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| Image Processing

» From image generation to image processing

» \We will look at technigues from Iimage processing for
transforming (grayscale) images

 We’ll see how 1image processing techniques can
automatically extract important characteristics of images,
e.d., by detecting edges and removing noise (errors/defects
In the Images)

 |mage Intensity will be the primary image attribute we will
examine (for grayscale images)

» Technigues can be generalized to work for color Images
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| Image Processing

 Operations performed over images (2D or 3D)

* Purpose:
— Enhance certain features of the image
— De-emphasize other features of the image

» Implemented as filters or transformations:

— Some operate on the entire set of pixels at once
(global operations)

— Examples: brightness and contrast enhancement
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Image Processing

» Some operate only on a subset of pixels (local
operations in a pixel neighborhood)

« Examples: edge detection, contouring, Image
sharpening, blurring, “noise’ reduction
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Intensity Transformations

Intensity transformations are one the more basic needs for manipulating or
processing images
Modify distribution of gray levels in an image

Example: sometimes the goal is to reduce the number of grayscale levels
used to represent images

Reasons: memory, display/printing limitations, cost, etc.

In practice, we need to reduce the number of bpp (bits per pixel) (e.g., 24
—> 8 bits) which Is used to represent each pixel / dot

This process Is sometimes called quantization — we replace one set of
possible values with a smaller set that introduces a little error as
possible (Image compression)

Usually intensity transformations used for image enhancement
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Intensity Transformations

« An intensity transformation most easily expressed as function T(p) over
domain of possible pixel intensities

« The new pixel intensity Is given as the height of the function if we
assume a uniform scaling along both axes

« How might we discretize an intensity transformations and present it in
cYeeleVicigal new pixel value ppey
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Intensity Transformation Examples

» What would happen to the image in each case?

T g
77 B e S
. 7
’

identity T(p)

» \What does the bottom-right image look like?
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Contrast Enhancement

 Oftentimes one Is given an
Image with poor contrast

» The Image seems washed
out and features are hard to
see

« Need to enhance the contrast
somehow
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Contrast Enhancement

 One technique for fixing
such images IS process
called contrast stretching

 Basic Idea: perform an
Intensity transformation to
cause darker shades to
become darker, and lighter
shades to become lighter




w Contrast Enhancement

 Pilecewise linear functions are typically used to specify
contrast stretching instead of continuous ones

 Give the user more freedom and greater control
» Also easier to implement in software (how?)

p contrast stretching
ncw




| Thresholding

» Another way of manipulating contrast is
called thresholding

 What’s going to happen?
« How many bits are required now?
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Image Transformations

» Another example of thresholding using a linear ramp

threshold

» \WWhy were some of the graylevels preserved?
.« Compare with_the_cat image
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| Histograms

« An important concept in Image processing (and
probability & statistics) Is the histogram

» Suppose we can display 256 discrete gray level
Intensities, ranging from 0 to 255 (8-bit Image)

« To generate a histogram of the image, we would first
count the number of pixels having each intensity:

— Po: Ny = N(Po)
— P n; = n(p;)
— efc.
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| Histograms

* Then we can plot the counts In a graph to view
distribution of Intensities across image

* Q: Glven an array number of pixels n(p)
histogram[], AND
array of pixels with
assoclated Intensities
(pixels|i].intensity),
how would you .
build the histogram? pizel value p

» A: histogram[pixels[i].intensity]++ in a for: loop over
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Histograms

» |f we were to divide each count by the total
number of pixels, this would produce something
akin to a probability distribution function (pdf),
which one finds In probability
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Example Histograms

number of pixels n(p) bright image
A

n(p) A

.
pixel value p

dark image image with low contrast

n(p) 4




Example Histograms

High-contrast image - b Bright image

Low-contrast image Dark image
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Histogram Equalization

» One automated (i.e., algorithmic) technigue for improving
contrast Is histogram equalization

 Basic idea: increase range of intensities displayed in an image
by “stretching” the histogram (similar to contrast stretching)

 |n such way, range of displayed intensities becomes more
uniform

dark image high-contrast image

n(p)

Pors |

P

Note: the bars do not change in height, /
they are just shifted to different positions




| Histogram Equalization

 The discrete histogram equalization equation Is
K n(j) n(porg(j))p

)=S0 Do (K) = 3

j=0 "Yotal j=0 ntotal
* Do IS Maximum possible intensity (not necessarily
maximum intensity that happens to appear in the image)

Max

» \We accumulate a running total

 This accumulation explains
shape of function, which
resembles a cumulative
distribution function
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Histogram Equalization Example

(L
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Histogram Equalization Examples
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Histogram Equalization Example
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Can This Work for Color Images?

» How do we apply histogram equalization to color image?
» Convert RGB - HSV, then equalize histogram of VV

» Could we equalize the H (Hu) or S (Satration) channels?

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



| Histograms Summary

 Histograms are a useful tool for studying images

 \We can manipulate images to improve contrast
— contrast stretching and thresholding (manually)
— histogram equalization (automatically)

» These are all global processes

» Suppose we localize computations and use only
local information when processing an image?

» This brings us discrete convolution or filtering
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| Discrete Convolution (Filtering)

« Examples of image processing based on local

Information include

— smoothing (noise removal, image compression), and
— edge enhancement (di-blurring, sharpening, feature extraction

» We use discrete convolution for these operations

— place a square matrix of weights called a mask over each pixel

— mask takes a weighted sum of neighboring pixels according to
weights in mask

— the resulting intensity Is the new output pixel

— when done for all pixels, a new image Is produced of same
resolution as original
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Convolution (Filtering)

for eachl, |
temp =0

w Discret

for each k, |

org
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new
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=
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new 2 2 org
Pi,j = kEOIEO Pk, j+) - Wiy

» Very important note: do not replace computed values
Into the original image, but write to an output Image

» You need a second memory buffer (array) for this
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| Image Smoothing

* A smoothing mask
averages local pixel
neighborhood

» Each pixel’s value
IS replaced by Its
local average In the
output Image

» Can be usedto
remove noise, like
speckling
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| Image Smoothing

* By “high frequency” we mean abrupt
changes In the intensities, as can be
seen In the Images to the right

» “High frequency” 1s a term related to
signal processing theory (Fourier
analysis), from which discrete
convolution is derived




Image Smoothing

 Larger masks smooth more and cut more noise

» Always make sure that sum of all mask elements
equals 1.0

* What would happen if the sum weren’t 1.07?
 |mage brightness would Increase or decrease

» Smoothing the image blurs it — Y.
larger masks blur more

 Jagged edges are
replaced by blur

Anti-Aliased
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| Image Smoothing

» Smoothing Is often used In graphical
applications

» Why diagonal lines (and fonts) on a screen look
smooth, even though they are comprised of a
sequence of pixels

e This kind of blurring is a special application of
Image smoothing known as anti-aliasing

» Eye 1s tricked into seeing a “continuous’ line
segment
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| Image Smoothing Example

» Results of smoothing top- viiemEE o ieamE
left image with masks of o d
size3,5,9,15,and25 RTINS

» Notice how some of circles |l
completely disappear ilmlﬁ

» Also notice how smoothing IR EREEEErTES
lessens or even eliminates el
noise In rectangles e
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| Image Sharpening

 This operation enhances the
edges, rather than blurring the
Image

» Edge enhancement

e It has little effect in smoothly
varying areas that have no edges

+ Why do this?

o EXxtract boundaries of regions, Z BO

perhaps
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| Image Sharpening

 An edge In image indicates that
there is a high local first
derivative or gradient at the
given pixels

» Sharpening masks therefore

Implement some sort of
differentiation

 Usually we are only interested Z Q
in gradient magnitude B
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| Image Sharpening

 Image gradient
computation

 Usually, we are only
Interested In the

gradient magnitude
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Image Sharpening Mask Example:
| The Sobel Mask

 The Sobel filter comes
In a pair of masks

» Each mask computes an
Image for x-derivative (dx)
other for y-derivative (dy)

» Note that the dy-masks do some
smoothing In x-direction (dx-mask smaoothes iny)

» This decreases sensitivity to noise in one direction
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Image Sharpening Mask Example:
The Sobel Mask

 But Increases the sensitivity
In the other direction, which
IS exactly what we want

e Pixel values below zero will

occur at edges with negative ... .n

gradients -

» Butthis is OK because we are actually only interested in
the magnitude, not the sign...why only the magnitude?

» High magnitude (positive or negative) indicates an edgel
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Sobel Mask

|» We use the Sobel mask
by

applying the two masks
separately, thereby
generating two Images,
Imgy, and imgy,

» Thelr pixels are
combined
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1
- - 2 - 2\
Imgnew — (Imgdx + Imgdy )2

Sobel Mask Mo = MYy |+[ima,|

» Since this formulus Is very
computationally expensive,
typically the following
approximation Is used
Instead:

IMQ, e =|IMYyy "“imgdy‘

» Again, gradient magnitude
is What we want, not z

O =
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Median Filter

« The median filter is example of an order-statistics filter

» Employs local statistical information about pixels to
produce output pixel

. Note that we don’t use ax
fixed mask for all pixels §

« With a median filter,
look at local neighbor-
hood and take median
value

 Naturally, this requires some kind of sorting algorithm
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Median Filter

« Median filters are effective for removing impulse
noise, also called salt-and-pepper noise

* Suppose we took the mean instead of the median?

S R T e AP e
i, e SR N g - e Yen
LA VP - ‘ <

e That’s just image "
smoothing! ’*

e Since median filters
perform less blurring @
than smoothing masks;’

they end to preserve
-=nfeatlres like lines and edges STONYBRO K
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'Image Enhancement via Image
Masking/Subtraction

Center for Visual Computing

___agent
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Many other techniques for image enhance exist

Say we want to visualize blood vessels in brain

First, we take an image of brain (e.g., MRI)

— this will be called the mask

Then we Inject a contrast agent and take another image

Then we subtract first
Image from second

The resulting Image
shows changes
Introduced by contrast




Image Subtraction Example

» X-ray angiography to enhance perfused vessels

/

perfused non—perqued (mask)

» Perfuse = to force contrast-
fluid through something enhanced
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Subsampling

e Sometimes we need to change
Image resolution

» Subsampling used to decrease
resolution

 Supersampling used to
Increase resolution

e How can we improve image
guality in both cases?

» [nterpolation
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Quantization

» VVery common technique in all of
computer science

» Basic idea: represent broad range of
values using a much smaller set

of graylevels (bits) represented

» For normal vectors: store only a
subset of the infinite number of
possibilities (unit sphere)
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Color Transformations

 |mage transformations not limited to Intensity trans.

» We can also transform the H and S channels using transfer

functions
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Image Sampling
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Sampling

 Image acquisition: sampling a continuous object
Or scene Into a discrete image grid
— digital camera
— flatbed/desktop scanner
— medical scanner, such as MRI, CT
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| Image Manipulation

 Image manipulation: resampling an already
discrete Image
— reduce or enlarge the image

— Increase or decrease
resolution possibly

— rotate, shear, SQUEEZE
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| Sampling and Reconstruction

Consider a photo taken by a digital camera

The camera samples a continuous signal, the scene, onto a
regular 2D grid (raster) to generate the pixels

When we look at the resulting photo, our eye reconstructs the
original continuous scene If the image resolution Is high enough

Same thing happens when we look at printed material (e.g., laser
printer 600+ dpt)

If the Image Is of low resolution, 1t seems blocky — our eye Is not
given enough data to reconstruct the original scene

\We see defects or artifacts in the photo because the original data-
set (the scene) was under-sampled

~2me11SANENOMENON IS called aliasing T
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| Aliasing

Aliasing includes a class of artifacts that arise due to undersampling;
I.e., when an insufficient number of samples is taken from an in put
signal

Think of the signal as a generic function in 1D, 2D, 3D, etc.

Aliasing often occurs In:
— Image size reduction (subsampling)

— discretization, causing jagged edges or ‘jaggies’ (see the triangle in
first slide); also called staircasing artifacts

Intuitively, aliasing Is caused by a lack of information

Not enough information is sampled from the input to represent
(approximate) the original data-set fairly or accurately

[Let’s look at how sampling is typically done

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Point Sampling

Simplest way to select each pixel’s value is just to sample the
original signal at some location, and take that value as the pixel’s
value

We will assume, as usual, that
the pixels are arranged on a
regular, uniform, rectangular
grid

Can you see any problems
with sampling the Iinput using
this particular point sampling?
Triangles B and'D are totally
missed by this particular

F 10 141 p'sa'mp1mg—ot , other pomtsamplimgs would catcirthemST Y ERe K
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'Reconstruction from Point
Sampling

A successful example

 |nterpolation fills in the i
gaps between adjacent  |EsdN
samples

 Different interpolators
(functions) will generate
different reconstructions

R We Wi” StUdy exaCtIy Reconstructlon
how Interpolation works

In a couple weeks W%
Reconstructed
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| Point Sampling Pitfalls

 |n the previous example, we took enough samples to recover the
original signal

» That is, the sampling frequency was high enough in order to record
enough information to reconstruct the input

« But, as we saw with the triangles, this Is not always paossible:
— fixed resolution
— memory budget

— computation time

* Let’s look at some examples and try to determine a scheme for
deciding what the minimum sampling frequency needs to be In
order to be able to reconstruct the original signal faithfully with

L minimum.rrarand minimum- aliasing
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| Sine Wave Aliasing — Example 1

 Frequency of original signal: 0.5 (oscillations per time
unit)

» |f the sampling frequency is also 0.5 (samples per time
unit), the original signal can not be recovered

q aliased signal X; yjjased .
s- reconstructed from the sample points x|n]
3
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Sine Wave Aliasing — Example 1
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Sine Wave Aliasing — Example 2

» Frequency of original signal: 0.5 (oscillations per time unit)
« Sampling frequency: 0.7 (samples per time unit)

aliased signal X, gjiased

sample points x|n . ,
e [n] reconstructed from the sample points x|n|

~original signal x,
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Sine Wave Aliasing — Example 2

» Frequency of original signal: 0.5 (oscillations per time unit)
« Sampling frequency: 0.7 (samples per time unit)
» Looking at the sample points x[n], they appear to originate from a sine wave
X¢ atiased Of much lower frequency
« Again, the original sine wave (the input signal) is lost and can not be recovered

aliased signal X, 4jiased

sample points x|n : :
SRl [n] reconstructed from the sample points x|n]

original signal x,

| E-..
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Sine Wave Aliasing — Example 3

» Frequency of original signal: 0.5 (oscillations per time unit)
« Sampling frequency: 1.0 (sample per time unit

sample points X[n]

_original signal x,,
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| Sine Wave Aliasing — Example 3

» Frequency of original signal: 0.5 (oscillations per time unit)
« Sampling frequency: 1.0 (sample per time unit)
« Now the original signal can be recovered

« We learn that we need to sample each oscillation period twice for good
reconstruction

non-aliased signal X. o5 aliased

sample points x|n] reconstructed from the sample points x[n]

original signal x



Sine Wave Aliasing — Example 4

In practice, It Is best to use more than two samples per oscillation period

One may get wrong reconstructions for some special sample alignments
using exactly two samples per oscillation

Thus, to be on the safe side, sample each oscillation period more than
twice
sample points x[n]

~original signal x,




Sine Wave Aliasing — Example 4

 |In practice, it is best to use more than two samples per oscillation period

« One may get wrong reconstructions for some special sample alignments
using exactly two samples per oscillation

» Thus, to be on the safe side, sample each oscillation period more than
twice

sample points x[n]

~original signal x,
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reconstructed from the sample points x|[n]




Aliasing

» In a nutshell, aliasing manifests itself as
frequencies that appear In the sampled signal that
do not appear In the original input

* Once this happens, you’re basically doomed
 Nothing you can do will bring back the original
» The same thing can happen with Images

» [et’s take a look
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| Point Sampling: Discrete Example

 |mage reduction (i.e., resolution reduction) involves a
type of sampling: resampling a given 2D image to
generate a new 2D image

 This process Is called subsampling when we shrink an
Image

» \When we enlarge an image, we need to supersample it to
generate the output Image

» Subsampling can lead to aliasing just as can the sampling
of a continuous signal

e Let’s try using point sampling to subsample a 1D 1mage

I rgdmmmmmmlamng‘mgm‘anse NYBRO K
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Point Sampling: Aliasing

original image

|—? ’ subsampling

subsampled image

e This subsamphng missed two of the three stripes...

original image

|—r | subsampling

subsampled image

» ...whereas this subsampling captured them, but the result 1sn’t striped
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The Nyquist Theorem

« The duration (period) of each of the first two stripes is 6 pixels
« Since frequency = 1/period, the frequency of the stripes is 1/6

« |f we want to catch each stripe in the subsampled image we need to sample every third
pixel

« ThatIs, we need to sample the stripes at a frequency = 2:(1/6) = 1/3
» Note: all stripes are present (no matter at what offset we sample)

6 pixels
-

original image

|—, subsampling

subsflmpled image

« This is formalized by the Nyquist theorem, which states: to avoid aliasing, one must always
sample at least at twice the highest frequency in the image
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Anti-Aliasing

« But what do we do if we cannot afford to sample at or above this Nyquist frequency?
» This can occur when:
— we would like to reduce the size of the image below its allowed Nyquist limit

— the scene to be discretized is very busy and our digital camera does not have enough
resolution

— “busy” here means that the scene (signal) has many high frequencies
» |In these cases we must reduce the frequency content, before sampling takes place
« This is done by smoothing (blurring) the image or scene (prior to sampling)
« This process Is called anti-aliasing

smoothed image

subsampling

|:|:|] subsampled image
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although some stripes appear blurred, all stripes contribute to the image (at all offsets)
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| Anti- Allasmg Example |
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star pattern test image: /
spatial frequencies increase
towards the center




Anti-Aliasing Example - 2

We observe: anti-aliasing (i.e., blurring, lowpassing) must be applied before
sampling
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| Sampling Theory

 So far we have been considering signals in the spatial domain, i.e., @
signal as a plot of amplitude (intensity for pixels) against spatial
position (we looked at 1D and 2D)

« A signal may also be considered in the frequency domain, I.e., as a
sum of sine waves, possibly offset from each other (called phase
shift) and each having different frequencies and amplitudes

 Each sine wave In the (possibly infinite) sum represents a
component of the signal’s frequency spectrum

 Periodic signals can each be represented as the sum of phase-shifted
sine waves whose frequencies are integral multiples (harmonics) of
the signal’s fundamental frequency (frequency component that has
the greatest wavelength)

otmerl@ln8- 400K at some examples ST NYBR® K
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Signals as Sums of
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Images as Signals

« Can we apply this idea to images, which are non-
periodic?

» Yes, with some important distinctions

« Finite domain, zero outside the image

* Animage’s frequency spectrum, however, will not
consist of integer multiples of some fundamental
frequency

 Original signal cannot be represented as a sum of
countably many sine waves, but as an integral over a
continuum of frequencies

« Fourier analysis is the process by which we
determine which sine waves must be used to represent |
a particular signal

« Very important subject in EE
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Temporal Aliasing

« Aliasing can manifest itself over time as well as space (i.e., Images)

« Wagon wheel in old Western movies:
wheel appears to slowly turn counter-clockwise...

DDD X X

frame 1| frame 2 frame 3 frame 4 frame 5
/
camera shutter open B>
Time

DO OO R

Center for ...but in reality turns clockwise very fast.



