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Visualization Algorithms

e “Algorithms that transform data are the heart of
visualization™

 Algorithms classified according to structure and type
of data

» (Geometric transformations change geometry but not

topology
» Examples: translation, rotation, scaling

» Topological transformations change topology but not
geometry

» Example: convert from regular to irregular grid
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| Visualization Algorithms

e Attribute transformations convert or create attributes
IN data

» Example: convert vector to scalar

» Combined transformations change data structure and
attributes

 Algorithms that change data type include scalar
algorithms, vector algorithms, tensor algorithms,
and modeling algorithms

o \Volume visualization and vector visualization have
their own special algorithms
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Contouring

e |socontour and isosurface extraction can reveal
structure of data (e.g., Isobars on weather maps)

» Separate data into regions

» |socontours: connected line segments
o |sosurfaces: triangular meshes

Figure 6—-4  Contouring a 2D
structured grid with contour line

value = 5.
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Contouring

» Isolines cross cell boundaries
» Use interpolation to compute crossing point

» Marching squares algorithm processes each
guadrilateral cell independently

» Each vertex may be inside or outside (or on)
contour

» How many cases must we consider?
» AmDIQUOUS Ccases
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Marching Squares Cases
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Figure 6-5 Sixteen different marching squares cases. Dark vertices indicate scalar value is above
contour value. Cases 5 and 10 are ambiguous.
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Marching Squares Ambiguous Case

(a) Break contour (b) Join contour

Figure 6—8 Choosing a particular contour case will break (a) or join (b) the current contour. Case
shown is marching squares case 10.
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| Marching Cubes

» Marching cubes algorithm extracts isosurfaces
from 3D rasters

 Very famous algorithm

« How many cases of hexahedral cells must we
consider?

 Each of 8 vertices may be inside or outside

o« 28 =256

o Lots of symmetry - really only 15 cases to
___consider
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Marching Cubes Cases

. Figure 6-6 Marching cubes cases for 3D isosurface generation. The 256 possible cases have been ST NY BR K
Department of Computer Science reduced to 15 cases using symmetry. Dark vertices are greater than the selected isosurface value.
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Marching Cubes Ambiguous Cases

Case 6¢

Figure 6—9 Arbitrarily choosing marching
cubes cases leads to holes in the isosurface.
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Marching Cubes Complementary Cases
Used to Avoid Holes
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Figure 6-10 Marching cubes complementary cases.



| Marching Triangles & Tetrahedra

 Can extend marching squares to marching
triangles, and marching cubes to marching
tetrahedra

» Divide squares Into triangles, cubes Into
tetrahedra (how?) and then run different
algorithms

» Tradeoff for both algorithms: simplicity vs.
memory usage
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Contouring Examples

Figure 6-11 Contouring examples. (a) Marching squares used to generate contour

lines (headSlic.tcl); (b) Marching cubes surface of human bone (head-

Department of Computer Science Bone. tcl); (¢) Marching cubes surface of flow density (combIso. tcl); (d) March- ST NY BR K
ing cubes surface of iron-protein (ironPIso.tcl).
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Transfer Functions

» The assignment of color and transparency to
density Is also called classification

material
transfer function

voxel density

air muscle bone

/ \ \ white, opaque

transparent
grey, semi-transparent
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Scalar Algorithms

Color mapping — map scalar data to colors
Why scalars?
How would you map a vector to a color?

Color lookup table (LUT) — attributes inside particular
range are mapped to color
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Transfer Functions

» More general form of lookup table
» Can map data to color as well as transparency
» Usually expressed as actual functions
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Figure 6—2 Transfer function for color components red, green, and blue as a function of scalar value.
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Transfer Functions
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Transfer Functions

o Difficult to design
» Semi-automatic systems exist: transfer function
design galleries

o |dea: generate random transfer functions, user
selects ones he likes, system mutates them using
a genetic algorithm to create new ones
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Transfer Function Design Galleries
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ransfer Functions

Figure 6-3 Flow density colored with different lookup tables. Top-left: grayscale; Top-right rainbow
(blue to red); lower-left rainbow (red to blue); lower-right large contrast (rainbow. tcl).

Department of Computer Science ST NYBR® K

i i NEW YORK
Center for Visual Computing STATE UNIVERSITY OF



Scalar Generation

 Vectors and other n-D quantities can be turned
Into scalars

» Example: taking magnitude of vector

» Example: Hawall terrain visualization created by
projecting vector onto vertical

« Normalize vectors to give maximum magnitude
of 1.0

o Steepest slope mapped to brightest color
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Scalar Generation
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Figure 6-12 Computing
scalars using normalized dot
product. Bottom half of figure
illustrates technique applied
to terrain data from Honolulu,
Hawaii (hawaii.tcl).
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] Vector Field Visualization

 Streamlines
— Integration through vector field

e Stream ribbons
— Connect two streamlines

o Streamtubes
— Connect three or more streamlines

 Stream surfaces
— Sweep line segment through vector field
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Streamlines Example

Color indicates temperature of air flowing through
engine
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Streamribbons Example
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Streamtubes Example
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Streamesurfaces Example
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