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Background Knowledge

• Light

• Light Transport

• Radiometry

• Reflection Functions
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Optics

• Geometric optics 

– Shadow, optical laws

• Physical optics

– Interference

• Quantum optics

– Photons

• To study radiosity, geometric optics is needed
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Light

• The visible light

can be polarized

• Optics is the area 

that studies about

these radiations
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Light Transport
• Light travels in the form of particles (photons)

• Total number of particles in a small differential 
volume dV is 

P(x) = p(x) dV

particle density

P(x) = p(x) (v dt cos()) dA
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Light Transport

Not all particles flow with the same speed and 

same direction

The particle density is now a function of two 

independent variables x, .

Then we have 

P(x, ) = p(x, ) cos d dA

Here d is called the differential solid angle
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Angles

• 2D Angle vs. 3D Solid Angle
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Radiometry

CSE564 Lectures

• Science of measuring light

• Analogous science called Photometry is based 

on human perception
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Radiometry for Surface Rendering 

• Investigate formally some methods for 

physically-based realistic rendering

• Present a practical method for producing highly 

realistic (and also physically correct) images 

(renderings) of 3D worlds
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Radiometry for Surface Rendering
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Radiometry
The radiometric quantities that characterize the 

distribution of light in the environment are:

• Radiant Energy

• Radiance

• Radiant Power

• Irradiance

• Radiosity

• Radiant Intensity
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Radiometric Quantities
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• Functions of wavelength, time, position, direction, 

polarization

• Add polarization to Plenoptic function

• We will have to simplify this formulation
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Wavelength

• Assume wavelengths are independent

– Phosphorescence: material traps energy and re-emits 

it for an extended period of time

– No phosphorescence

– R, G, B components behave identically
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Time

• Equilibrium states considered only

– Light is traveling fast…

– No luminescence

– Fluorescence
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Polarization
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• Ignore it

– Would likely need wave optics to simulate
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A Function with Five Dimensions

• With little loss in usefulness

• Two quantities

x     Position (3 components)

     Direction (2 components)
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Radiant Energy – (Q)

• Fundamental quantity we start with

• Consider photon as carrying quantum of energy 

(hc/, where c is speed of light, and h is Planck’s 

constant)

• Radiant energy per unit volume is the photon 

volume density times the energy of  a single 

photon (hc/)

• Total energy, Q, is energy of the total number of 

photons
CSE564 Lectures
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Radiant Energy – (Q)

Rendering systems consider the stuff that flows as 

radiant energy or radiant power ()

L(x,) =  p(x, , ) (hc/) d

L is called radiance
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Radiant Power – ()
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• Flow of energy (important for transport)

• Power is the energy per unit time (joules / s)

• Also called as radiant flux.

• Unit: Watt

•  = dQ/dt

The differential flux is the radiance in small beam 
with cross sectional area dA and solid angle d

d = L(x, )  cos d dA
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Radiant Flux Area Density
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• We render stuff on surfaces

• So we need a measure for the energy 

arriving/leaving a surface

• Units: watts per meter squared

• Graphics does NOT use this

term!
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Irradiance
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• Power per unit area incident on a surface

E = d /dA

• Unit: Watt / m2

dA

arriving
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Radiant Exitance
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• Power per unit area leaving surface

• Also known as radiosity

B = d /dA

• Same units as irradiance, obviously

• Just direction changes

dA

leaving
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Radiance
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• Radiance (L) is the flux that leaves a surface, per

unit projected area of the surface, per unit solid

angle of direction.



n

dA

L



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiance

• For computer graphics the basic particle is not 

the photon and the energy it carries but the ray 

and its associated radiance.
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Radiant Intensity
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• Radiant Intensity: Radiant power per solid 

angle of a point source

• Units – watts per steradian

• Note: the term “Intensity” is heavily overloaded

• What is a solid angle?
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Solid Angle

Definition: The solid angle (SA) subtended by an 

object from a point P is the area of projection of 

the object onto the unit sphere centered at P, the 

size of a differential patch, dA,

The differential solid angle: 

CSE564 Lectures
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Solid Angle

CSE564 Lectures
34

• Size of a patch, dA, is 

• Solid angle is

• Measured in sterradians (sr)
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What about a Point Source?

• Not a lot of area……
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Radiant Intensity

For an isotropic point source: I() = /4p
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Isotropic Point Source
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• Irradiates equally in all directions

• Even distribution of power over sphere

• Intensity is power over whole sphere
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Irradiance due to a Point Light

Irradiance on a differential surface due to

an isotropic point light source is
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Point Light Source
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point source area source(s)
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Irradiance on Differential Patch
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• What is the irradiance of a differential area,

illuminated by a point source at xs, seen 

from a light point p ?

• This is the “inverse square law”
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Projected Area
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• Ap = A (N • V) = A cos 

N

V

V
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Radiance

CSE564 Lectures
42

• Power per unit projected area per unit solid 

angle.

• Units: watts per steradian m2

• We have now introduced projected area, a 

cosine term.
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Why the Cosine Term?
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• Foreshortening is by cosine of angle.

• Radiance gives energy by effective surface 

area, as seen from the view direction 

A cos
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Irradiance from Radiance

• Irradiance: Radiant power per unit area 

incident on a surface

• Just look at definitions of E and L…

• cos d is projection of a differential patch
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Irradiance from Radiance
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Radiosity

• Surfaces in a scene reflect & emit light

• Some of this light reaches the viewer; this makes 

the surface visible

• But much of this reflected/emitted light will 

illuminate other surfaces

• This light will then reflect of these other 

surfaces; in fact, every surface in a scene will 

illuminate other surfaces in the scene

CSE564 Lectures
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Radiosity

Official term : Radiant Exitance

Radiosity: Radiant power per unit area

exiting a surface

CSE528 Lectures
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Properties of Radiance
(1) Fundamental quantity

-all other quantities derived from it

(2) Invariant along a ray

- quantity used by ray tracers

(3) Sensor response is proportional to 
radiance 

-eye/camera response depends on 
radiance

CSE564 Lectures
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Properties

• What’s Effect of Distance on Radiance?

– Let’s look at thin pencil of light

• What’s radiance on a sensor?

CSE564 Lectures
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Radiance at a Sensor
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• Sensor of a fixed patch sees more of a surface 
that is farther away.

• However, the solid angle is inversely 
proportional to distance.

• Response of a sensor is proportional to radiance.
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Radiance as a Unit of Measure

CSE564 Lectures

• Radiance doesn’t change with distance

– Therefore it’s the quantity we want to measure in a 

ray tracer.

• Radiance proportional to what a sensor (camera, 

eye) measures.

– Therefore it’s what we want to output.
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Radiometry and Photometry
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• Photometry (begun 1700s by Bouguer) deals 
with how humans perceive light.

• All measurements relative to perception of 
illumination

• Units different from radiometric but conversion 
is scale factor -- weighted by spectral response 
of eye (over about 360 to 800 nm).
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CIE Curve

• Response is the integral over all wavelengths

CSE564 Lectures
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Radiometry Summary

• Energy                                
– photons…

• Power    
– energy / time

• Irradiance and Radiosity
– power / projected-area    

• Intensity
– power / solid-angle                   

• Radiance       power / (projected-area)*(solid-angle)
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Radiometry
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• What about interaction of light with objects?

Radiometry describes light in itself
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Light-Surface Interaction

CSE564 Lectures

• Surface Properties

• Reflected radiance is proportional to incoming 

flux and to irradiance (incident power per unit 

area)
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Reflection Functions

Reflection is defined as the the process by which 

the light incident on a surface leaves the surface 

from the same side.

The nomenclature and the general properties of 

reflection functions are discussed.
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BRDF

CSE564 Lectures

ir

Incident ray

Reflected ray

Illumination hemisphere

f(p, i , r )
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Bidirectional Reflection Distribution 
Functions (BRDF)

Bidirectional Reflection Distribution 

Function

f(x, i , r) =Lr(x,r) / dEi(x,r)

In short, this is the ratio of radiance in a 

reflected direction to the differential 

irradiance that created 
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Bidirectional Reflectance 
Distribution Function (BRDF)
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BRDF Dimensionality

• Function of 

– position, 

– four angles (two incident, two reflected), 

– Wavelength and polarization (usually ignored!)

• Material is usually considered uniform, so 

position is ignored!

• If isotropic, one angle goes away.

• Result: 3 or 4 dimensional.
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BRDF Properties

• Reciprocity (of incoming and outcoming 

directions)

• Natural condition: material is ‘symmetric’
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Properties of the BRDF

• (1)  Reciprocity

•

• (2)  Anisotropy

If the incident and the reflected light are fixed 

and the underlying surface is rotated about the 

surface normal, the percentage of light reflected 

may change.
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Reflectance Equation
The BRDF allows us to calculate outgoing 

light, given incoming light:

Integrating over the hemisphere gives the

reflectance equation:

Lr(x,r)=  f(x, i , r) * Li(xi,) cos   di
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Reflectance

CSE564 Lectures

• Reflectance: ratio of reflected flux to 

incident flux

• Reflectance is always between 0 and 1

but depends on incident radiance distribution
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Lambertian Diffuse Reflection
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Lambertian (Diffuse) Surfaces
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• BRDF is a constant.

• Independent of direction of incoming light.

• Radiosity over irradiance is constant.
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Mirror (Ideally Specular) Surfaces
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• Reflection takes place on a plane perpendicular 

to surface

• Angle of reflectance = angle of incidence

• BRDF modeled by delta functions
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Glossy (Shiny) Surfaces

CSE564 Lectures

• Between lambertian and specular.
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Complex BRDFs
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• Combinations of the three

• An interesting BRDF is a retroreflector

• What’s a range of values of BRDF?

+ +

diffuse mirror glossy
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Representations
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• 4D function, so awkward to represent directly.

• Most often, it is represented as parametric 

equation (Phong, Cook-Torrance, etc.).

• Sometimes with basis functions (such as 

spherical harmonics, sum of cosines, etc.).
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Reflectance

CSE564 Lectures

• Ratio of reflected to incident flux

• Always 0 to 1; convenient

• Can be over part or all of incident and exitant 
hemispheres
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The Rendering Equation
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• “Essence” of physically-based rendering

• Basically, it is an energy balance equation

• Oftentimes, approximated by splitting diffuse, 

specular, and glossy (shiny) components
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The Rendering Equation

CSE564 Lectures

• Not exactly like Kajiya `86 (more like Radiosity 

equation).

• Often approximated by splitting diffuse, 

specular, and glossy.
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Transport of Energy

CSE564 Lectures

• Now we have a model of the light-surface 

interaction (i.e., the ‘rendering equation’ for 

reflection modeling) 

• How do we transfer energy from light sources to 

all surfaces in a 3D scene?

• Approximations are used to make computational 

feasible
• Only certain paths accounted for
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Transport Approximations

CSE564 Lectures

• Classical ray tracing

– Direct lambertian

– Global specular

– View dependent

• Radiosity

– Global illumination between diffuse surfaces

– View independent
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Rendering Equation

• Recall

• We want to simplify enough to solve

CSE564 Lectures
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Radiosity Assumptions

CSE564 Lectures

1. Opaque surfaces

2. Vacuum

3. Purely diffuse surfaces

• Solve in object space

• Solution represented in object space

• View independent;  render as triangles w/ vertex color 

(or a radiosity texture)
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Other Surfaces
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Let’s relate incoming radiance to other surfaces

where

and                     is 0 or 1.
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Radiance at x from x’

So now rendering equation is (without emitter)

Next, let’s make our integral over surfaces instead 

of solid angles
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From Solid Angle to Area
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Recall that

So
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Geometry Term
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For simplicity, define

Therefore
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Diffuse Assumption
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All surfaces diffuse, so replace BRDF with a 

constant

Also angles are now irrelevant, so
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Convert to Radiosities

• So L = B / p, and
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Radiosity Equation

CSE564 Lectures

For convenience subsume the p into G(). Also, add 

the emissive term back to get

where
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Radiosity Equation

More importantly the outgoing radiance is the 

same in all directions and in fact equals B/ p.
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Where Are We?

• We have an expression relating radiosity at a 

point to radiosity at ALL other points

• But no method to solve for the values yet!
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Next

• Formulation of the radiosity method

• We need to address practical aspects for 

computing a solution

(i.e., ‘render’ a 3D scene) 

• Later

– Monte Carlo methods

– Bi-directional ray tracing

CSE564 Lectures
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More Readings on This Topic
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• Chapter 2 (by Hanrahan) in Cohen and Wallace, 

Radiosity and Realistic Image Synthesis.

• Glassner, Principles of Digital Image Synthesis, 

pp. 648 – 659 and Chapter 13.



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

References
• Geometrical Considerations and Nomenclature 

for Reflectance, F.E. Nicodemus, J.C. Richmond, 
J.J. Hsia, I.W. Ginsberg, and T. Limperis, Nat. 
Bureau Stand. (1977)

• Link to PDF is
http://physics.nist.gov/Divisions/Div844/facilities/specphoto/pdf/geoConsid.pdf

CSE564 Lectures

http://physics.nist.gov/Divisions/Div844/facilities/specphoto/pdf/geoConsid.pdf


STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

References
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• Bastos dissertation, Chapter 3 in 
http://www.cs.unc.edu/~bastos/PhD/2and3.pdf

• Heckbert, Adaptive radiosity textures for 

bidirectional ray tracing

– http://doi.acm.org/10.1145/97879.97895

http://www.cs.unc.edu/~bastos/PhD/2and3.pdf
http://doi.acm.org/10.1145/97879.97895
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One Light Source
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Four Light Sources
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Examples

• Realistic rendering: color bleeding
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Progressive Rendering
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Mesh Refinement
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refined mesh
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Mesh Refinement
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Discrete Meshing

CSE564 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering + Textures
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… and The Rendered Scene
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A Complex Scene
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Another Complex Scene

• 100,000 polygons
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Rendering with Volumetric Effects
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Combined Method
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Standard Radiosity
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Evening (Sunset, 6pm)
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Is This rendered of Real?
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Advantages
(1) Highly realistic quality of the resulting 

images by calculating the diffuse inter-
reflection of light energy in an environment.

(2) Accurate simulation of energy transfer.

(3) The viewpoint independence of the basic 
radiosity algorithm provides the opportunity 
for interactive "walkthroughs" of 
environments.

(4) Soft shadows and diffuse inter-reflection.
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Disadvantages
(1) Large computational and storage costs for 

form factors.

(2) Must preprocess polygonal environments.

(3) Non-diffuse components of light not 
represented.

(4) Will be very expensive if object(s) is 
moving in the scene.
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Heckbert’s Notation
• For transport paths

• From Heckbert, SIGGRAPH 90

– L – light

– E – the eye

– S – specular reflection

– D – diffuse reflection

– Sometimes also G for glossy

• Example: Path from light, to specular, to eye is 
LSE
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Regular Expressions

• (k)+  -- one or more

• (k)*  -- zero or more

• (k)?  -- zero or one

• (k|k’) – either one
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Possible Paths
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• From Heckbert 90
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Transport Approximations
• Classical ray tracing

– LD?S*E

– Direct lambertian

– Global specular

• Radiosity
– LD*E

– Diffuse to diffuse global illumination

– View independent

• Bi-directional ray tracing
– Can be L(S|D)*E
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