From Scalar Fields to Implicit Surfaces

Implicit Surfaces

$F(x, y, z)=0$

Straight Line (Implicit Representation)

Straight Line

- Mathematics (Implicit Representation)

$$
\begin{aligned}
& a x+b y+c=0 \\
& +\alpha(a x+b y+c)=0 \\
& -\alpha(a x+y+c)=0
\end{aligned}
$$

- Example

$$
x+2 y-4=0
$$

Circle

- Implicit representation

$$
\begin{gathered}
x^{2}+y^{2}-1>0 \\
x^{2}+y^{2}-1<0
\end{gathered}
$$

Conic Sections

- Mathematics

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
$$

- Examples
- Ellipse
- Hyperbola
- Parabola
- Empty set
- Point
- Pair of lines
- Parallel lines
- Repeated lines

$$
\begin{aligned}
& 2 x^{2}+3 y^{2}-5=0 \\
& 2 x^{2}-3 y^{2}-5=0 \\
& 2 x^{2}+3 y=0 \\
& 2 x^{2}+3 y^{2}+1=0 \\
& 2 x^{2}+3 y^{2}=0 \\
& 2 x^{2}-3 y^{2}=0 \\
& 2 x^{2}-7=0 \\
& 2 x^{2}=0
\end{aligned}
$$

Conics

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Conics

$A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0$

$$
\begin{gathered}
\mathbf{P Q P}^{T}=0 \\
\mathbf{Q}=\left[\begin{array}{lll}
A & B & D \\
B & C & E \\
D & E & F
\end{array}\right] \\
\mathbf{P}=\left[\begin{array}{lll}
x & y & 1
\end{array}\right]
\end{gathered}
$$

Table 2.1 Conic curve characteristics

k	$\|\mathbf{Q}\|$	Other conditions	Type
0	$\neq 0$		Parabola
0	0	$C \neq 0, E^{2}-C F>0$	Two parallel real lines
0	0	$C \neq 0, E^{2}-C F=0$	Two parallel coincident lines
0	0	$C \neq 0, E^{2}-C F<0$	Two parallel imaginary lines
0	0	$C=B=0, D^{2}-A F>0$	Two parallel real lines
0	0	$C=B=0, D^{2}-A F=0$	Two parallel coincident lines
0	0	$C=B=0, D^{2}-A F<0$	Two parallel inaginary lines
<0	0		Point ellipse
<0	$\neq 0$	$-C\|\mathbf{Q}\|>0$	Real ellipse
<0	$\neq 0$	$-C\|\mathbf{Q}\|<0$	Imaginary ellipse
<0	$\neq 0$		Hyperbola
<0	0		Two intersecting lines

Plane

Plane and Intersection

Plane

- Example $x+y+z-1=0$
- General plane equation $a x+b y+c z+y=0$
- Normal of the plane
r-
- Arbitrary point on the plane
$\mathbf{p}_{a}=\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]$

Plane

- Plane equation derivation

$$
\begin{aligned}
& \left(x-a_{x}\right) a+\left(y-a_{y}\right) b+\left(z-a_{z}\right) c=0 \\
& a x+b y+c z-\left(a_{x} a+a_{y} b+a_{z} c\right)=0
\end{aligned}
$$

- Parametric representation (given three points on the plane and they are non-collinear!)
$\mathbf{p}(u, v)=\mathbf{p}_{a}+\left(\mathbf{p}_{b}-\mathbf{p}_{a}\right) u+\left(\mathbf{p}_{c}-\mathbf{p}_{a}\right) v$

Plane

- Explicit expression (if c is non-zero)

$$
z=-\frac{1}{c}(a x+b y+d)
$$

- Line-Plane intersection

$$
\begin{aligned}
& \mathbf{l}(u)=\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u \\
& (\mathbf{n})\left(\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u\right)+d=0 \\
& u=-\frac{\mathbf{n} \mathbf{p}_{0}}{\mathbf{n} \mathbf{p}_{1}-\mathbf{n} \mathbf{p}_{0}}=-\frac{\operatorname{plane}\left(\mathbf{p}_{0}\right)}{\operatorname{plane}\left(\mathbf{p}_{1}\right)-\operatorname{plane}\left(\mathbf{p}_{0}\right)}
\end{aligned}
$$

Circle

- Implicit equation $x^{2}+y^{2}-1=0$
- Parametric function

$$
\begin{aligned}
& \mathbf{c}(\theta)=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \\
& 0<=\theta<=2 \pi
\end{aligned}
$$

- Parametric representation using rational polynomials (the first quadrant)

$$
\begin{aligned}
& x(u)=\frac{1-u^{2}}{1+u^{2}} \\
& y(u)=\frac{2 u}{1+u^{2}} \\
& u \in[0,1]
\end{aligned}
$$

- Parametric representation is not unique!

What are Implicit Surfaces?

- 2D Geometric shapes that exist in 3D space
- Surface representation through a function $f(x, y$, z) $=0$
- Most methods of analysis assume f is continuous and not everywhere 0 .

Example of an Implicit Surface

- 3D Sphere centered at the origin

$$
\begin{aligned}
& -x^{2}+y^{2}+z^{2}=r^{2} \\
& -x^{2}+y^{2}+z^{2}-r^{2}=0
\end{aligned}
$$

Point Classification

- Inside Region: $\mathrm{f}<0$
- Outside Region: f > 0
- Or vice versa depending on the function
$f=0$

Manifold

- A 2D Manifold separates space into a natural inner and natural outer region
- A manifold surface contains no holes or dangling edges

Manifold

- It is difficult to determine enclosed region in non-manifold surfaces

Surface Normals

- Usually gradient of the function

$$
\begin{aligned}
- & \nabla f(x, y, z)= \\
& (\delta f / \delta x, \delta f / \delta y, \delta f / \delta z)
\end{aligned}
$$

- Points at increasing ff

Properties of Implicits

- Easy to check if a point is inside the implicit surface or NOT
- Simply evaluate f at that point
- Fairly easy to check ray intersection
- Substitute ray equation into f for simple functions
- Binary search

Implicit Equations for Curves

- Describe an implicit relationship
- Planar curve (point set) $\{(x, y) \mid f(x, y)=0\}$
- The implicit function is not unique

$$
\begin{aligned}
& \{(x, y) \mid+\alpha f(x, y)=0\} \\
& \{(x, y) \mid-\alpha f(x, y)=0\}
\end{aligned}
$$

- Comparison with parametric representation

$$
\mathbf{p}(u)=\left[\begin{array}{l}
x(u) \\
y(u)
\end{array}\right]
$$

Implicit Equations for Curves

- Implicit function is a level-set
$\left\{\begin{array}{cc}z= & f(x, y) \\ z= & 0\end{array}\right.$
- Examples (straight line and conic sections)

$$
\begin{aligned}
& a x+b y+c=0 \\
& a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
\end{aligned}
$$

- Other examples
- Parabola, two parallel lines, ellipse, hyperbola, two intersection lines

Implicit Functions for Curves

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Implicit Equations for Surfaces

- Surface mathematics $\{(x, y, z) \mid f(x, y, z)=0\}$
- Again, the implicit function for surfaces is not unique

$$
\begin{aligned}
& \{(x, y, z) \mid+\alpha f(x, y, z)=0\} \\
& \{(x, y, z) \mid-\alpha f(x, y, z)=0\}
\end{aligned}
$$

- Comparison with parametric representation
$\mathbf{p}(u, v)=\left[\begin{array}{l}x(u, v) \\ y(u, v) \\ z(u, v)\end{array}\right]$

Implicit Equations for Surfaces

- Surface defined by implicit function is a level-set
$\left\{\begin{array}{lc}w= & f(x, y, z) \\ w= & 0\end{array}\right.$
- Examples
- Plane, quadric surfaces, tori, superquadrics, blobby objects
- Parametric representation of quadric surfáces
- Generalization to higher-degree surfâces

Quadric Surfaces

- Implicit functions
- Examples

$$
a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z+g x+h y+j z+k=0
$$

- Sphere
- Cylinder
- Cone
- Paraboloid
- Ellipsoid
- Hyperboloid

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}-\mathbf{1}=\mathbf{0} \\
& x^{2}+y^{2}-1=\mathbf{0} \\
& x^{2}+y^{2}-z^{2}=\mathbf{0} \\
& x^{2}+y^{2}+z=\mathbf{0} \\
& 2 x^{2}+3 y^{2}+4 z^{2}-5=\mathbf{0} \\
& x^{2}+y^{2}-z^{2}+4=\mathbf{0}
\end{aligned}
$$

- More
- Two parallel planes, two intersecting planes, single plane, line, point

Quadric Surfaces

- Implicit surface equation

$$
f(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 d x y+2 e y z+2 f x z+2 g x+2 h y+2 j z+k=0
$$

- An alternative representation
$P^{\mathrm{T}} \bullet Q \bullet P=0$
with $Q=\left[\begin{array}{llll}a & d & f & g \\ d & b & e & h \\ f & e & c & j \\ g & h & j & k\end{array}\right] \quad P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

Quadrics: Parametric Rep.

- Sphere
$x^{2}+y^{2}+z^{2}-r^{2}=0$
$x=r \cos (\alpha) \cos (\beta)$
$y=r \cos (\alpha) \sin (\beta)$
$z=r \sin (\alpha)$
$\alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] ; \beta \in[-\pi, \pi]$
- Ellipsoid

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0 \\
& x=a \cos (\alpha) \cos (\beta) \\
& y=b \cos (\alpha) \sin (\beta) \\
& z=c \sin (\alpha) \\
& \alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] ; \beta \in[-\pi, \pi]
\end{aligned}
$$

- Geometric meaning of these parameters

Quadric Surfaces

- Modeling advantages
- computing the surface normal
- testing whether a point is on the surface
- computing z given x and y
- calculating intersections of one surface with another

Superquadrics

- Geometry (generalization of quadrics)
- Superellipse
- Superellipsoid
- Parametric representation

$$
\left(\frac{x}{a^{1}}\right)^{\frac{2}{s}}+\left(\frac{y}{a^{2}}\right)^{\frac{2}{s}}-1=0
$$

Types of Implicit Surfaces

- Mathematic
- Polynomial or Algebraic
- Non polynomial or Transcendental
- Exponential, trigonometric, etc.
- Procedural
- Black box function

Generalization

- Higher-degree polynomials

- Non polynomials

Algebraic Function

- Parametric representation is popular, but...
- Formulation

- Properties...
- Powerful, but lack of modeling tools

Algebraic Surfaces

Cubic

Degree 4

Degree 6

Non-Algebraic Surfaces

Algebraic Patch

Algebraic Patch

- A tetrahedron with non-planar vertices

$$
\mathbf{v}_{n \mathrm{OOO}}, \mathbf{v}_{\mathrm{OnOO}}, \mathbf{v}_{\mathrm{OOnO}}, \mathbf{v}_{\mathrm{OOOn}}
$$

- Trivariate barycentric coordinate ($\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}$) for p

$$
\begin{aligned}
& \mathbf{p}=r \mathbf{v}_{n \mathrm{OOO}}+\boldsymbol{s} \mathbf{v}_{\mathrm{O} n \mathrm{OO}}+\boldsymbol{t} \mathbf{v}_{\mathrm{OOnO}}+\boldsymbol{u} \mathbf{v}_{\mathrm{OOO} n} \\
& r+s+\boldsymbol{t}+\boldsymbol{L}=1
\end{aligned}
$$

- A regular lattice of control points and weights

$$
\begin{aligned}
& \mathbf{p}_{i j k l}=\frac{i \mathbf{v}_{n 000}+j \mathbf{v}_{0 n 00}+k \mathbf{v}_{00 n 0}+l \mathbf{v}_{000 n}}{n} \\
& i, j, k, l>=0 ; i+j+k+l=n
\end{aligned}
$$

Algebraic Patch

- There are $(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3) / 6$ control points. A weight w($\mathrm{I}, \mathrm{j}, \mathrm{k}, \mathrm{l})$ is also assigned to each control point
- Algebraic patch formulation
- Properties $\sum_{i} \sum_{j} \sum_{k} \sum_{l=n-i-j-k} w_{i j k} \frac{n!}{i!j!k!!!!} r^{i} s^{j} t^{k} u^{l}=0$
- Meaningful control, local control, boundary interpolation, gradient control, self-intersection avoidance, continuity condition across the boundaries, subdivision

Spatial Curves

- Intersection of two surfaces

$$
\left\{\begin{array}{l}
f(x, y, z)=0 \\
g(x, y, z)=0
\end{array}\right.
$$

Algebraic Solid

- Half space $\{(x, y, z) \mid f(x, y, z)<=0\} ;$ or

$$
\{(x, y, z) \mid f(x, y, z)>=0\}
$$

- Useful for complex objects (refer to notes on solid modeling)

Implicit Surfaces: Applications

- Zero sets of implicit functions.
$f(x, y, z)=0$
$r^{2}-x^{2}-y^{2}-z^{2}>0$

- CSG operations.

$$
(l-|x|>0) \cap(l-|y|>0) \cap(l-|z|>0)
$$

Radial Basis Function: Applications

Carr et al. "Reconstruction and Representation of 3D Objects with Radial Basis Functions", SIGGRAPH2001

$$
f(\mathbf{x})=\sum \lambda_{i} \Phi\left(\mathbf{x}-\mathbf{c}_{\mathbf{i}}\right)+p(\mathbf{x})
$$

Implicit Functions

- Long history: classical algebraic geometry
- Implicit and parametric forms
- Advantages
- Disadvantages
- Curves, suracess, solids in higher-dimension
- Intersection computation
- Point classification
- Larger than parameter-based modeling
- Unbounded geometry
- Object traversal

Implicit Functions

- Efficjent algorithms, toolkits,software
- Computer-based shape modeling and design
- Geometric degeneracy and anomaly
- Algebraic and geometric operations are often closed
- Mathematics: algebraic geometry
- Symbolic computation
- Deformation and transformation
, Shape editing, rendering, and control

Implicit Functions

- Conversion between parametric and implicit forms
- Implicitization vs. parameterization
- Strategy: integration of both techniques
- Approximation using parametric models

Polygonization

- Conversion of implicit surface to polygonal mesh
- Display implicit surface using polygons
- Real-time approximate visualization method
- Two steps
- Partition space into cells
- Fit a polygon to surface in each cell

Polygonal Representation

- Partition space into convex cells
- Find cells that intersect the surface (travense cells)
- Compute surface vertices

Cell Polygonization

- We will need to find those cells that actually contain parts of surface
- Need to approximate surface within cell
- Basic idea: use piecewise-linear approximation (polygon)

Implicit Surface (Polygonal Representation)

$\mathrm{F}: \mathrm{R}^{3}=>\mathrm{R}, \Sigma=\mathrm{F}^{-1}(0)$

Spatial Partitioning

- Exhaustive enumeration
- Divide space into regular lattice of cells
- Traverse cells in order to arrive at polygonization

Space Partitioning Criteria

How do we know if a cell actually contains the surface?

- Straddling Cells
- At least one vertex inside and outside surface
- Non-straddling cells can still contain surfáce
- Guarantees
- Interval analysis
- Lipschitz condition

Spatial Partitioning

- Subdivision
- Start with root cell and subdivide
- Continue subdividing
- traverse cells

Spatial Partitioning

- Adaptive polygonization

Surface Vertex Computations

- Determine where implicit surface intersects cell edges
- EITHER linear interpolate function values to approximate
- OR numerically find zero of $f(\mathrm{r}(t))$

$$
\begin{aligned}
& \mathbf{r}(t)=\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \\
& 0 \leq t \leq 1
\end{aligned}
$$

$$
\mathbf{x}=\frac{v_{1}}{v_{1}+v_{2}} \mathbf{x}_{1}+\frac{v_{2}}{v_{1}+v_{2}} \mathbf{x}_{2}
$$

Polygonal Shape

- Use table indexed by vertex signs and consider all possible combinations
- Let + be 1 , - be 0
- Table size
- Tetrahedral cells: 16 entries
- Cubic cells: 256 entries
- E.g., 2-D - 16 square cells

Determining Intersections

Tetrahedral Cell Polygons

Orientation

- Consistency allows polygons to be drawn with correct orientation
- Supports backface culling

Problem: Ambiguity

- Some cell-corner-value configurations yield more than one consistent polygon

- Only for cubes, not tetrahedra (why?)
- In 3-D can yield holes in surfàce!
- How can we resolve
 these ambiguities?

Topological Inference

- Sample a point in the center of the ambiguous face
- If data is discretely
 sampled, bilinearly interpolate samples

$$
p(s, t)=(1-s)(1-t) a+s(1-t) b+(1-s) t c+s t d
$$

Preferred Polarity

- Assume ambiguous face centers always +
- (or always -)
- Preference can be encoded into table

CSG Polygonization

- Polygonization can smooth crease edges caused by CSG operations
- Polygonization needs to add polygon vertices along crease edges

Visualization of Implicit Surfaces

Ray-tracing

Polygonization
(e.g. Marching cubes method)

Problem of Polygonization

Reconstruction of Sharp Features

Implicit Surfaces vs Polygons

- Advantages
- Smoother and more precise
- More compact
- Easier to interpolate and deform
- Disadvantages
- More difficult to display in real time

Implicits vs Parameter-Based Representations

- Advantages
- Implicits are easier to blend and morph
- Interior/Exterior description
- Ray-trace
- Disadvantages
- Rendering
- Control

Case Studies: Distance Functions

- $\mathrm{D}(\mathrm{p})=\mathrm{R}$
- Sphere: Distance to a point
- Cylinder: Distance to a line
- More examples

$$
0008
$$

Blobby Models

- Blobby models [Blinn 82], also known as metaballs [Nishimura and Hirai 85] or soft objects [Wyvill and Wyvill 86, 88]
- A blobby model - a center surrounded by a density field, where the density attributed to the center decreases with distance from the center.
- By simply summing the influences of each blobby model on a given location, we can obtain very smooth blends of the spherical density fields.

$$
G(x, y, z)=\sum g_{i}(x, y, z)-\text { threshold }=0
$$

Blobs and Metaballs

- Define the location of some points
- For each point, define a function on the distance to a given point, (x, y, z)
- Sum these functions up, and use them as an implicit function
- Question: If I have two special points, in 2D, and my function is just the distance, what shape results?
- More generally, use Gaussian functions of distance, or other forms
- Various results are called blobs or metaballs

Design Using Blobs

- None of these parameters allow the designer to specify exactly where the surface is actually located.
- A designer only has indirect control over the shape of a blobby implicit surfâce.
- Blobby models facilitate the design of smooth, complex, organicappearing shapes.

Example with Blobs

What Is It?

- "Metaball, or 'Blobby', Modeling is a technique which uses implicit surfaces to produce models which seem more "organic" or "blobby" than conventional models built from flat planes and rigid angles"

Examples

Examples

Blobby Modeling: Its Utility

- Organic forms and nonlinear shapes
- Scientific modeling (electron orbitals, some medical imaging)
- Muscles and joints with skin
- Rapid prototyping
- CAD/CAM solid geometry

Blobby Model and Mathematics

- Implicit equation:

$$
f(x, y, z)=\sum_{i=1}^{n_{\text {mblbs }}} w_{i} g_{i}(x, y, z)=d
$$

- The w_{i} are weights - just numbers
- The g_{i} are functions, one common choice is:

$$
g_{i}(\mathbf{x})=e^{\frac{-\left(\mathbf{x}-c_{i}\right)^{2}}{\sigma_{i}}}
$$

$-c_{i}$ and σ_{i} are parameters

Skeletal Design

- Use skeleton technique to design implicit surfaces and solids toward interactive speed.
- Each skeletal element is associated with a locally defined implicit function.
- These local functions are blended using a polynomial weighting function.
- [Bloomenthal and Wyvill 90, 95, 97] defined skeletons consisting of points, splines, polygons.
- 3D skeletons [Witkin and Heckbert 94] [Chen 01]

Skeletal Design

- Global and local control in three separate ways:
- Defining or manipulating of the skeleton;
- Defining or adjusting those implicit functions defined for each skeletal element;
- Defining a blending function to weight the individual implicit functions.

Rendering Implicit Surfaces

- Some methods can render then directly
- Raytracing - find intersections with Newton's method
- For polygonal renderer, must convert to polygons
- Advantages:
- Good for organic looking shapes e.g., human body
- Reasonable interfaces for design
- Disadvantages:
- Difficult to render and control when animating
- Being replaced with subdivision surfaces, it appears

Display Implicit Surfaces

- Recursive subdivision:

Display Implicit Surfaces

- Recursive subdivision:

Display Implicit Surfaces

- Recursive subdivision:

Display Implicit Surfaces

- Find the edges, separating hot from cold:

Compression

Mesh of 473,000 vertices
and 871.000 facets
Implicit function of 32,000 terms

Deformation

- $\mathbf{p}^{\prime}=\mathrm{D}(\mathbf{p})$
- D maps each point in 3-space to some new location
- Twist, bend, taper, and offset

Visualization

- Contours

Visualization

- Particle Display

$$
\begin{aligned}
& 000 \\
& 1000 \\
& 1000 \\
& 100 \\
& 10 \\
& 0
\end{aligned}
$$

Particle Systems

- Witkin Heckbert S94
- Constrain particle system to implicit surface (Implicit surface $f=0$ becomes constraint surface C $=0$)
- Particles exert repulsion forces onto each other to spread out across surfáce
- Particles subdivide to fill open gaps
- Particles commit suicide if overcrowded
- Display particle as oriented disk
amenenstrain implicit surface to particles!

Meshing Particles

- Stander Hart S97
- Use particles as vertices
- Connect vertices into mesh
- Problems:

- Which vertices should be connected?
- How should vertices be reconnected when surface moves?
- Solution: Morse theory
- Track/find critical points of function intopology-of-implicit surfăce

Shrink-wrapping Mechanism

- Look at family of surfaces $f^{-1}(s)$ for $s>0$
- For s large, $f^{-1}(s)$ spherical
- Polygonize sphere
- Reduce s to zero
- Allow vertices to track surfăce
- Subdivide polygons as necessary when curvature increases

Visualization

- Ray Tracing

Other Coordinate Systems

Spherical Coordinates

Cylindrical Coordinates

Summary

- Surface defined implicitly by $f(p)=0$
- Easy to test if point is on surface, inside, or outside
- Easy to handle blending, interpolation, and deformation
- Difficult to render

