| Data Interpolation

» Why Interpolation?
» We acquire discrete observations/measurements
for continuous systems, and we would like to

convert discrete measurements to continuous
representations

« We definitely need the ability to interpolate
values “in-between” discrete points
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Data Interpolation

» One simple example

» QOur goal is to find the value of a function between
known values

» et us consider the two pairs of values (x,y):
(0.0, 1.0), and (1.0, 2.0)

What isy at x = 0.5? That is, what’s (0.5, y)?
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Linear Interpolation

 Given two points, (X4,Y1), (X5,Y,):
Fit a straight line between the points

y(X) = ax +b

a=(YyY1)/(XpXg), D= (Y1 Xo7Yp Xg)/(Xo=Xq),

Use this equation to find y values for any
X; < X <X,
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Another Example

 \What about four points ?
e (0, 2), (1,0.3975), (2, -0.1126), (3, -0.0986)
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Another Example

Data points are: (0,2), (1,0.3975), (2,-0.1126), (3, -0.0986).

Fitting a cubic polynomial through the four points gives:

(z) = 2.0 — 2.3380z + 0.8302z* — 0.0947z*
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Polynomial Fit to Example

Polynomial Fit
I

el Exact: red
Polynomual fit: blue
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Polynomial Interpolants

* Now given n (n=4) data points
 Find the interpolating function that goes through
these points, will need a cubic polynomial

3

() = ag + a1 + asx” + asw

o |fthere are n+1 data points, the function will
become (with n+1 unknown variables)

N

(z) = ag + a1T + agx® + asx® + ...+ anT

Department of Computer Science ST NY BR K
STATE UNIVERSITY OF NEW YORK

Center for Visual Computing




Polynomial Interpolant

 The polynomial must pass through the four
points, resulting in the following constraints
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Caution: Extrapolation

Exact: red

| | | | | |
1 0 1 2 3 4 5

An N order polynomial has N roots!
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Scattered Data Fitting and
Applications in Data
| Visualization
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| The Scattered Data Fitting Problem

A; define the influence of the center

o After constructing s(x), the interpolation or extrapolation can be

A’l’t!x '

|

fid
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| Uniform Field (Domain)

» Measurements stored In a rectangular grid
 Equal spacing between rows and columns
 Images — each grid square Is a pixel
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] Rectilinear Fields

 Data samples not equally spaced along the
coordinate axes

 Rectangular grid with varying distances between
rows and columns
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The Scattered Data Fitting Problem

* |rregular Fields

— Contain scattered measurements not corresponding to a
rectilinear structure

— No overall organizational structure
— Similar to coordinate systems used in standard mathematics

\RENI\NA! h‘“
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Scattered Data Fitting




| Scattered Data Interpolation/Fitting

Given N samples (x;, f;), such that s(x;)=f;, We would like
to reconstruct a function s(x)

— X; are the points from measurement

— Reconstructed function is denoted s(x)

Actually, there are infinite number of solutions

We have specific constraints:
- s(x) should be continuous over the entire domain
- We want a ‘smooth’ surface

Radial basis functions are popularly used solutions
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'Data Fitting: Scattered Data
| Interpolation

o Characteristics
- Interpolation vs. Extrapolation
- Linear Interpolation vs. Higher Order
- Structured vs. Scattered
- 1-Dimensional vs. Multi-Dimensional

e Techniques
- Splines (cubic, B-splines, ...)
- Series (polynomial, radial basis functions, ...)

- Exact solution, minimization, fitting, approximation
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| Scattered Data Interpolation

 Radial Basis Functions (RBFs) are a powerful solution to the
Problem of Scattered Data Fitting

— N point samples are given as data inputs, we want to interpolate,
extrapolate, approximate

 This problem occurs in many areas:
— Mesh repair and model completion

— Surface reconstruction
« Range scanning, geographic surveys, medical data

— Field visualization (2D and 3D)

— Image warping, morphing, registration
— Artificial Intelligence

— Etc.
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Graphics Applications

e Given a set of samples, what are the in-between
values ?

FIGURE 3. Squash & stretch in Luxo Jr.'s hop.

e Linear interpolation, interpolating by splines, ...
- It works for structured data.

How about unstructured or scattered data samples?
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Scattered Data Interpolation

For instance, head model adjustment...




Scattered Data Interpolation

You can drag all vertices (more than 6000) or drag
feature samples...

=)  Drag by users

D =P  \What are the

displacement ?
—
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Scattered Data Modeling

Department of Computer Scie!

ST NY BR K

ATE UNIVERSITY OF NEW YORK

Center for Visual Computing



Smooth Surfaces

Department of Computer Science

ST NYBR® K

STATE UNIVERSITY OF NEW YORK

Center for Visual Computing



Scattered Data Approximation and
| Interpolation

» Scattered data: an arbitrary set of points in Rd
space, and these scattered data carry scalar
guantities (i.e., a scalar field in d dimensional
parametric space)
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Ordinary Least-Squares
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Least Squares Interpolant

 For n points, we only have a fitting polynomial of
order m (m < (n-1)), we want the least squares
fitting polynomial is similar to the exact fit form:

» Now p Is becoming a n * m matrix. We have
fewer unknowns than data points, the interpolant
can not go through all the points exactly, we need
to measure the total error

N
2
E €
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| Least Squares Approximation

* Problem statement: we have n
points in Rd space, and we
want to obtain a globally
defined function f(x) that can
approximate the given scalar
values at these points in the
least-squares senses

 We are considering the space [ (X) = b(x)T oC

of polynomials of total degree
m in d spatial dimensions b(X) = [bl(x) b,(x) ... b (X)]T

c=[c, ¢, .. ¢
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| Least Squares Approximation

» Commonly-used basis
functions include: quadratic,
linear, constant terms

* For example:

b(X)=1 x y x* xy y|

b(x)=[L x y z]
b(x) =1}




Solution

* Function minimization: the
partial derivatives of the
error functional must be set
to zero

» \We now obtain a linear
system of equations
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Solution

Z b(xi)b(xi)TC_b(Xi) fi =0

Zb(xi)b(xi)T

_ > b(x)f




Outline

 Linear regression
« Geometry of least-squares
 Discussion of the Gauss-Markov theorem
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Ordinary Least-Squares

m“
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One-dimensional Regression

m Find a line that represent the
b ’best” linear relationship:
4»
N b =ax

++

+
+ /7

¢ +
" +
y +
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One-dimensional Regression

m » Problem: the line does NOT go
[ through all the data points
+ y exactly, so only approximation
* \g
+
‘b| —a X‘ +4 +
L+
B
" +
y +
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One-dimensional Regression

Find the line that minimizes
the sum of error squared:
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| Matrix Notation

Using the following notations

we can rewrite the error function using linear algebra as:

e(x) = Z(bi —a,X)°

— (b —xa)" (b — xa)

e(x) =[b —xal’
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Multidimensional Linear Regression

Using a model with m parameters

q . b=aX +..+a,X, = Y aX,
j
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Multidimensional Linear Regression

Using a model with m parameters
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Multidimensional Linear Regression

Using a model with m parameters

b=aX +..+a,X, =) aX,
j

and n measurements
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| Matrix Notation
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Matrix Notation
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measurement n
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Geometric Interpretation
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Geometric Interpretation

e b Isavectorin R"
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Geometric interpretation

* b isavectorin R"
» The columns of A define a vector space range(A)
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| Geometric Interpretation

* b isavectorin R"
« The columns of A define a vector space range(A)
e AX Is an arbitrary vector in range(A)
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| Geometric Interpretation

* b isavectorin R"
« The columns of A define a vector space range(A)
e AX Is an arbitrary vector in range(A)
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| Geometric Interpretation

o IS the orthogonal projection of b onto range(A)

SAT(b-AX)=0=ATAX =A"b
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The Normal Equation

A'AX =A"b
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The Normal Equation:

> [Existence: ATAX = ATb BRESENEVSER i)
» Uniqueness: the solution 1S unigue iff the columins, of Al aie: linearly

independent
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The Normal Equation:

» Bristence: NIAVET W has always a solution
» Uniqueness  ihe solution IS unigue if the columns of Al are

linearly independent

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK




Under-constrained Problem
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Under-constrained Problem
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Under-constrained Problem

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK




Under-constrained Problem

» Poorly selected data
« One or more of the
parameters are redundant
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] Under-constrained Problem

» Poorly selected data
« One or more of the
parameters are redundant

Add constraints

A'Ax =A"b withmin, x|
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* Minimizing
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* Minimizing
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* Minimizing
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* Minimizing
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| Minimizing

Ve(x . )=0

min
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* Minimizing

H, (X, )IS positive

semi-definite
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Positive Semi-definite

A is positive semi-definite
N
x ' Ax >0, for all x
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| Minimizing

> |
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2A" A is positive
semi- definite
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2A" A is positive
semi- definite
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| Minimizing  Glta e e

A'AX =A"b

2A" A is positive

semi-definite
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no errors in a H
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homogeneous errors non-homogeneous errors
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no outliers

v
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outliers

no outliers outliers
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Question

You should be able to prove that the equation
above leads to the following expression for the
best fit straight line:

yp(z) = mz +b
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How good is the least-squares criteria?

« Optimality: the Gauss-Markov theorem

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



| How good is the least-squares criteria?

« Optimality: the Gauss-Markov theorem
|_et and be two sets of random variables
and define;
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| How good is the least-squares criteria?

« Optimality: the Gauss-Markov theorem
Let 1 and be two sets of random variables
and define:

If

Al:\a;; jare notrandom variables,

A2: E(e )=0,foralli,
A3:var(e )=o,foralli,
A4:cov(e.e;)=0,foralliand j,
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How good is the least-squares criteria?

e Optimality' the Gauss-Markov theorem

Let and U be two sets of random variables
and deflne
If A1l:3a; jare not random variables,

A2: E(e )=0,foralli,
A3:var(e )=o, foralli,
A4:cov(e,e;)=0,foralliand j,

Then K =argminXZei2

A A e W AR A T e W —"— A e —
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Least Squares Interpolant

 \We arrive at a system of equations through
function minimization

2p-pa—2p y = Ofla = (p”p)  p” y7

e \We can Introduce a pseudo-inverse

o For four points wi
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Cubic Least Squares Example

3 I I I |

[
x: -02 44 1.0 1.34 1.982.502.95 3.62 4.13 4.64 4.94
Ly 2.751.80-1.52-2.83-1.62 1.492.98 0.81 -2.14-2.93 -1.81
[

O

1L Data
& .
irregularly

spaced
0r- |

e

O

]

Sy (x) = 1.91 — 5.214x + 2.78022% — 0.39382%  ®



Least Squares Interpolant

Cublc Least Squares Fit: * 1s the ﬁttmg polynomial
" 0 is the given data |




Piecewise Interpolation

 Plecewise polynomials: a collection of
nolynomials to fit all the data points

 Different choices: linear, quadratic, cubic

» Non-polynomials: radial basis functions (RBFs)
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Radial Basis Functions

Developed to interpolate 2-D data: think bathymetry.
Given depths: P . interpolate to a rectangular grid.
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r";"
ety
et

b) Thin-plate (3-d)
6r) = r°

c) Gaussian d) Compactly Supported
2 .2

d(r) =e" ° 1—r)i(4r+1)
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w Radial Basis Functions

 Data points:
 For each position, there Is an associated value:

« Radial basis function (Iocate at each point):
g9;(x) = g(|x —x,|),7 =1,N

j'hl'l
Up(X) = Z a; g;(x)
j=1
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Radial Basis Function for Data Fitting

 To find the unknown coefficients, we force the
Interpolant to go through all the data points:

 \We have n equations for the n unknown
coefficients
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Multiquadric RBF

Hardy, 1971; Kansa, 1990
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11 (x,y) pairs: (0.2, 3.00), (0.38, 2.10), (1.07, -1.86), (1.29, -2.71), (1.84, -2.29), (2.31, 0.39),
(3.12,2.91), (3.46, 1.73), (4.12, -2.11), (4.32, -2.79), (4.84, -2.25)  SAME AS BEFORE




RBF Errors

_1+E -
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Loglo [sqrt (mean squared errors)] Versus c: Multhuadrlc
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RBF Errors
Log,, [ sqrt (mean squared errors)] versus ¢: Reciprocal Multiquadric

0.8
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-1.2 F

-1.4 F
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-1.8 F

-2

_2’2 -

-2.4 |

-2.6 |

_2’8 -
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Consistency (Property)

 Consistency Is the ability of an interpolating
function to reproduce a polynomial of a given
order, the simplest consistency Is constant
consistency (reproduce unity)
-

Note: Not all RBFs have g/(0) =1
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RBFs and PDEs

- Solve a boundary value problem: N ERDIERL,

qﬁi(&:} y) on the boundary —

» \We make use of RBFs as a possible solution
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RBFs and PDEs

» The governing equation and boundary conditions

Z a;V?,;(z;) =0 for all the interior points
j=1

hn"
Z a;g;(z;) = f; for the boundary points
J=1

These are N equations for the N unknown constants, o
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RBFs and PDEs

e One common problem with many RBFs is that the n * n matrix Is
dense, one easy-fix is to use a RBF with compact support (matrix
becomes sparse)

{ (1—7/R)33r/h+1) for |r| <h

(0, otherwise

(0, otherwise

{ (1—r/h)*(4r/h+1) for |r| < h

RBFs with small ‘footprints’ (Wendland, 2005)
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Wendland 1-D RBF with Compact

Support

0.9}
0.8}
0.7} 1h=1
0.6F 1 Max=1
0.5}
0.4}
0.3}

0.2

01




Weighted Least Squares Approximation

* |n the weighted least
squares formulation, we will
have to use a different error
functional that now has a
weighting function term
Inside the formulation

fePd
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Weighting Function Choices

 The weighting function should be locally defined

0(d)=@1-d/h)*(4d /h+1)
1
d?+&°

0(d) =



w Solution

» Once again, we take
partial derivatives of the
error functional

« Function minimization:
the partial derivatives of
the error functional must
be set to zero

» \We now obtain a linear
system of equations
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w Solution

» The weighting functions participate in the solution

 Note that, this solution is actually locally

meaningful, and it Is applicable in a small
neighborhood

>"[6d,)b(x,)b(x,)" ¢(%) —O(d,)b(x,) f

c(i){e(dozb(xi)b(xif} > 0(d )b(x,)f
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| Global Approximation

» The concept of Partition-of-Unity
(POU)

f(X)=2_o;()b(x)" c(X)




| Moving Lease Squares

« Moving Least Squares
Approximants

f(0 =2 4091, = X b, (X)e; ()

o 20 o) o9 1)

Center for Visual Computing



w MLS Basis Functions

¢ (X) =b(x)" A(x)"B;(x)

AG) = 4,006 )b, )

B(x) = [6,(X)b(X,) 6,(X)b(X,) 0, (x)b(x,)]
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Moving Least Squares Interpolant

up(¥) = D a;(x)p; (%) = p7 (x) a(x)

are monomials in x for 1D (1, x, x?, x°)
x,yin 2D, e.g. (1, x, y, X%, xy, y* ....)

Note a. are functions of x
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| Moving Least Squares Interpolant

We define a weighted mean-squared error

where W(x-x;) 1s a weighting function that decays
with increasing x-x,.

Same as previous least squares approach, except for W(x-x,)
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Weighting Function

5 1—%ng;%q3, forg <1
W(q)=ﬁ ; (2—q)7, for 1 <g<2
0, for ¢ > 2

| | | | |
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Moving Least Squares Interpolant

Minimizing the weighted squared errors for the coefficients:

= A(x)a(x) —B(x)u=0

A =PTW(x)P@B = PTW(x)

pi(x1) p2(x1) ... pm(x1)
pi(x2) p2(x2) ... Pm(x2)

P1 (J{n) P2 (J{-n.) con Pm (x-n-)
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Moving Least Squares Interpolant
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MLS Fit to (Same) Irregular Data

Given data: circles; MLS: *; exact: line
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Weighing Functions

» A cubic spline weight function is a good choice
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Partition of Unity

 \When b Is a constant term, MLS basis functions
reduce to partition-of-unity basis functions for all

the weighting functions
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Applications

» A widespread and very powerful tool In

Computer Graphics, with many applications

o Surface reconstruction from points

» Interpolating or approximating implicit surfaces

e Simulation
« Animation
o Partition of Unity
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Surface Reconstruction
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Sharp Feature Modeling
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Image Editing
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Conclusion

There are a variety of interpolation techniques for
Irreqularly spaced data:

— Polynomial fits

— Best fit polynomials
— Piecewise polynomials
— Radial basis functions
— Moving least squares
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