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Image Processing
• From image generation to image processing

• We will look at techniques from image processing for 

transforming (grayscale) images 

• We’ll see how image processing techniques can 

automatically extract important characteristics of images, 

e.g., by detecting edges and removing noise (errors/defects 

in the images)

• Image intensity will be the primary image attribute we will 

examine (for grayscale images)

• Techniques can be generalized to work for color images 

too
CSE564 Lectures
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Image Processing

• Operations performed over images (2D or 3D)

• Purpose:

– Enhance certain features of the image

– De-emphasize other features of the image

• Implemented as filters or transformations:

– Some operate on the entire set of pixels at once 

(global operations)

– Examples: brightness and contrast enhancement
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Image Processing

• Some operate only on a subset of pixels (local 

operations in a pixel neighborhood)

• Examples: edge detection, contouring, image 

sharpening, blurring, “noise” reduction
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Intensity Transformations
• Intensity transformations are one the more basic needs for manipulating or 

processing images

• Modify distribution of gray levels in an image

• Example: sometimes the goal is to reduce the number of grayscale levels 

used to represent images

• Reasons: memory, display/printing limitations, cost, etc.

• In practice, we need to reduce the number of bpp (bits per pixel) (e.g., 24 

 8 bits) which is used to represent each pixel / dot

• This process is sometimes called quantization – we replace one set of 

possible values with a smaller set that introduces a little error as 

possible (image compression)

• Usually intensity transformations used for image enhancement
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Intensity Transformations
• An intensity transformation most easily expressed as function T(p) over 

domain of possible pixel intensities

• The new pixel intensity is given as the height of the function if we 

assume a uniform scaling along both axes

• How might we discretize an intensity transformations and present it in 

a computer?
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Intensity Transformation Examples

• What would happen to the image in each case?

• What does the bottom-right image look like?
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Contrast Enhancement

• Oftentimes one is given an 

image with poor contrast

• The image seems washed 

out and features are hard to 

see

• Need to enhance the contrast 

somehow
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Contrast Enhancement

• One technique for fixing 

such images is process 

called contrast stretching

• Basic idea: perform an 

intensity transformation to 

cause darker shades to 

become darker, and lighter 

shades to become lighter



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Contrast Enhancement
• Piecewise linear functions are typically used to specify 

contrast stretching instead of continuous ones 

• Give the user more freedom and greater control

• Also easier to implement in software (how?)
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Thresholding
• Another way of manipulating contrast is 

called thresholding

• What’s going to happen?

• How many bits are required now?
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Image Transformations

• Another example of thresholding using a linear ramp

• Why were some of the graylevels preserved?

• Compare with the cat image
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Histograms

• An important concept in image processing (and 

probability & statistics) is the histogram

• Suppose we can display 256 discrete gray level 

intensities, ranging from 0 to 255 (8-bit image)

• To generate a histogram of the image, we would first 

count the number of pixels having each intensity:

– p0: n0 = n(p0)

– pi: ni = n(pi)

– etc.
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Histograms
• Then we can plot the counts in a graph to view 

distribution of intensities across image

• Q: Given an array 

histogram[], AND 

array of pixels with 

associated intensities 

(pixels[i].intensity), 

how would you 

build the histogram?

• A: histogram[pixels[i].intensity]++ in a for loop over 

pixels[]
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• If we were to divide each count by the total 

number of pixels, this would produce something 

akin to a probability distribution function (pdf), 

which one finds in probability

CSE564 Lectures
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Example Histograms
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Example Histograms
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Histogram Equalization
• One automated (i.e., algorithmic) technique for improving 

contrast is histogram equalization

• Basic idea: increase range of intensities displayed in an image 

by “stretching” the histogram (similar to contrast stretching)

• In such way, range of displayed intensities becomes more 

uniform
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Histogram Equalization
• The discrete histogram equalization equation is

• pmax is maximum possible intensity (not necessarily 

maximum intensity that happens to appear in the image)

• We accumulate a running total

• This accumulation explains

shape of function, which 

resembles a cumulative 

distribution function
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Histogram Equalization Example



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Histogram Equalization Examples
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Histogram Equalization Example
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Can This Work for Color Images?
• How do we apply histogram equalization to color image?

• Convert RGB  HSV, then equalize histogram of V

• Could we equalize the H (Hue) or S (Saturation) channels?
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Histograms Summary

• Histograms are a useful tool for studying images

• We can manipulate images to improve contrast

– contrast stretching and thresholding (manually)

– histogram equalization (automatically)

• These are all global processes 

• Suppose we localize computations and use only 

local information when processing an image?

• This brings us discrete convolution or filtering
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Discrete Convolution (Filtering)

• Examples of image processing based on local 

information include 
– smoothing (noise removal, image compression), and 

– edge enhancement (di-blurring, sharpening, feature extraction

• We use discrete convolution for these operations
– place a square matrix of weights called a mask over each pixel

– mask takes a weighted sum of neighboring pixels according to 

weights in mask

– the resulting intensity is the new output pixel

– when done for all pixels, a new image is produced of same 

resolution as original
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Discrete Convolution (Filtering)

• Very important note: do not replace computed values 

into the original image, but write to an output image

• You need a second memory buffer (array) for this
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Image Smoothing

• A smoothing mask 

averages local pixel 

neighborhood

• Each pixel’s value 

is replaced by its 

local average in the 

output image

• Can be used to 

remove noise, like 

speckling
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• By “high frequency” we mean abrupt 

changes in the intensities, as can be 

seen in the images to the right

• “High frequency” is a term related to 

signal processing theory (Fourier 

analysis), from which discrete 

convolution is derived

CSE564 Lectures
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Image Smoothing

• Larger masks smooth more and cut more noise

• Always make sure that sum of all mask elements 

equals 1.0

• What would happen if the sum weren’t 1.0?

• Image brightness would increase or decrease

• Smoothing the image blurs it –

larger masks blur more

• Jagged edges are 

replaced by blur
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Image Smoothing

• Smoothing is often used in graphical 

applications

• Why diagonal lines (and fonts) on a screen look 

smooth, even though they are comprised of a 

sequence of pixels

• This kind of blurring is a special application of 

image smoothing known as anti-aliasing

• Eye is tricked into seeing a “continuous” line 

segment
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Image Smoothing Example

• Results of smoothing top-

left image with masks of 

size 3, 5, 9, 15, and 25

• Notice how some of circles 

completely disappear

• Also notice how smoothing 

lessens or even eliminates 

noise in rectangles
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Image Sharpening

• This operation enhances the 

edges, rather than blurring the 

image

• Edge enhancement

• It has little effect in smoothly 

varying areas that have no edges

• Why do this?

• Extract boundaries of regions, 

perhaps
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Image Sharpening

• An edge in image indicates that 

there is a high local first 

derivative or gradient at the 

given pixels

• Sharpening masks therefore 

implement some sort of 

differentiation

• Usually we are only interested 

in gradient magnitude
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Image Sharpening

• Image gradient 

computation

• Usually, we are only 

interested in the 

gradient magnitude

CSE528 Lectures
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Image Sharpening Mask Example:
The Sobel Mask

• The Sobel filter comes 

in a pair of masks

• Each mask computes an 

image for x-derivative (dx), 

other for y-derivative (dy)

• Note that the dy-masks do some 

smoothing in x-direction (dx-mask smoothes in y)

• This decreases sensitivity to noise in one direction
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Image Sharpening Mask Example:
The Sobel Mask
• But increases the sensitivity 

in the other direction, which 

is exactly what we want

• Pixel values below zero will 

occur at edges with negative 

gradients

• But this is OK because we are actually only interested in 

the magnitude, not the sign…why only the magnitude?

• High magnitude (positive or negative) indicates an edge!
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Sobel Mask
• We use the Sobel mask 

by

applying the two masks

separately, thereby 

generating two images, 

imgdx and imgdy

• Their pixels are 

combined

by

 
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imgimgimg
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Sobel Mask

• Since this formulus is very 

computationally expensive, 

typically the following 

approximation is used 

instead:

• Again, gradient magnitude 

is what we want, not 

direction
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Median Filter
• The median filter is example of an order-statistics filter

• Employs local statistical information about pixels to 

produce output pixel

• Note that we don’t use a

fixed mask for all pixels

• With a median filter, 

look at local neighbor-

hood and take median 

value 

• Naturally, this requires some kind of sorting algorithm
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Median Filter

• Median filters are effective for removing impulse 

noise, also called salt-and-pepper noise

• Suppose we took the mean instead of the median? 

• That’s just image

smoothing!

• Since median filters 

perform less blurring 

than smoothing masks, 

they end to preserve 

features like lines and edges
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Image Enhancement via Image 
Masking/Subtraction
• Many other techniques for image enhance exist

• Say we want to visualize blood vessels in brain

• First, we take an image of brain (e.g., MRI)

– this will be called the mask

• Then we inject a contrast agent and take another image

• Then we subtract first 

image from second

• The resulting image 

shows changes 

introduced by contrast 

agent
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Image Subtraction Example
• X-ray angiography to enhance perfused vessels

• Perfuse = to force 
fluid through something

_
=

perfused non-perfused (mask)

contrast-

enhanced
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Subsampling

• Sometimes we need to change 

image resolution

• Subsampling used to decrease 

resolution

• Supersampling used to 

increase resolution

• How can we improve image 

quality in both cases?

• Interpolation
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Quantization

• Very common technique in all of 

computer science

• Basic idea: represent broad range of 

values using a much smaller set

• In image processing: reduce number 

of graylevels (bits) represented

• For normal vectors: store only a 

subset of the infinite number of 

possibilities (unit sphere)
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Color Transformations
• Image transformations not limited to intensity trans. 

• We can also transform the H and S channels using transfer 

functions
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Sampling

• Image acquisition: sampling a continuous object 

or scene into a discrete image grid

– digital camera

– flatbed/desktop scanner

– medical scanner, such as MRI, CT

CSE564 Lectures
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Image Manipulation

• Image manipulation: resampling an already 

discrete image

– reduce or enlarge the image

– increase or decrease

resolution possibly

– rotate, shear, squeeze 

CSE564 Lectures
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• Consider a photo taken by a digital camera

• The camera samples a continuous signal, the scene, onto a 

regular 2D grid (raster) to generate the pixels

• When we look at the resulting photo, our eye reconstructs the 

original continuous scene if the image resolution is high enough

• Same thing happens when we look at printed material (e.g., laser 

printer 600+ dpi)

• If the image is of low resolution, it seems blocky – our eye is not 

given enough data to reconstruct the original scene

• We see defects or artifacts in the photo because the original data-

set (the scene) was under-sampled

• This phenomenon is called aliasing
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• Aliasing includes a class of artifacts that arise due to undersampling, 

i.e., when an insufficient number of samples is taken from an in put 

signal

• Think of the signal as a generic function in 1D, 2D, 3D, etc.

• Aliasing often occurs in:

– image size reduction (subsampling)

– discretization, causing jagged edges or ‘jaggies’ (see the triangle in 

first slide); also called staircasing artifacts

• Intuitively, aliasing is caused by a lack of information

• Not enough information is sampled from the input to represent 

(approximate) the original data-set fairly or accurately

• Let’s look at how sampling is typically done
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• Simplest way to select each pixel’s value is just to sample the 

original signal at some location, and take that value as the pixel’s 

value

• We will assume, as usual, that

the pixels are arranged on a

regular, uniform, rectangular

grid

• Can you see any problems

with sampling the input using

this particular point sampling?

• Triangles B and D are totally

missed by this particular

point sampling; other point samplings would catch them
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Sampling

A successful example

• Interpolation fills in the 

gaps between adjacent 

samples

• Different interpolators 

(functions) will generate 

different reconstructions

• We will study exactly 

how interpolation works 

in a couple weeks

CSE564 Lectures
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• In the previous example, we took enough samples to recover the 

original signal

• That is, the sampling frequency was high enough in order to record 

enough information to reconstruct the input

• But, as we saw with the triangles, this is not always possible:

– fixed resolution

– memory budget

– computation time

• Let’s look at some examples and try to determine a scheme for 

deciding what the minimum sampling frequency needs to be in 

order to be able to reconstruct the original signal faithfully with 

minimum error and minimum aliasing
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• Frequency of original signal: 0.5 (oscillations per time 

unit)

• If the sampling frequency is also 0.5 (samples per time 

unit), the original signal can not be recovered
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Sine Wave Aliasing – Example 1
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• Frequency of original signal: 0.5 (oscillations per time unit)

• Sampling frequency: 0.7 (samples per time unit)
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Sine Wave Aliasing – Example 2 
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• Frequency of original signal: 0.5 (oscillations per time unit)

• Sampling frequency: 0.7 (samples per time unit)

• Looking at the sample points x[n], they appear to originate from a sine wave 

xc_aliased of much lower frequency 

• Again, the original sine wave (the input signal) is lost and can not be recovered
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• Frequency of original signal: 0.5 (oscillations per time unit)

• Sampling frequency: 1.0 (sample per time unit) 
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Sine Wave Aliasing – Example 3 
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• Frequency of original signal: 0.5 (oscillations per time unit)

• Sampling frequency: 1.0 (sample per time unit) 

• Now the original signal can be recovered

• We learn that we need to sample each oscillation period twice for good 

reconstruction
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• In practice, it is best to use more than two samples per oscillation period

• One may get wrong reconstructions for some special sample alignments 

using exactly two samples per oscillation

• Thus, to be on the safe side, sample each oscillation period more than 

twice
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Sine Wave Aliasing – Example 4 
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• In practice, it is best to use more than two samples per oscillation period

• One may get wrong reconstructions for some special sample alignments 

using exactly two samples per oscillation

• Thus, to be on the safe side, sample each oscillation period more than 

twice
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• In a nutshell, aliasing manifests itself as 

frequencies that appear in the sampled signal that 

do not appear in the original input

• Once this happens, you’re basically doomed

• Nothing you can do will bring back the original

• The same thing can happen with images

• Let’s take a look
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• Image reduction (i.e., resolution reduction) involves a 

type of sampling: resampling a given 2D image to 

generate a new 2D image

• This process is called subsampling when we shrink an 

image 

• When we enlarge an image, we need to supersample it to 

generate the output image

• Subsampling can lead to aliasing just as can the sampling 

of a continuous signal

• Let’s try using point sampling to subsample a 1D image 

to reduce its size and see how aliasing might arise
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Point Sampling: Aliasing
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• This subsampling missed two of the three stripes…

• …whereas this subsampling captured them, but the result isn’t striped
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• The duration (period) of each of the first two stripes is 6 pixels

• Since frequency = 1/period, the frequency of the stripes is 1/6

• If we want to catch each stripe in the subsampled image we need to sample every third 

pixel

• That is, we need to sample the stripes at a frequency = 2·(1/6) = 1/3

• Note: all stripes are present (no matter at what offset we sample)

• This is formalized by the Nyquist theorem, which states: to avoid aliasing, one must always 

sample at least at twice the highest frequency in the image
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• But what do we do if we cannot afford to sample at or above this Nyquist frequency?

• This can occur when:

– we would like to reduce the size of the image below its allowed Nyquist limit

– the scene to be discretized is very busy and our digital camera does not have enough 

resolution

– “busy” here means that the scene (signal) has many high frequencies

• In these cases we must reduce the frequency content, before sampling takes place

• This is done by smoothing (blurring) the image or scene (prior to sampling)

• This process is called anti-aliasing
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We observe: anti-aliasing (i.e., blurring, lowpassing) must be applied before 

sampling
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• So far we have been considering signals in the spatial domain, i.e., a 

signal as a plot of amplitude (intensity for pixels) against spatial 

position (we looked at 1D and 2D)

• A signal may also be considered in the frequency domain, i.e., as a 

sum of sine waves, possibly offset from each other (called phase 

shift) and each having different frequencies and amplitudes

• Each sine wave in the (possibly infinite) sum represents a 

component of the signal’s frequency spectrum

• Periodic signals can each be represented as the sum of phase-shifted 

sine waves whose frequencies are integral multiples (harmonics) of 

the signal’s fundamental frequency (frequency component that has 

the greatest wavelength)

• Let’s look at some examples
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• Can we apply this idea to images, which are non-

periodic?

• Yes, with some important distinctions

• Finite domain, zero outside the image

• An image’s frequency spectrum, however, will not 

consist of integer multiples of some fundamental 

frequency

• Original signal cannot be represented as a sum of 

countably many sine waves, but as an integral over a 

continuum of frequencies

• Fourier analysis is the process by which we 

determine which sine waves must be used to represent 

a particular signal

• Very important subject in EE
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• Aliasing can manifest itself over time as well as space (i.e., images)

• Wagon wheel in old Western movies:


