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Introduction
• The practice of modern medicine incorporates an 

enormous amount of image data

• Traditional computational vision relies on 
cameras and, more recently, range finders

• Medicine uses, to name a few:

– Computed Tomography (CT)

– Magnetic Resonance Imaging (MRI)

– X-ray fluoroscopy

– Ultrasound
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Medical Physics and Imaging 
Fundamentals
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Imaging Modalities
• Diagnostic Radiography ionizing radiation or x-rays to 

produce images of various parts of the body.

• Magnetic Resonance Imaging (MRI) uses radio 
frequency waves and magnetic forces to provide images 
of internal organs and tissues.

• Sonography uses high frequency sound waves to create 

images of tissues, organs, and vessels.

• Computed Tomography (CT) provides cross-sectional 
or “3D” images of the anatomy.
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Diagnostic Radiography (“X-Ray”)

• Uses ionizing radiation to study anatomy and 

physical structures in human or veterinary 

medicine.

• Other modalities build on the foundation of 

diagnostic radiography. 
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Diagnostic Radiography
• The first image is a normal chest x-ray

• The second image shows a chest x-ray of a person who 

swallowed a whistle
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Diagnostic Radiography
• A Radiologic technologist must master the subjects of 

anatomy and physiology. They are the foundations for 

diagnostic radiography.
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Diagnostic Radiography
• The following image 

shows an x-ray of a hand 

with a middle broken 

finger. A Radiologic 

technologist must know 

every bone in the body! 

Can you identify the 

broken bone?
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Modalities: X-ray Fluoroscopy
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Modalities: CT

© L. Joskowicz (HUJI)
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Medical Image Examples – CT
• Bones has high 

value level

• Soft tissues has 

relatively low 

contrast
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Computed Tomography (CT Scan)
• CT uses a rotating x-ray machine to obtain cross-

sectional images or “slices” of the anatomy to observe a 

wide range of angles within the body.

• CT can be used to image brain, neck, chest, abdomen, 

pelvis and extremities.

• CT provides “3D” imaging to diagnose fractures, 

strokes, cancer and other abnormalities.
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CT Scan
• The next slide shows a CT of the abdomen.  A CT “slice” 

is a cross sectional image that provides a great deal of 

information. Many slices are reviewed to make a 

diagnosis
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Magnetic Resonance Imaging(MRI)
• Uses the magnetic properties of hydrogen to produce an 

image.

• Uses a very powerful, super-conducting magnet.

• All planes in a body can be viewed.

• MRI is an effective diagnostic tool that demonstrates 

tissue, muscle, cartilage, and fat using no ionizing 

radiation.
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MRI
• The next slide is an image of a human brain taken with 

magnetic resonance imaging.

• You can actually see the sections of the brain in the image.
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Medical Image Examples – MR
• Soft tissues has 

high contrast

• Bones are 

“black”, with no 

signal.
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Modalities: MRI
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Modalities: Ultrasound
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Medical Image Examples – US
• 2D, planar

• 3D, space

• 4D, dynamic 

space 

• Dopler, blood 

flow
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Ultrasound, or Sonography
• Uses sound waves to study, treat and to reach a body 

area.

• High frequency sound waves are transmitted to the 

areas of interest and the returning echo is recorded.

• It is non-invasive and involves no radiation.

• Ultrasound is used in the diagnosis and treatment of 

organ malfunctions.

• Sonographers work in hospital rooms, emergency 

rooms, operating rooms and clinics assisting with many 

complicated diagnostic procedures.
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Obstetrical Ultrasound
• Diagnoses an assessment of early pregnancies.

• Determines gestational age and fetal size.

• Determines multiple pregnancies.

• Determines sex.

• Observes a fetal image as observed in the next slide.
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Data Sources
• Computer tomography (CT):

• X-ray

• Structural information, diagnostic

• Axial, Spiral

• Housfield units (HU, CTU), air = –1000 HU, 

water = 0 HU

• Magnetic resonance (MR):

• Magnetic nuclear resonance

• Density of hydrogen nucleuses

• Structural information, diagnostic

• Functional MR

• MR spectroscopy

• Ultrasound (US):

• Reflection of ultrasound waves on tissue 

boundaries

• 2D, 3D, 4D - structural information, diagnostic

• Dopler – functional information, blood flow

• Positron emission 

tomography (PET):

• Positron emitter is put 

inside of body

• Space positron emission is 

scanned, in plane slices

• Functional information

• Nuclear medicine (NM):

• Gamma emitter in put 

inside of body

• Plane gamma emision is 

scaned by gamma camera

• Functional information
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Data Sources
• These medical diagnostic methods produce images

• The methods are not invasive

• We can look inside without cuts

• Some of the methods make patients radiation stress (CT, 

NM, PET)

• The methods are based on several physical principles 

(medical physics)

• The images describe geometry, structure, and physical 

behaviors of tissues (density, chemical composition, …)
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Medical image examples – PET
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Medical Image Examples – NM
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Data Properties
• Focused on CT/MR data

• CT/MR data have defined geometry 

(cubed homog. grid) and good resolution 

(~0.5 mm)

• One CT/MR exploration consists of 

several planar sections (slices) 

• Each slice is defined by 2D orthogonal 

matrix

• Therefore, the exploration is defined by 

3D orthogonal grid

• The grid is described by discrete 

distribution of physical scalar values (HU) 

in volume.
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Data Properties
• In graphics/visualization we can call 

the data grid also: “volume (voxel) 

data”

• An image is cross section through

volume, with color mapping

• We can use three basic image planes 

(xy, xz, yz)

• Scalar values are stored in 12 bits 

information, but are saved in 16 bits

• Typical exploration have ~ 100 - 200 

slices, typical matrix size is 5122, data 

has ~ 52 - 104 MB.

Volume

Volume grid node
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Medical Image Processing/Analysis 
and Geometric Models

• Data acquisition

• Image generation

• Image processing/analysis

• Tissue geometric models
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Color Mapping

• Volume data describe discrete 
distribution of physical scalar 
values

• We need to display grayscale 
image (medical standard)

• Therefore, we have to make color 
mapping of physical values

• 12 bits value have 4096 levels

• 8 bits grayscale color have 256 
levels

• Density window:

– Defined by values of window 
center and width

– Linear interpolation (or 
equalization) of window 
values, from black to white

0 4095

255

C

W
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Color Mapping, Examples
C – 500

W - 2000

C – 500

W – 2000

equalization

C – 500

W - 1000

C – 100

W – 300
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Image-based Computing Pipeline

Image

Acquisition

De-noising/

Enhancement

Segmentation•PDE model/

Simulation

• Electric 

potential

• Heat 

distribution



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Medical Image Analysis: Overview

CSE564 Lectures

• The practice of modern medicine incorporates an 
enormous amount of image data

• Traditional computational vision relies on 
cameras and, more recently, range finders

• Medicine uses, to name a few:

– Computed Tomography (CT)

– Magnetic Resonance Imaging (MRI)

– X-ray fluoroscopy

– Ultrasound
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• Thresholding (normal and adaptive)

• Level sets (2D and 3D)

• Shape models

• Level sets + shape models

• And beyond…
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• In medicine, 3D segmentation often proceeds as 

a boundary propagation problem along the 2D 

slices of the data

• Starting point for contour in new slice comes 

from the final contour in the previous slice
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• Can think of this problem as one of tracking a moving interface 

in time

• What happens as the interface splits and rejoins?
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Tissue Segmentation
• Volume data describe discrete distribution 

of physical scalar values

• We need tissues distribution

• Segmentation process:
– It is not trivial, thresholding is not enough, values overlapping.

– It is not yet fully automatic

– It is still an open problem

• Practice:
– Semi-automatic preprocessing:

• Active contouring, PCA, ICA, Watershed, Implicit 

surfaces …

• Combination of methods by probability 

– Manual corrections are needed

– Multiplanar, 2.5D (three planes)

– Raster based  x  vector based segmentation

• Produce tissue voxel models
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• Solve for correct correspondences between two or more 
shapes

• Difficult due to the shape variations (pose, deformation 
noise,…)
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• Tracking objects in motion, 3D morphing in 
virtual reality,

• Nonlinear registration,…
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• Snakes have difficulty dealing with changing 

topology

• Requires messy bookkeeping of control points
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• Level sets deal with this in a very clever way.

• We add a dimension to the problem and 

propagate the “level set surface” instead of the 

curve

• The boundary becomes the “zero level set”
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Sethian (UC Berkeley)



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Level Sets

CSE564 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Level Sets

CSE564 Lectures

• Now the question remains, how do we propagate the 
level set function?

• F is a term representing the speed of motion
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• Typical level set speed function F

• The 1 causes the contour to expand in the object

• The - (viscosity) term reduces the curvature of the contour

• The final term (edge attraction) pulls the contour to the edges

• Other terms possible depending on your application

• Level sets trivially extend to 3D segmentation

 IF   1
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• Results: femur segmentation
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• ICCV 2003: Geodesic contours + Min Cuts

Boykov, et al.
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• Can incorporate priors based on shape models 

into the F term in the level set equation.

• Leads to robust segmentations of challenging 

objects without much initialization

Leventon, et al.
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Tissue Geometry Modeling
• Practically oriented

• Focused on human tissue geometry models creation, based 

on CT/MR volume data

• On input are segmented CT/MR data – tissue voxel models

• Some basic problems in the models creation process
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The Problems
Each medical subject is 

individual, nothing is exactly 

the same

We need to create special 

geometry model for each 

tissue

Therefore, used methods have to be
geometry and topology independent and fully automatic

 Tissues has complex geometry and 

small details

 Manual tissues geometry models 

creating process is not possible
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Tissue Models Creation Process
• Input data are volume discrete data, voxel models

• Output data have to be vector based models

• Therefore, creating process consist of several steps:

– Vectorization, transformation from discrete to vector data 

representation

– Vector model modification

• Vector model smoothing

• Vector model elements number reduction (decimation)

• Quality optimization

– Export for particular application

• Data format (VRML, STL, DXF, IGES, …)

• NURBS surface

• Finite element method (FEM) model
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Vectorization – Marching Cubes
• Famous, classical vectorization

algorithm, Lorensen, Cline, 1987

• Take 8 neighbor voxels in cube 

position and evaluate state

• March through all volume

• Fully automatic

• Geometry independent

• Produce closed (almost) and 

oriented boundary triangular meshes

• High level of detail, in resolution of 

input discrete grid
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Marching Cubes - Holes

• In case of neighbor state complement it 

sometimes produce squared hole

• It is necessary to detect and correct the errors 

(patch holes) during vectorization process
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Marching Cubes - Ambiguities

• In case diagonal position of full voxel it is 

possible evaluate it in two ways

• It is necessary make choice of only one 

interpretation (based on vertex unique 

identification) and use it strictly 
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Marching Cubes - Surface

• Resulted meshes has a lot of small elements and 

edgy and layered character



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Shape Models

CSE564 Lectures

• New shape can be seen as a linear combination 

of the basis shapes

Patient A Patient B
Tsai, et al.
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• Learn modes of variation of a structure

• Use PCA to generate orthonormal basis of 

variation

• Example: prostate segmentation

• Start with a training set of segmented prostates
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• Mean shape and of 1st 4 principal modes of variation

Tsai, et al.
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Smoothing

• Edgy and layered surfaces produced by MC is 

needed to be smooth
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Smoothing – Laplacian Operator
• Laplacian filtering – averaging 

vertex position

• A very simply method

• Volume shrinking problem

• Geometry distortion

• Is hard to find accurate level
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Smoothing – Taubin
• Taubin G., Geometry signal 

processing on polygonal meshes

• Low pass filtering

• Shrinking problem solution

• Laplacian filtering in two steps:

– Shrinking with factor λ

– Unshrinking with factor μ
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Triangle Number Reduction
• Triangle number of meshes produced by MC 

need reduction

• Because of applications mesh quality have to 

by saved

• Need ~ 99% reduction

• Tested algorithm:

– Schroeder W. Decimation of triangle meshes

– Garland M. Surface simplification using quadric error 

metrics

• Our algorithm:

– Polygonal models simplification with volume error 

metrics

– Version of edge collapsing algorithm
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Applications

• Medicine:
– Diagnostic tissue visualization (VRML, OpenGL)

– Implants design (CAD), producing (CAM) and simulations (FEM)

– Surgery planning and simulations (VRML, OpenGL, CAD, CAS)

– Used formats: VRML, STL, DXF (triangular polygonal surfaces), IGES (NURBS 

polysurfaces)

• Biomechanics:
– Computational modeling of tissues (bones, muscles) behaviour (stress and 

deformation)

– Automatic creating of tissue FEM models from boundary triangular meshes:

– Creating process:

• 3D Delaunay triangulations based on boundary triangular meshes

• Tetrahedral mesh quality optimization

• Direct import into some FEM system (ANSYS)



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

FEM Models - Skull

+ VRML models
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FEM Models - Pelvis

+ VRML models
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Dental Surgery 

+ VRML modelsmaxilla

implants gingiva
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Dental Surgery – Physical Output

Made maxilla model
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Orthopedic

+ VRML models

Femur implant
Bone cancer area
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Aesthetic Surgery

+ VRML models
resections
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Image Registration: Overview

• Image registration aims to determine a spatial 

transformation (T), or mapping, that can map 

positions in one image, to corresponding 

positions in one or more other images 

• 3D - 3D

• 3D - 2D
• 3D/2D - patient

Source image Target image
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• “The process of establishing a common, 

geometric reference frame between two data 

sets.”

• Previously used in vision to align satellite 

images, generate image mosaics, etc.
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• Explosion of data, both 2D and 3D from many 

different imaging modalities have made 

registration a very important and challenging 

problem in medicine
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Different Imaging Modalities

X-rays CTAngiographyMRI

Ultrasound SPECT PET
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Registration

Preoperative Intraoperative

X-rays

US NMR

CT MRI Fluoro

CAD

Tracking

US

Open MR

Special sensors Video

Combined Data

© L. Joskowicz (HUJI)



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Image Registration: Categories

• Same modality, same patient

- monitor and quantify disease progression over time,

- evaluate intraoperative brain deformation, etc.

• Different modalities, same patient

- correction for different patient position between scans,

- link between structural and functional images, etc.

• Same modality, different patients

- Atlas construction,

- studies of variability between subjects, etc.
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Image 1 Image 2 Registered
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• Task of calculating the transformation between 

two or more data sets…..

• Transformation – Rigid-body, Linear affine, 

Non-linear

• Data sets – 2D or 3D
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Illustrating the Registration 
Process
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• Rigid-body:- consisting of only rotation and translation

Original Image                                  Same after a rigid transformation
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• Linear affine:- scaling, translation, rotation, reflection

Original Image                     Same after a linear affine transform
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• Non-linear transformation – changes shape of an object. 

e.g. warping, morphing etc.

Image of a person            Image of a mandrill             Result of warping
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Data Registration is Ubiquitous

CSE564 Lectures

• Medical imaging – brain tumors, lung cancer, 
cardiac studies, complex surgery …. 

• Scene analysis

• Object recognition

• Remote sensing

• Automated monitoring

• Industrial inspection

• Robot vision
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• Illustration 1:- Study of Brain tumor

knowledge from Single Photon Emission Computed Tomography (SPECT)

Registered to have both types of knowledge simuAnatomical knowledge from Magnetic Resonance Imaging 
(MRI)

Physiological/functional simultaneously
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• The top row shows Positron Emission Tomography (PET) images

• The bottom row shows MRI with a contour

• The middle row shows image registration using both MRI and PET
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• The top-left shows a PET image of the thorax, the top-right hows the x-ray CT scan of 

the same. The bottom images are results of PET-CT registration.   
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© L. Joskowicz (HUJI)Ref_MRI Ref_NMR
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• Points-based
– 3D points calculated using an optical tracker

• Surfaces
– Extracted from images using segmentation algorithms

• Intensities
– Uses the raw voxel data itself
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Schemes
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• Landmark based –

• Surface based –

• Registration based on voxel intensities –

• 2D-3D registration –

• Intersubject registration –

• Intrasubject registration -
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• Control-point based – Involves identification of 
corresponding landmark points

• Moment based – Uses information like centre of 
gravity, principal axis and moments of inertia

• Edge-based – Takes advantage of an existing neat 
contour

• Optimization of a similarity measurement – Aims at 
achieving best fit between two images using some sort 
of similarity like correlation coefficient etc.
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Two data sets before ICP Two data sets after ICP



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Brief Mathematical Foundations
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• Centroid of a data set :-The centroid of a data set is the weighted 

mean of all data points present in the set. For a data set A having 

N points, each denoted by ai the centroid is given by:-

μA = (1/N) Σ ai 

• Covariance Matrix :- This gives a measure of similarity between 

2 data sets to be matched. If μA  and μB are the centroids  of the 

data sets A and B respectively then, the Covariance Matrix 

between the two sets is given by:-

ΣAB = Σ (ai - μA) (bi - μB)T
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• Eigenvalues :- A given N x N matrix  C is said to have an eigenvector x and 
corresponding eigenvalue λ if the following equation holds:-

C.x = λx

The above equation can hold iff | C – λI | = 0.  

where | P | denotes determinant of the matrix P.  

It is to be noted that the last equation if expanded out, is an Nth degree 
polynomial in λ, whose roots are the eigenvalues of the matrix C.

• Mean Square Error :- The Mean Square error (MSE) between 2 data sets A and 
B having N points each is given by :-

MSE = (1/N) Σ ||ai – bi||
2

where || || denotes the L2 -Norm/Euclidean Norm between 2 data points.
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• Quaternions:-

A Quaternion (q) is a 4-dimensional vector consisting of a scalar component 

(q0) and a vector part (q1, q2 , q3). So, we can write :-

q = q0 + q1 i + q2 j + q3 k

• Quaternions and Rotation Sequences:-

Rotations are represented by a special class of quaternions having the property 

q0
2 + q1

2 + q2
2 + q3

2 = 1.

Rotation by an angle θ about an unit vector (q1 , q2 ,,q3) can be represented by a 

quaternion qR as:-

qR = cos(θ/2) + q1 sin (θ/2) i + q2 sin (θ/2) j + q3 sin (θ/2) k 

We can have also have a 3x3 Rotation Matrix from a given qR 
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Basic Features -

• Prior knowledge of correspondence is required between two sets to be matched. 

It is a non-iterative algorithm.

SVD algorithm :-

Input :- Two sets of points A and B containing N points each.

Output :- R and T needed to match the two sets.

Steps :- a) Compute the centroid of each data set as μA and μB

b) Calculate the co-variance matrix ΣAB

c) Do the SVD decomposition of the ΣAB = U Λ VT

d) Calculate the matrix X = VUT

e) If determinant of X = 1, then X = R, R being the rotation matrix.

f)  Finally figure out T from the equation:- T = μB - RμA 
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Basic Features -
• No prior knowledge of correspondence is required between two sets to be matched. 

Moreover, these two sets in most cases don’t have same number of points to begin with. 
It is an iterative algorithm.

ICP algorithm :-
Input :- Two sets of points A and B containing say K and N points.

Output :- R and T needed to match the two sets.

Steps:- a)  Compute the closest set C. Note that C is a sub-set of B.

b) Compute the centroid of each data set as μA and μC

c) Calculate the co-variance matrix ΣAC

d) Determine a 4x4 symmetric matrix Q from ΣAC 

e) Unit eigenvector that corresponds to the maximum eigenvalue of Q is    
the optimal rotation quaternion qR. Then calculate R.

f) Obtain T from the equation:- T = μC - RμA 

g) Update set A with the R and T i.e. get a new A say A1 from the original A say A0

h) Calculate the MSE between C and A1

i) If the MSE falls below a certain threshold,  stop else go back to a) with A = A1



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Multi-modal Registration 

Data Set

#1

Feature

Selection

Feature

Selection

T

Similarity

Measure

Optimizer

Transform

Data Set

#2



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Algorithmic Components

• Similarity: the similarity criterion measures how well 

2 images match

• Transformation: The transformation specifies the 

way in which the source image can be matched the 

target image. A number of numerical parameters 

specify a particular instance of the transformation

• Optimization: The optimization process varies the 

parameters of the transformation model to maximize 

the matching criterion
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• Gradients

– Gradient descent

– Conjugate-gradient

– Levenburg-Marquardt

• No gradients

– Finite-difference gradient + above

– Best-neighbor search

– Nelder-Mead

– Simulated annealing 
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Transformations
• Rigid (6 DOF)

– 3 rotation

– 3 translation

• Affine (12 DOF)

– 6 from before

– 3 scale

– 3 skew

• Non-rigid (? DOF)

– As many control points as your favorite supercomputer can handle

CSE564 Lectures
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• Rigid transformation: 6 parameters

T depends of tx, ty, tz ,θx, θy, θz

• Affine transformation: 12 parameters

T depends of tx, ty, tz ,θx, θy, θz ,sx, sy, sz ,cx, cy, cz

• Nonrigid transformation: number of parameters 

{αi}

T depends of α1, α2, … ,αn-1, αn
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Transformations

© T. Rohlfing (Stanford)
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Different Types of Transformation
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Rigid, Affine, and Nonrigid 
Transformations

Translation
tx, ty, tz

Rotation
θx, θy, θz

Scale
sx, sy, sz

Shear
cx, cy, cz
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Transformation Serves 2 Purposes
1) Controls how image features can be moved relative to 

one another to improve the image similarity

example:

2) Interpolates between those features
G(T)=∑i |T(pi)-qi|2 is minimum
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Different Components

1) Similarity

The similarity criterion measures how well 2 images match

2) Transformation

The transformation specifies the way in which the source image 

can be changed to match the target. A number of numerical 

parameters specify a particular instance of the transformation

3) Optimization

The optimization process varies the parameters of the 

transformation model to maximize the matching criterion
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Transformation + Optimization

2) Transformation

The transformation specifies the way in which the 

source image can be changed to match the target. A 

number of numerical parameters specify a particular 

instance of the transformation

3) Optimization

The optimization process varies the parameters of the 

transformation model to maximize the matching 

criterion
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Similarity Measurement

• Geometry-based, or

• Intensity-based
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• Intra-modality

– normalized cross-correlation

– gradient correlation

– pattern intensity

– sum of squared differences

• Inter-modality

– mutual information (the industry standard)
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Geometry-based Similarity Measures
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Geometry-based Similarity Measures

1) Point-based similarity measures (Procrustes 

problem):  Given 2 configurations of N points in D 

dimensions P={pi} and Q={qi} extracted from source 

image A and target image B, the transformed source and 

target images will be most similar when

G(T)=|T(P)–Q|2 is minimum. The notation is P, Q are 

N-by-D matrices whose rows are the coordinates of the 

points pi ,qi, that correspond, and T(P) the matrix of 

transformed points pi.
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Geometry-based Similarity Measures

2) Surface-based similarity measure: closest point

Given 2 surfaces Sp and Sq extracted from source image 

A and target image B, the transformed source and target 

images   will be most similar when G(T)=∑i |T(pi)-qi|
2 is 

minimum. The notation is P={pi} is the set of points 

representing Sp and Q={qi} is the set of points such that 

qi is the closest point of pi on Sq

Note: A lot of other geometric-based similarity measures exist
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Geometry-driven Approach
• Matches identifiable anatomical features, like points or 

surfaces, extracted from source and target images.

example bifurcation of blood vessels, center of orbit of 

the eyes, …

Advantage: the use of structural information ensures 

that the mapping has biological validity and allows the 

transformation to be interpreted in terms of the 

underlying anatomy or physiology
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Intensity-Driven Approach

• Matches intensity patterns in each image using 

mathematical or statistical criteria

Advantage: all (or a large proportion of) data is 

used in source

and target images
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Intensity-based Similarity Measure

1) Sum of square intensity difference (SSD)

Given the voxel location xB of the target image B, 

and the  overlapping domain Ω, comprising N voxels,

between the transformed source image and target 

image, these two images will be most similar when  

SSD=(1/N) ∑xBЄΩ |T(A(xB))-B(xB)|2 is 

minimum

where A(xB) and B(xB) are the intensity value of 

respectively image A and B at the voxel location xB
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Intensity-based similarity measure 
(Cross Correlation) 
With the same notation than for SSD, the transformed 

source image and target image will be most similar 

when  ∑xBЄΩ (B(xB) – B) ∙ (T(A(xB))-A)

∑xBЄΩ (B(xB) – B)2 ∙ ∑xBЄΩ (T(A(xB))-A)2
CC=

is maximum

where A (B) are the mean voxel value in image A (B) within Ω

Note: SSD and CC are 2 similarity measures that are suitable for 
monomodal registration where intensity characteristics are very 
similar in the images. For multimodal registration, similarity 
measures have been developed, such as correlation ratio or mutual 
information, which define weaker relationships between intensities
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Example of Optimization:
Iterative Closest Point (ICP)

1)  - Computation of the centroid of each set of points

- Translation (= difference of centroid position) is applied

2)  - Computation of  the sum of square distances between each  

corresponding point pair

- Rotation to apply is the one mimizing this value. It is 

computed with the method of Singular Value Decomposition

• Hypothesis:

- Similarity measure:

Procrustes problem

G(T)=|T(P)–Q|2 is minimum

- Rigid transformation

• Solution:

It
e
ra

ti
o
n
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Example: Liver Motion
Respiration gating

during abdominal

MR imaging

© T. Rohlfing (Stanford)
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Example: Liver Motion
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• What do we gain with multi-modal registration?
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Irradiate tumor (T) with a series of directed beams 
avoiding critical structures (C)

Example: CyberKnife

T

C
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RD
X

Y

Z

The crux of the problem is to match up the coordinate 
frames of the CT and the radiation delivery device  

Example: CyberKnife

X2

Y2

Z2
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Z

Using only 2D projection images!  

Example: CyberKnife

RD
X

Y

Z
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T1

Example: CyberKnife

Digitally

Reconstructed

Radiograph

virtual source

RD
X

Y

Z

RD
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Example: CyberKnife

T2

DRR

virtual source
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T*

DRR

virtual source

RD
X

Y

Z

RD
X

Y

Z

Example: CyberKnife
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Image Registration Application 

to Image-guided neurosurgery
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Nonrigid transformation:
Example of deformable mechanical model

As seen before, T controls how image features can be 

moved, such as translations, rotations for rigid 

transformation. For T based on deformable mechanical 

model, we decide the objects, and image features to 

register, which can be moved accordingly to mechanics 

laws. 

Solution

? 

Find the displacement field which minimize 
the total deformation energy of the object
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Little problem in mechanics…
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Steps of nonrigid registration
based on a deformable mechanical model

Characteristic of this algorithm of nonrigid 
registration: the transformation used to control 
the similarity criterion is different from the 
tranformation used to interpolate the 
deformation to the entire object. So this 
algorithm can be seen as 2 nonrigid 
registrations (surface and volume)
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Steps of nonrigid registration
based on a deformable mechanical model

1) Computation of the ‘‘controlling transformation’’  

based on a surface similarity criterion

- Extraction of brain, ventricles, and tumor surfaces

- Computation of surface transformation

2) Computation of the ‘‘interpolating 

transformation’’   

based on a deformable mechanical model

- Building of the model

- Computation of volume transformation
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Deformable Bio-mechanical Model 
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Surgery is planned on multiple 
medical-imaging modalities

X-rays CT

Ultrasound

Angiography

PET

MRI
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Brain Deformation during Surgery 

• Skull Opening
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Miga et al, 2001, Neurosurgery

Brain Deformation during Surgery

• Retractor insertion
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Brain Deforms during Surgery

• Tumor resection
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?

Preoperative images are no longer 
representative during surgery
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…

Low-res MRI Ultrasound

Angiography PET

So far:

High-res MRI

…

Only a few intraoperative modalities are 
available and can be acquired in real-time

X-rays CT
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How to bring the most information together?
Update preop imagery with intraoperative 
deformation 

nonrigid 
registration
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Extraction of brain, ventricles, and tumor 
surfaces is done by segmentation

skin tumor

brain (gray matter / white matter)

ventricles

skull
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Computation of surface transformation based 
on a active surface algorithm

Done for brain, ventricles and tumor surfaces

Source

surface
Target

surface

Time t

Surface deformation

All operations
done in 3D

Time t+1
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Computation of surface transformation 
based on an active surface algorithm 

Active surface algorithm: trade-off between

- Constraints of smoothness on surface shape

- Attraction of source surface by target surface
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Behavior law for deformable bio-mechanical models: linear elastic, 
etc…

Reminder: the transformation T is such that 
the deformable energy is minimum

From Data Scans to Volumetric 
Meshes
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The calculation is based on Finite Element Method (FEM) for bio-
mechanical model, such that the surface deformation leads to nonrigid 

registration for the volume.

Deformable Bio-Mechanical Model
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Results
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• Computer-aided diagnosis
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Computer-aided Detection (CAD)

• “CAD may be defined as a diagnosis made by a 

physician who takes into account the computer 

output as a second opinion”                            

-Dr. Kunio Doi (U. Chicago)

• Currently in use for early detection of breast 

cancer in mammography (FDA approved)

• On the way for lung nodule detection and colon 

polyp detection
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Case Study: Polyp Detection

• Step 1: CT scan of patient

• Step 2: Segmentation of colon

Paik, et al.
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Case Study: Polyp Detection

• Step 3: detection of polyp candidates 

– Hough transform (looking for spheres)

Paik, et al.
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Case Study: Polyp Detection
• Step 4: feature extraction

• Step 5: classification

– Take your pick of algorithms (SVM, ANN, etc.) 

Gokturk, et al.
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Case Study: Polyp Detection

• Step 6: Flythrough colon giving information to 

physician for final diagnosis (not yet realized)

Paik, et al.
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Case Study: Polyp Detection

Paik, et al.
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AR/VR for Medical Image Analysis
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• Applications of standard computer graphics and 

visualization (also including vision) techniques 

into the medical domain

– Segmentation

– Computer-Aided Detection

– 3D Reconstruction

– Multi-modal registration

• New techniques for medical image analysis
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Conclusions

• Medicine is a fertile and active area for computer 

graphics and vision research

• Application of existing graphics and vision tools 

to new, challenging domains

• Development of new graphics and vision tools to 

assist in the practice of medicine
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The End


