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Topics
• Scalar field (2D), height surfaces, depth images

• Fields, Curves, and Surfaces

• Introduction to (height) surfaces

• Representations (polynomial surface patches, tensor-product

cubic splines)

• Reconstruction

– Interpolation

– Approximation (Surface fitting)

• Segmentation (of point measurements into surface patches)

• Registration (of surfaces with point measurements)
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Topics
• Basic methods for converting point measurements from (data

sources)

– Binocular stereo,

– Active triangulation, and

– Range cameras,

into simple surface representations.

• Basic methods include

– Converting point measurements into a mesh of triangular facets,

– Segmenting range measurements into simple surface patches,

– Fitting a smooth surface to the point measurements, and

– Matching a surface model to the point measurements.
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Fields (with coordinates & measurements) 

• Used to represent measurements, which are a mapping from the

coordinate space to the data space.

• Image-related measurements include intensity and depth.

• Measurements are a mapping from the coordinate space to the data

space.

• Coordinate space:

– specifies the locations at which measurements were made;

• Data space:

– specifies the measurement values.

• Data values are scalar measurements if the data space has only 1D; else,

vector measurements.

• Examples - weather data, image.
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Fields

• Coordinate systems

• Used to represent measurements, which are a 

mapping from the coordinate space to the data space

• Image-related measurements include intensity and 

depth

• Three types of fields are uniform, rectilinear, and 

irregular
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Uniform Fields
• Measurements stored in a rectangular grid

• Equal spacing between rows and columns

• Images – each grid square is a pixel
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Rectilinear Fields
• Data samples not equally spaced along the coordinate 

axes

• Data samples organized on rectangular grid with varying 

distances between rows and columns
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Irregular Fields

• Contain scattered (randomly-located) 

measurements or any pattern of measurements not 

corresponding to a rectilinear structure

• No overall organizational structure

• Similar to coordinate systems used in standard

mathematics
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Importance of Fields
• Allow flexibility in the representation of

measurements.

• Example:
– Depth measurements can be represented as displacement 

measurements in the uniform field of an image

– Depth measurements can also be represented as points in 
the irregular field of three-dimensional space

The use of fields should become clearer later in the

presentation
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Introduction to Height Surfaces

• Typically used to provide a model for depth

measurements.

• Surfaces are interpolated or approximated from

depth measurements.

• Surfaces are then segmented into regions with

similar characteristics (curvature).
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Importance of Height Functions
• Representation of depth measurements

• Analysis of depth measurements

• Data visualization

• Object recognition
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Surfaces – Height Functions

• Typically used to provide a model for depth 

measurements

• Surfaces are interpolated or approximated from 

depth measurements

• Surfaces are then segmented into regions with 

similar characteristics (curvature)

• Discussion is similar to contours, which are 2D.  

• Surfaces are 3D.
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Geometry of Surfaces - Heights
• The explicit form is good for graph surfaces, which are

surfaces represented as displacements from a coordinate

plane

• A graph surface represents a surface as displacements normal

to the coordinate plane
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(xP, yP)

zP
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Surface Interpolation
• The surface representations can be used to interpolate samples of a 

graph surface, like depth measurements, obtained with binocular 

stereo or active triangulation. 

• May be necessary when depth measurements do not conform to the 

uniform grid format required for image processing. 

• May be necessary to interpolate depth measurements onto a uniform 

grid before using image processing algorithms, such as edge detection 

and segmentation. 

• Types: 

– Triangular mesh interpolation

– Bilinear interpolation

– Robust interpolation
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Planes
• Three points, p0, p1, and p2, define a plane in space

• The normal vector to the plane, n, is defined as

• The implicit equation for a plane is

where, p is a point that lies in the plane

• a, b, and c are the elements of n
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Triangular Mesh Interpolation
• Suppose, we have samples of a graph surface, z = f (x, y), at scattered points

(irregular field) using binocular stereo or active triangulation.

• We need to interpolate the depth measurements at grid locations [i,j] in the image

plane, i.e., the z value at each point.

• Create a triangular mesh using the scattered point coordinates (xi, yi) and depth 

values (z). 

• Connect the points in space to form a mesh of triangles. 

• Since the depth measurements are from a graph surface, each triangle defines a plane 

explicitly: 

• Imagine overlapping the triangular mesh with the uniform image plane. Each pixel 

has coordinates (xi, yi). 

• For each grid location, find the triangle that encloses point (xi, yi) and use the 

equation corresponding to this triangle to calculate the z at the grid location:

yaxaaz 210 

ijij yaxaaz 210 
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Triangular Mesh Interpolation
• Have samples of a graph surface, 

z = f(x, y), at scattered points (irregular field)

• Want to interpolate the depth measurements at 
grid locations in the image plane

• Create a triangular mesh using the scattered point 
coordinates (x and y) and depth values (z)

• Connect the points in space to form a mesh of 
triangles

• Each triangle defines a plane with equation:

yaxaaz 210 
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Triangular Mesh Interpolation -
Example
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Bilinear Interpolation
• Interpolates values on a rectilinear grid

• Can be used to interpolate a measurement, (x, y), between grid

coordinates using the measurements at the four nearest grid

locations.

• The four grid locations 

with measurements                                    define the corners 

of a rectangle with sides parallel to the x and y axes 

containing (x, y).

• The aim is to find a bilinear surface patch that interpolates the

four corners, then use this patch to interpolate the

measurement at (x, y).
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Bilinear Interpolation
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Bilinear Interpolation
• A surface is bilinear if each cross section parallel to a coordinate axis is 

a line segment: 
xyayaxaayxf 4321),( 

• To find the bilinear surface patch, plug the 4 corner coordinates into 

the above equation.  Solve the system of equations for 

•

• Special case for uniform grid (image):

. and , , , 4321 aaaa

. for tmeasuremen the einterpolat to  Use ),(),( yxyxf

square a of corner left upper the from offset the is  where ),(

)()()(),( 222112111112112111

yx

zzzzyxzzyzzxzyxf



 



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

From Points to Surfaces

1200 points

35947 points

2 tori

Bunny
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Importance of Surfaces

• Representation of depth measurements

• Analysis of depth measurements

• Data visualization

• Object recognition
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Surface Patches - Types
• Bilinear patches- any c/s // a coordinate axis is a line,

• Biquadratic patches-

• Bicubic patches-

• Biquartic patches-

Biquadratic, bicubic and biquartic patches are bivariate polynomials
that are frequently used to represent surface patches.
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Utility of Surface Patches
• Good for modeling portions of a surface, such as the 

neighborhood around a point.

• Not convenient for modeling an entire surface. 

• Can only be used to model graph surfaces.

• More complex surfaces can be modeled using cubic 

splines. 
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Differential Geometry
• Local analysis of how small changes in position (u,v) in the planar domain

affect the position on the surface p(u,v), the first derivatives, pu(u,v) & pv(u,v)

and the surface normal, n(u,v).

• The first derivatives at a point are two orthogonal vectors that span the tangent

plane

• The surface normal n at this point p is the unit vector orthogonal (normal) to

the tangent plane
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Differential Geometry
• Slicing the surface with a plane containing the 

normal vector produces an infinite number of 
normal curves, depending on the orientation of the 
slicing plane.

• The minimum and maximum curvatures 
(principal curvatures) can be used to calculate the 
Gaussian curvature and mean curvature

• Umbilic points are locations on the surface where 
all normal curvatures are equal (end of an egg)
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Robust Interpolation
• Select the n depth measurements closest to the grid point

• Fit a surface patch to all possible combinations of m data points 

selected from the n points.  The number of subsets will be:

• Compute the median of the squared residuals for this patch:

• Once all subsets have been considered, select the parameter ak with 
the smallest median of squared residuals.
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Robust Interpolation
• Beneficial when depth measurements have outliers.

• Uses least-median-squares regression to fit surface patches

• Tolerates up to 50% outliers.

• Finds parameters (a) that minimize the median of the squared

residuals (difference between depth measurement and model):

• To do this, surface patches are fit to a grid point based on the
neighborhood of depth measurements.
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Robust Interpolation Properties

• Computationally expensive due to the large 

number of subsets of points for which surface 

patches must be fit

• Each surface fit is independent, which allows 

for parallelization
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Surface Patches 
Algorithm – Follow the Edges Clockwise Around a face

Inputs- A pointer to the record for the face to traverse and a

procedure to invoke for each edge that is visited.

1. Get the 1st edge from the face record and make it the current edge. 

2. Process the current edge: perform whatever operations must be done as 

each edge is visited. E.g., compile a list of vertices clockwise around the 

face, record the vertex at the end of the edge in the direction of traversal. 

3. If the west face of the current edge is being circumnavigated, then the 

next edge is the SW wing. 

4. If the east face of the current edge is being circumnavigated, then the 

next edge is the NE wing. 

5. If the current edge is the 1st edge, then the traversal is finished. 

6. Otherwise, go to step 2 to process the new edge. 
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Surface Approximation

• Types:

– Variational methods

– Regression splines

– Weighted spline approximation
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Surface Approximation
• Fits surfaces to the data points where the 

surfaces do not necessarily include the data 
points

• Sometimes easier to approximate the data 
instead of forcing interpolation of points

• In general, find z = f(x,y) that minimizes: 
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Variational Methods

• A good approximation scheme leads to a 

single, good, clear solution

• Choosing a function that approximates the data 

and is a smooth surface leads to a good 

solution choice
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Variational Methods – Regularization

• Select the function z = f(x,y) that minimizes the 

norm: 
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Problem constraint

(error)

Smoothness term 

(stabilizer)

• α is the regularizing parameter and defines the tradeoff between 

a good approximation (small) and a smooth surface (large)

• To find the solution, variational calculus and numerical methods 

are used
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Regression in Splines
• Substitutes a generic surface representation for the approximating 

function and solves the regression problem for the parameters of 
the generic surface

• Tensor-product splines are often used for the generic surfaces:
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Substitute with tensor-product splines

• Tensor-product splines are composed of a linear combination of 
basis functions:
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Basis Functions

• A basis function in 2D is composed of several 

polynomial segments

• Cubic (4th-order) basis functions have 4 

segments

• Each segment is a cubic polynomial curve 

defined only on the segment’s integer interval

• The polynomial curves are joined at locations 

known as knots
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Regression and the B-Spline Curve
• Need to solve for the coefficients ai of the basis functions so the B-spline curve 

can be used to solve the regression problem

• There are m + 1 coefficients, so we will need m + 1 equations that constrain the 
coefficients

• Select m + 1 data points to create m + 1 equations

• The data points must be chosen so that each coefficient is constrained by at least 
one equation

• Each equation has the form:

iiiiiiiii zxbaxbaxbaxba   )()()()( 0112233

ii xz  at point data the of value the is  where

• For regression, minimize over different choices of coefficients:

2

1 0

2 )()( 
 



















N

k

m

i

ii xBakz



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Extending Regression Splines to 3D
• B-spline curve becomes a B-spline surface where each basis 

function is a tensor product of basis functions:
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• Each basis function covers 16 grid rectangles, and each rectangle is 
covered by 16 basis functions

• Each basis function is composed of 16 bicubic polynomial patches

• Each patch is defined over a single rectangle

• A patch surface is formed by the product of 2 cubic polynomial 
curves, one in x and one in y
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Extending Regression Splines to 3D
• Each basis function, Bj(x), is composed of the same 4 

polynomials: b0(x), b1(x), b2(x), and b3(x)

• Each basis function, Bi(y), is composed of the same 4 
polynomials: b0(y), b1(y), b2(y), and b3(y)

• The formula for the B-spline surface is then:
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• As in the 2D case, only the coefficients akl depend on the 
grid rectangle [i,j] containing (x,y)



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Extending Regression Splines to 3D
• Need to solve for the coefficients akl of the basis functions so 

the B-spline surface can be used to solve the regression 
problem

• There are (m + 1)(n + 1) coefficients, so we will need 
(m + 1)(n + 1) equations that constrain the coefficients

• Select (m + 1)(n + 1) data points to create (m + 1)(n + 1) 
equations

• The data points must be chosen so that each coefficient is 
constrained by at least one equation

• For regression, minimize over different choices of 
coefficients:
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Regression Splines vs Patches

• Even though B-spline surfaces are composed of 

surface patches, they differ in some ways

• The patches in a B-spline surface are continuous even 

where the patches join

• This is not required of normal surface patches

• Because the B-spline surface is smooth overall, it can 

be used to model objects such as human organs, 

vehicles, and aircraft
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Weighted Spline Approximation

• Previous methods produce smooth surfaces 
regardless of the discontinuity in the data that 
may be surface boundaries

• One solution is to reduce smoothing in the 
discontinuous areas

• Weighted regularization accomplishes this 
with a weight function that is small at 
discontinuities, and are large elsewhere
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Weighted Spline Approximation

• Weighted spline surface approximation:
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Surface Reconstruction Applications

• Fetal ultrasound images
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Surface Reconstruction Applications

• Lidar data
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Surface Segmentation

• Segment depth measurements on a uniform grid 

into regions

• The results can be used for object recognition

• Each region has similar curvature and can be 

approximated with low-order bivariate 

polynomials

• One approach is the variable-order surface 

segmentation algorithm
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Variable-order Surface Segmentation

• Core regions are estimated from surface curvature 
properties

• Regions are modeled by bivariate surface patches

• The regions are grown to cover additional 
measurements

• Surface patches are extended to cover neighboring 
measurements if the error between these 
measurements and the surface patch is low
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Example
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Variable-order Surface Segmentation
• Final surface will consist of a piecewise smooth graph surface 

that can be partitioned into smooth surface primitives:
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Algorithm
1. Estimate the first and second partial derivatives (fx, fy, fxx, 

fxy , and fyy) by convolving the range image with separable 
filters.

2. Use the derivatives from step 1 to compute the mean and 
Gaussian curvatures (H[i,j] and K[i,j]) at each image grid 
location.  The signs of the curvatures (+, -, or 0) 
determine the surface type.

3. Label each range pixel with the surface type:
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Algorithm
4. Shrink the labeled regions to eliminate false labels 

near the boundaries.  It can be difficult to determine 
what region a pixel on a boundary belongs to when 
only curvature is considered. 

Boundary pixel



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Algorithm
5. Use the sequential connected components algorithm 

to find seed regions:
a) Group range samples with identical labels into connected regions

b) Use shrink or erosion operations to reduce the regions to include a small 
core of samples

c) Discard regions smaller than a certain threshold

6. Fit a bivariate patch to each region.  Start with a 
planar patch and increase the order of the patch 
until a good fit is obtained.  A region should be 
discarded if no good fit can be achieved such that 
the root-mean-square error is below some 
threshold.
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Algorithm
7. For each region, find a set of neighboring pixels with 

values close to the surface patch.  These pixels will be 
considered for inclusion in the region.

8. Refit the surface patch with the pixels selected in step 7 
added to the original pixels.  The order of the patch may 
need to be increased to get a good fit.  If the fitting error 
is below a threshold, add the pixels to the region; 
otherwise, discard them.

9. Repeat steps 7 and 8 until no region is changed.
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Surface Registration
• Aligns range samples with an object model or another 

set of range samples

• Often necessary to piece together two partial sets of 
an object

• Two methods:
– Iterative closest point

– Trimmed iterative closest point
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Iterative Closest Point
• Useful when the correspondence between the two sets of points 

is not known

• Approximates sets of conjugate pairs by mapping the closest 
points between the two samples

• The following distance measure is used to determine the closest 
points:

• This selects the point q in sample M with minimum distance to 
point p in the other sample

• The two samples are then realigned based on the closest points

• The process is repeated until the views are approximately 
aligned and the sum of the squared distances between closest 
points (registration) is below a threshold

pqMpd
Mq




min),(
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ICP Algorithm
1. Compute the set of closest points for every point 

in the surface to align.

2. Compute the registration between the point sets.  
This is essentially the error in the alignment.

3. Apply a rigid body absolute orientation 
transform to register the point sets.

4. Return to step 1 if the registration error is above 
a tolerance threshold.  Otherwise, the algorithm 
is finished.
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Trimmed Iterative Closest Point
• When computing the registration, only consider 

a subset of point mappings with the least squared 
distances between each pair of points.  These 
distances are the least trimmed squares (LTS).

• Provides better handling of:
– Outliers

– Shape defects

– Partial overlap
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TrICP Algorithm
1. Compute the set of closest points for every point in the 

surface to align.  For each pair, compute the squared 
distance between them.

2. Sort the squared distances in ascending order and 
calculate the sum                 of the desired number of 
least distances, N0.

3. Stop if any of the following conditions exist:
a) The maximum number of iterations has been reached

b)

c)

'

LTSS

small.ly sufficient is  MSE trimmed The 0

' / NSe LTS

small.ly sufficient is  MSE the in change relative The eee /'
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TrICP Algorithm

4. Compute the registration that minimizes

5. Apply a rigid body absolute orientation 

transform to register the point sets and go 

back to step 1.

'

LTSS
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Comparison of ICP and TrICP

Experimental Results

• Goal is to align set P with set M

• The results show that the ICP 
method considers all points and 
the TrICP method considers 
70% of the points

• The TrICP method executed 
faster and produced less error 
than the standard ICP method.
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Summary

• Introduction to surfaces

• Representations

• Reconstruction

• Segmentation

• Registration
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