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Straight Line (Implicit
Representation)
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| Straight Line

» Mathematics (Implicit Representation)

aXx+by+c=0

+a(ax+by+c)=0
—a(ax+y+c)=0

» Example
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Circle

 Implicit representation
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W Conic Sections

- Mathematics ax’ +2bxy +cy’+dx+ey+ f =0

» Examples
— Ellipse
— Hyperbola
— Parabola
— Empty set
— Point
— Pair of lines
— Parallel'lines
— Repeated lines
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Conics

 Parametric eqguations of conics
 Generalization to higher-degree curves
» How about non-planar (spatial) curves
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Conics

Ax*+2Bxy + Cy*+2Dx +2Ey + F=0

Table 2.1 Conic curve characteristics
QI Other conditions Type

Parabola
C#0,E?-CF>0 Two parallel real lines
C#0,E>’-CF=0 Two parallel coincident lines
C#0,E>-CF<0 Two parallel imaginary lines
C=B=0,D*-AF>0 Two parallel real lines
C=B=0,D*-AF=0 Two parallel coincident lines
C=B=0,D*-AF<0 Two parallel inaginary lines
Point ellipse
-CIQI>0 Real ellipse
-ClQI<0 Imaginary ellipse

Hyperbola
Two intersecting lines
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Plane

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK




Plane and Intersection
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Plane

+ Example
» General plane equation ENEN VNS IS

» Normal of the plane {a}

b

C

o Arbitrary point on the plane
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Plane

 Plane equation derivation
(x—a)a+(y—a,)b+(z—a,)c=0

ax+by+cz—-(a,a+ab+a,c)=0

 Parametric representation (given three points on
the plane and they are non-collinear!)

p(U,V) =P, +(pb _pa)u +(pc _pa)v
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Plane

 EXplicit expression (if ¢ IS non-zero)

z=—l(ax+by+d)
C

e | Ine-Plane intersection

I(u) =p, + (P, —Po)U
(N)(Po + (P, —Py)U)+d =0
np, plane (p,)

1
np, —Np, plane(p,) — plane(p,)
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Circle

» Implicit equation

e Parametric function C(Q):[CW@)
sin(Q)

O<=0<=2rx

 Parametric representation using rational
polynomials (the first guadrant)

o Parametric representation Is not unique!
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What are Implicit Surfaces?

« 2D Geometric shapes that exist in 3D space

o Surface representation through a function f(x, vy,
2)=0

» Most methods of analysis assume f Is continuous
and not everywhere O.
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Example of an Implicit Surface

» 3D Sphere centered at the origin
_X2+y2+22:r2
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Point Classification

* Inside Region: <0
» Qutside Region: f>0
» Or vice versa depending on the function

°
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Manifold

« A 2D Manifold separates
space into a natural inner
and natural outer region

« A manifold surface contains
no holes or dangling edges
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Manifold

e |t is difficult to determine enclosed region in
non-manifold surfaces
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Surface Normals

 Usually gradient of the function

— VI(xy,2) =
(of/ox, of/oy, of/oz)

 Points at increasing f

U

T mrea) =
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| Properties of Implicits

 Easy to check If a point is inside the implicit
surface or NOT
— Simply evaluate f at that point

» Fairly easy to check ray Intersection
— Substitute ray equation into f for simple functions
— Binary search
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| Implicit Equations for Curves

 Describe an implicit relationship

 Planar curve (point set) {¢SRICSIEY;

» The implicit function Is not unique
{(x,y)[+of (x,y) =0}
{(x,y)|-of (x,y) =0}

« Comparison with parametric representation

x(u)J
y(u)

p(u)=:[
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| Implicit Equations for Curves

o Implicit function is a level-set
{z= f(x,y)

Z = O
» Examples (straight line and conic sections)
ax+by+c=0

ax” +2bxy +cy’ +dx+ey+ f =0

 Other examples

— Parabola, two parallel'lines, ellipse, hyperbola, two
Intersection lines
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Implicit Functions for Curves

 Parametric eqguations of conics
 Generalization to higher-degree curves
» How about non-planar (spatial) curves
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| Implicit Equations for Surfaces

 Surface mathematics SRRSO TIRY;

 Again, the implicit function for surfaces Is not
unique {(x,y,2)|+of (x,y,2) =0}
{(x,y,2)|-of (x,y,2) =0}

« Comparison with parametric representation

x(u,Vv)
p(u,v) {y(u,V)}

z(u,v)
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| Implicit Equations for Surfaces

 Surface defined by implicit function is a level-set
{WZ f(x,V, 2)

W = O

» Examples

— Plane, quadric surfaces, tori, superguadrics, blobby
objects

» Parametric representation of quadric surfaces
 Generalization to higher-degree surfaces
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| Quadric Surfaces

 |Implicit functions

« Examples ax® +by* +cz® +dxy+exz + fyz +gx+hy+ jz+k =0

_ Sph_ere Y —
— Cylinder “? 4 y?_1_0
_Cone X2+y2—22:O
— Paraboloid X2 4 yZ 4+ z—0
— Ellipsoid 2x2 +3y2 +4z2 —5=0
5 2 2 L > _
— Hyperboloid X+ Y z= +4=0
* More
— Two parallel'planes, two Intersecting planes, single plane,
line, point
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Quadric Surfaces

e Implicit surface equation

fx,v.z2)=ax> +by” +cz” +2dxy+2eyz+2 fz+20x+2hy+2jz+k =0

e An alternative representation
P'eQeP =0
with a d
d b

e

h
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Quadrics: Parametric Rep.

° Sphere X +y?4+2z22—r*>=0
X = r cos(«x) cos( /)
y = r cos(x)sin(f)
z =rsin(«)

ae[—%,%]:ﬂe[—ﬁ,ﬁ]

» Ellipsoid —

52 +C2 —1 =0

X = acos(«x) cos(f)

y = b cos(«x) sin(/)

z =csin(«)

a<cl-5. 51 p <l-n, 7]
o (Geometric meaning o these parameters
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Quadric Surfaces

e Modeling advantages
— computing the surface normal
— testing whether a point is on the surface
— computing z given x and y

— calculating intersections of one surface
with another
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| Superquadrics

» Geometry (generalization of quadrics)
» Superellipse
 Superellipsoid

 Parametric representation

X a, cos™ (x)sin®z ()
{y} =| a, cos™ (x)sin’ (3)
y4

a, sin”? («)

T 7T
24 E[—E,E];ﬂe[—ﬂ,ﬂ)
» \What Is the meaning of these control parameters:

Department of Computer Science ST NY BR K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



| Types of Implicit Surfaces

« Mathematic
— Polynomial or Algebraic

— Non polynomial or Transcendental
 Exponential, trigonometric, etc.

e Procedural
— Black box function
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Generalization

» Higher-degree polynomials

» Non polynomials
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Algebraic Function

» Parametric representation 1s popular, but...
» Formulation

* Properties...
— Powerful, but lack of modeling tools
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Algebraic Surfaces
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Non-Algebraic Surfaces
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Algebraic Patch

.'/‘\\~
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Algebraic Patch

o A tetrahedron with non-planar vertices

VnOOO’ VOnOO’ VOOnO ’ VOOOn

o Trivariate barycentric coordinate (r,s,t,u) for p

P =1V 5001t SVpnoo T tV00no + UV 00n

r+<s+t+u=1

A regular lattice of control points and weights

D = IV 000 + IVonoo + KVoono + Vooon
ikl — I

n
L, K, 1 >=0;i+ j+k+1=n
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Algebraic Patch

» There are (n+1)(n+2)(n+3)/6 control points. A
weight w(l,],k,l) Is also assigned to each control
point

» Algebraic patch formulation

» Properties | k|n.,k

— Meaningful control, local control, boundary
Interpolation, gradient control, self-intersection
avoldance, continuity condition across the
boundaries, subdivision
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| Spatial Curves

e |ntersection of two surfaces

{f(x,y,z)zo

g(X,y,2)=0
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| Algebraic Solid

I EURSE:M{(X, y,2)| f(X,V,2)<=0};0r

(X, Y,2)| T(X,Y,2) >=0}

» Useful for complex objects (refer to notes on
solid modeling)
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| Implicit Surfaces: Applications

e Zero sets of implicit functions. f(x,y,2)=0
(I-1x>0)n(I-]y P 0)n(I-]z > 0)

r’—x"-y* -1°>0

« CSG operations.




Radial Basis Function: Applications




Implicit Functions

 Long history: classical algebraic geometry

 |Implicit and parametric forms
— Advantages
— Disadvantages

e |ntersection computation

 Point classification

o |_arger than parameter-based modeling
» Wnbounded geometry

| — w8
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Implicit Functions

» Geometric degeneracy and anomaly

» Algebraic and geometric operations are often
closed

» Mathematics: algebraic geometry
» Symbolic computation
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Implicit Functions

 Conversion between parametric and implicit
forms

 Implicitization vs. parameterization
o Strategy: Integration of both techniques
» Approximation using parametric models
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| Polygonization

 Conversion of implicit surface to polygonal
mesh

 Display implicit surface using polygons
» Real-time approximate visualization method

» Two steps
— Partition space into cells
— Fit a polygon to surface in each cell
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Polygonal Representation

o Partition space into convex cells
 Find cells that intersect the surface

( )

» Compute surface vertices

:purtarq:

{ ._r,,,q .
|.I||I =:::l




Cell Polygonization

» We will need to find those cells that actually
contain parts of surface

» Need to approximate surface within cell
o Basic idea: use piecewise-linear approximation

(polygon)
N =

i\
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Implicit Surface (Polygonal
Representation)

AT

'ﬂ"\ )
N
,_.emmm%}&'.‘ia

NI
N a
AR %)

F: R®=> R, £ = F(0)
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| Spatial Partitioning

» Exhaustive enumeration
— Divide space into regular lattice of cells
— Traverse cells in order to arrive at polygonization
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| Space Partitioning Criteria

How do we know If a cell actually contains the
surface?

o Straddling Cells
— At least one vertex Inside and outside surface

— Non-straddling cells can still contain surface

» Guarantees
— Interval analysis

— Lipschitz condition ‘
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Spatial Partitioning

« Subdivision
— Start with root cell and subdivide
— Continue subdividing
— traverse cells




Spatial Partitioning

 Adaptive polygonization




| Surface Vertex Computations

» Determine where implicit surface intersects cell
edges

» EITHER linear interpolate function values to
approximate
» OR numerically find zero of f(r(t))
r(t) = X + 1(X5-X)
5 |

f(Xy) = vy (+)

p
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| Polygonal Shape

» Use table indexed by

vertex signs and consider ®© 660 0O 60 O
all possible combinations e e® @e® ©ee® ©

» Let+bel -be0 ® 66 ©c© 600 ©
» Table size e 06 96 o006 ©
— Tetrahedral cells: 16 ® 66 S50 60 ©
entries © 060 60 00 ©

— Cubic cells: 256 entries ® 66 0O 60 ©

* E.g., 2-D - 16 square @ 00 ©0 00 ©

cells
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Determining Intersections




| Tetrahedral Cell Polygons
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| Orientation

 Consistency allows polygons to be drawn with

correct orientation
» Supports backface culling "@" ” "@'
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| Problem: Ambiguity

 Some cell-corner-value
configurations yield more
than one consistent

polygon
* Only for cubes, not
tetrahedra (why?)

 |n 3-D can yield holes in
surface!

 How can we resolve
these ambiguities?

or
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| Topological Inference

e Sample a point In the
center of the +
ambiguous face

o |f data Is discretely
sampled, bilinearly
Interpolate samples
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| Preferred Polarity

« Assume ambiguous face centers always +
e (or always -)
 Preference can be encoded into table

© wm® Sam®
S
M o DY
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| CSG Polygonization

Polygonization can smooth crease edges caused
0y CSG operations

Polygonization needs to add polygon vertices

N
A

along crease edges
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| Visualization of Implicit Surfaces

DDDDDD




Problem of Polygonization

 Sharp features
are broken
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Reconstruction of Sharp Features

@implicit function : f(x,y,1)

Rough Polygonization

(Correct topology) Post-
, processing




| Implicit Surfaces vs Polygons

« Advantages
— Smoother and more precise
— More compact
— Easler to interpolate and deform
e Disadvantages
— More difficult to display in real time

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Implicits vs Parameter-Based
Representations

« Advantages
— Implicits are easier to blend and morph
— Interior/Exterior description
— Ray-trace

e Disadvantages
— Rendering
— Contraol
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Case Studies: Distance Functions

o D(p) =R -
— Sphere: Distance to a
point
— Cylinder: Distance to a
line
— More examples

WWWWW



Distance Functions




| Blobby Models

« Blobby models [Blinn 82], also known as metaballs
[Nishimura and Hiral 85] or soft objects [Wyvill and
Wyvill 86, 88]

* A blobby model — a center surrounded by a density
field, where the density attributed to the center
decreases with distance from the center.

» By simply summing the influences of each blobby
model on a given location, we can obtain very smooth
blends of the spherical density fields.

& { T Y, z) = E 4 { x, 1, z2) — threshold = ()



] Blobs and Metaballs

 Define the location of some points

 For each point, define a function on the distance to a
given point, (X,y,z)

» Sum these functions up, and use them as an implicit
function

» Question: If I'have two special points, in 2D, and' my
function Is just the distance, what shape results?

» More generally, use Gaussian functions of distance, or
other forms

— Various results are called blobs or metaballs
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Design Using Blobs

* None of these parameters allow the
designer to specify exactly where
the surface Is actually located.

« A designer only has indirect
control over the shape of a blobby
implicit surface.

- Blobby models facilitate the design  —des
of smooth, complex, organic- NRRA,
appearing shapes.
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Example with Blobs

. mNawy

T .' 'S
. - Y - 1
ing s Blob, but Me charatlg :

Vi S 7 Jd cre ok

——

Vs%\ \
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What Is It?

» “Metaball, or ‘Blobby’, Modeling is a technique
which uses implicit surfaces to produce models
which seem more ‘organic’ or ‘blobby’ than
conventional models built from flat planes and
rigid angles”™
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Examples
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Examples
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Blobby Modeling: Its Utility

» Organic forms and nonlinear shapes

e Scientific modeling (electron orbitals, some
medical imaging)

» Muscles and joints with skin

 Rapid prototyping

» CAD/CAM solid geometry
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| Blobby Model and Mathematics

 Implicit equation:
f(x,y,2)= Zwigi (X, y,2)=d

» The w; are weights — just numbers
 The g; are functions, one common choice Is:
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| Skeletal Design

 Use skeleton technigue to design implicit
surfaces and solids toward interactive speed.

 Each skeletal element Is associated with a locally
defined implicit function.

» These local functions are blended using a
polynomial weighting function.

— [Bloomenthal and Wyvill 90, 95, 97] defined
skeletons consisting of points, splines, polygons.

— 3D skeletons [Witkin and Heckbert 94] [Chen 01]
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| Skeletal Design

Global and local control in three separate ways:
— Defining or manipulating of the skeleton;

— Defining or adjusting those implicit functions defined for each
skeletal element;

— Defining a blending function to weight the individual implicit
functions.

—— bones TN

tendons
veins
— muscle
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| Rendering Implicit Surfaces

» Some methods can render then directly
— Raytracing - find intersections with Newton’s method

 For polygonal renderer, must convert to

polygons

» Advantages:
— Good for organic looking shapes e.g., human body
— Reasonable interfaces for design

 Disadvantages:
— Difficult to render and control when animating
— Being replaced with subdivision surfaces, It appears
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Display Implicit Surfaces

e Recursive subdivision:
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Display Implicit Surfaces

e Recursive subdivision:
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Display Implicit Surfaces

e Recursive subdivision:
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Display Implicit Surfaces

 Find the edges, separating hot from cold:
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Compression
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Deformation

* p’=D(p)
» D maps each point in 3-space to some new
location

» Twist, bend, taper, and offset
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Visualization

e Contours
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Visualization
» Particle Display




| Particle Systems

« Witkin Heckbert S94

Constrain particle system to implicit surface

(Implicit surface f = 0 becomes constraint surface C

— O)

o Particles exert repulsion forces onto each other to
spread out across surface

o Particles subdivide to fill'open gaps

o Particles commit suicide If overcrowded

» Display particle as oriented disk

2n(zOAStraln Implicit surface to particles! STONY BR® K

Center for Visual Computing S UNIVERSITY OF NEW YORK



Meshing Particles

Stander Hart S97

Use particles as vertices
Connect vertices into mesh
Problems:

— Which vertices should be connected?

moves?
Solution: Morse theory mm'"mml,l'l'l'l,l,]',,,',,,"""';;r

|
o i - e M\
Track/find critical points of functior
___intopology-ofiamplicit-surface

,,lml “
e, b
Department of Computer Science

Center for Visual Computing



Shrink-wrapping Mechanism

ook at family of surfaces f -1(s) fors >0
 For s large, f -(s) spherical
 Polygonize sphere

e Reduce s to zero
— Allow vertices to track surface

— Subdivide polygons as necessary whan
curvature increases
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Visualization

« Ray Tracing
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Other Coordinate Systems

- t
- I*. -*.
Spherical Coordinates Cylindrical Coordinates
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Summary

o Surface defined implicitly by f(p) =0

 Easy to test If point Is on surface, inside, or
outside

 Easy to handle blending, interpolation, and
deformation

e Difficult to render
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