

glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv,

glVertex4dv, glVertex4fv, glVertex4iv, glVertex4sv

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Vector Parameters

A B

C
D

E F

GH

GLdouble a[] = {0, 0, 1};

GLdouble b[] = {1, 0, 1};

GLdouble c[] = {1, 1, 1};

GLdouble d[] = {0, 1, 1};

glBegin(GL_POLYGON); // front face

glVertex3dv(a);

glVertex3dv(b);

glVertex3dv(c);

glVertex3dv(d);

glEnd();

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Specify a Color (No Lighting)

• glColor3f(red, green, blue);

• Most of the same suffixes apply…

GLdouble size = 1.0;

glColor3d(1.0, 0.0, 0.0); // red

glBegin(GL_POLYGON); // front face

glVertex3d(0.0, 0.0, size);

glVertex3d(size, 0.0, size);

glVertex3d(size, size, size);

glVertex3d(size, 0.0, size);

glEnd();

Colors range

from 0 to 1

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

How to Model/Render This?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Top View

Front View Side View

a
b

cd

e f

gh

a
b

i j

e f

m n

f g

n o

3.00

1.00 1.00 1.00

YY

X Z

Z

X

3.00

1.00

1.00

1.00

1.00

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Top View

Front View Side View

a
b

cd

e f

gh

a
b

i j

e f

m n

f g

n o

3.00

1.00 1.00 1.00

YY

X Z

Z

X

3.00

1.00

1.00

1.00

1.00

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Labels
Top View

Front View Side View

a b

cd

e f

gh

a b

Bottom labels

i j

kl

m n

op

i j

e f

m n

f g

n o

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

The Basic Idea

• Describe an object using surfaces

• Surfaces are polygons

– Triangles, quadrilaterals, whatever

– Important thing is that they are flat

– They must also be convex

• Provide points in counter-clockwise order

– From the visible side

