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Data Interpolation

• Why interpolation? 

• We acquire discrete observations/measurements 

for continuous systems, and we would like to 

convert discrete measurements to continuous 

representations

• We definitely need the ability to interpolate 

values “in-between” discrete points
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Data Interpolation

• One simple example

• Our goal is to find the value of a function between 

known values

• Let us consider the two pairs of values (x,y):

(0.0, 1.0), and (1.0, 2.0)

What is y at x = 0.5?  That is, what’s  (0.5, y)?
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Linear Interpolation

• Given two points, (x1,y1), (x2,y2):

Fit a straight line between the points

y(x) = a x +b

a=(y2-y1)/(x2-x1),  b=  (y1 x2-y2 x1)/(x2-x1), 

Use this equation to find y values for any 

x1 < x < x2
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Another Example 

• What about four points ?

• (0, 2),  (1, 0.3975), (2, -0.1126), (3, -0.0986)
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Another Example

Data points are:  (0,2), (1,0.3975), (2, -0.1126), (3, -0.0986).

Fitting a cubic polynomial through the four points gives:
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Polynomial Fit to Example

Exact: red

Polynomial fit: blue
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Polynomial Interpolants

• Now given n (n=4) data points

• Find the interpolating function that goes through 

these points, will need a cubic polynomial

• If there are n+1 data points, the function will 

become (with n+1 unknown variables)
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Polynomial Interpolant

• The polynomial must pass through the four 

points, resulting in the following constraints
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Caution: Extrapolation

An Nth order polynomial has N roots!

Exact: red
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Scattered Data Fitting and 

Applications in Data 

Visualization
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The Scattered Data Fitting Problem

X

f(x)

• i define the influence of the center

• After constructing s(x), the interpolation or extrapolation can be 

easily performed
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• Measurements stored in a rectangular grid

• Equal spacing between rows and columns

• Images – each grid square is a pixel

CSE564 Lectures
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• Data samples not equally spaced along the 

coordinate axes

• Rectangular grid with varying distances between 

rows and columns

CSE564 Lectures
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The Scattered Data Fitting Problem
• Irregular Fields

– Contain scattered measurements not corresponding to a 

rectilinear structure

– No overall organizational structure

– Similar to coordinate systems used in standard mathematics



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Scattered Data Fitting
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Scattered Data Interpolation/Fitting
• Given N samples (xi, fi), such that s(xi)=fi, We would like 

to reconstruct a function s(x)
– xi are the points from measurement

– Reconstructed function is denoted s(x)

• Actually, there are infinite number of solutions

• We have specific constraints:

– s(x) should be continuous over the entire domain

– We want a ‘smooth’ surface

• Radial basis functions are popularly used solutions
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Data Fitting: Scattered Data 
Interpolation
• Characteristics

– Interpolation vs. Extrapolation

– Linear Interpolation vs. Higher Order

– Structured vs. Scattered

– 1-Dimensional vs. Multi-Dimensional

• Techniques

– Splines (cubic, B-splines, …)

– Series (polynomial, radial basis functions, …)

– ………

– Exact solution, minimization, fitting, approximation



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Scattered Data Interpolation
• Radial Basis Functions (RBFs) are a powerful solution to the 

Problem of Scattered Data Fitting

– N point samples are given as data inputs, we want to interpolate, 
extrapolate, approximate

• This problem occurs in many areas:

– Mesh repair and model completion

– Surface reconstruction

• Range scanning, geographic surveys, medical data

– Field visualization (2D and 3D)

– Image warping, morphing, registration

– Artificial Intelligence

– Etc.
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Graphics Applications
• Given a set of samples, what are the in-between 

values ?

• Linear interpolation, interpolating by splines, …

– It works for  structured data.

How about unstructured or scattered data samples? 
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Scattered Data Interpolation

You can drag all vertices (more than 6000) or drag 

feature samples…

Drag by users

What are the 

displacement ?

?

?

?
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Scattered Data Approximation and 
Interpolation

• Scattered data: an arbitrary set of points in Rd 

space, and these scattered data carry scalar 

quantities (i.e., a scalar field in d dimensional 

parametric space)
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Ordinary Least-Squares
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Least Squares Interpolant

• For n points, we only have a fitting polynomial of 

order m (m < (n-1)), we want the least squares 

fitting polynomial is similar to the exact fit form:

• Now p is becoming a n * m matrix. We have 

fewer unknowns than data points, the interpolant 

can not go through all the points exactly, we need 

to measure the total error
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Least Squares Approximation
• Problem statement: we have n 

points in Rd space, and we 

want to obtain a globally 

defined function f(x) that can 

approximate the given scalar 

values at these points in the 

least-squares senses

• We are considering the space 

of polynomials of total degree 

m in d spatial dimensions

 


i
Pf ii fxf

d
m

)((
2

min

 

 Tk

T

k

T

ccc

bbb

f

...

)(...)()()(

)()(

21

21







c

xxxxb

cxbx



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Least Squares Approximation
• Commonly-used basis 

functions include: quadratic, 

linear, constant terms

• For example:
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Solution
• Function minimization: the 

partial derivatives of the 

error functional must be set 

to zero

• We now obtain a linear 

system of equations

0
c




E

  0)()(2 
i

i

T

iij fb cxbx



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Solution
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Outline

• Linear regression

• Geometry of least-squares

• Discussion of the Gauss-Markov theorem
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Ordinary Least-Squares

a

b
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One-dimensional Regression

axb 

Find a line that represent the

”best” linear relationship:

a

b
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One-dimensional Regression

xabe iii 

• Problem: the line does NOT go 

through all the data points 

exactly, so only approximation

xab ii 

a

b
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One-dimensional Regression
• Find the line that minimizes 

the sum of error squared:

2)( 
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a

b
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Matrix Notation
Using the following notations

and

we can rewrite the error function using linear algebra as:
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Multidimensional Linear Regression
Using a model with m parameters

2a


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jjmm xaxaxab ...11

1a

b
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Multidimensional Linear Regression
Using a model with m parameters

2a
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Multidimensional Linear Regression
Using a model with m parameters

and n measurements
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Matrix Notation

Axb
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Axb
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Geometric Interpretation
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Geometric Interpretation
• b is a vector in Rn

b
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Geometric interpretation
• b is a vector in Rn

• The columns of A define a vector space range(A)

b

2a

1a
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Geometric Interpretation
• b is a vector in Rn

• The columns of A define a vector space range(A)

• Ax is an arbitrary vector in range(A)

b

2a

1a

Ax 2211 aa xx
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Geometric Interpretation
• b is a vector in Rn

• The columns of A define a vector space range(A)

• Ax is an arbitrary vector in range(A)

b

2a

1a

Axb 

Ax 2211 aa xx
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Geometric Interpretation
• is the orthogonal projection of b onto range(A)

b

2a

1a

xA ˆˆˆ
2211  aa xx

xAb ˆ

  bAxAAxAbA TTT  ˆˆ 0

xA ˆ
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The Normal Equation

bAxAA TT ˆ
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The Normal Equation: 
• Existence:                               has always a solution

bAxAA TT ˆ

bAxAA TT ˆ
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The Normal Equation: bAxAA TT ˆ

• Existence:                                    has always a solution

• Uniqueness: the solution is unique if the columns of A are linearly 

independent

bAxAA TT ˆ
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The Normal Equation: 

b

2a
1a

xA ˆ

• Existence:                             has always a solution

• Uniqueness : the solution is unique if the columns of A are 

linearly independent

bAxAA TT ˆ

bAxAA TT ˆ
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Under-constrained Problem

2a

1a

b
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Under-constrained Problem

2a

1a

b
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Under-constrained Problem

2a

1a

b
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Under-constrained Problem
• Poorly selected data

• One or more of the

parameters are redundant 

2a

1a

b
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Under-constrained Problem
• Poorly selected data

• One or more of the

parameters are redundant 

Add constraints

x bAAxA xmin with  TT 
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Minimizing )(xe

  x x ifminimizes )e( min
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Minimizing )(xe

  x x ifminimizes )e( min

minx

)(xe
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Minimizing )(xe

  x x ifminimizes )e( min

is flat at 

minx

)(xe

)e ( x
m i nx
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Minimizing )(xe

  x x ifminimizes )e( min

0x  )( mine

is flat at 

minx

)(xe

)e ( x
m i nx
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Minimizing )(xe

  x x ifminimizes )e( min

0x  )( mine

is flat at 

does not go down

around
)e ( x

m i nx

minx

)(xe

)e ( x
m i nx
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Minimizing )(xe

  x x ifminimizes )e( min

0x  )( mine

definite-semi

positive is )( minxeH

is flat at 

does not go down
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)e ( x

m i nx
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Positive Semi-definite

x0Axx

A

 allfor  ,



T

definite-semi positive is 

In 1-D In 2-D
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Minimizing )(xe

x̂

xxHx )ˆ(
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Minimizing 
2

)( Axbx e
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Minimizing 

  x x ifminimizes )e( ˆ

bAxAA TT ˆ

definite-semi

positive is AAT2

2
)( Axbx e
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Minimizing 
2

)( Axbx e

  x x ifminimizes )e( ˆ

bAxAA TT ˆ

definite-semi

positive is AAT2

Always true
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Minimizing 
2

)( Axbx e

  x x ifminimizes )e( ˆ

bAxAA TT ˆ

definite-semi

positive is AAT2

Always true

The Normal Equation
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a

b

ei

no errors in ai
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a

b

ei

a

b

ei

no errors in ai
errors in ai
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a

b

a

b

homogeneous errors non-homogeneous errors
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a

b

no outliers
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a

b

a

b

no outliers outliers

outliers
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Question

You should be able to prove that the equation 

above leads to the following expression for the 

best fit straight line: 
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How good is the least-squares criteria?

• Optimality: the Gauss-Markov theorem
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How good is the least-squares criteria?
• Optimality: the Gauss-Markov theorem

Let           and              be two sets of random variables 

and define:

mmiiii xaxabe ,11, ...

 ib  
jx



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

How good is the least-squares criteria?
• Optimality: the Gauss-Markov theorem

Let          and               be two sets of random variables 

and define:

If mmiiii xaxabe ,11, ...

 ib  
jx

 

, ,0cov

, ,var

, ,0

  :

ji),e(e

i)(e

i)E(e

a

ji

i

i

i,j

 and allfor  :A4

allfor  :A3

allfor  :A2

, variablesrandomnot  areA1








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How good is the least-squares criteria?
• Optimality: the Gauss-Markov theorem

Let          and               be two sets of random variables 

and define:

If

Then                                         is the 

best unbiased linear estimator

mmiiii xaxabe ,11, ...

 ib  
jx

 

, ,0),cov(

, ,var

, ,0

  :

jiee

i)(e

i)E(e

a

ji

i

i

i,j

 and allfor  :A4

allfor  :A3

allfor  :A2

, variablesrandomnot  areA1










2

minargˆ
iexx
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Least Squares Interpolant

• We arrive at a system of equations through 

function minimization

• We can introduce a pseudo-inverse

• For four points with a cubic polynomial
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Cubic Least Squares Example

x: -0.2  .44    1.0     1.34  1.98 2.50 2.95  3.62  4.13   4.64  4.94

y: 2.75 1.80 -1.52 -2.83 -1.62 1.49 2.98  0.81  -2.14 -2.93 -1.81

Data 

irregularly 

spaced



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

August 27-31, 

2007

DragonStar Lecture, Nankai 

University

Least Squares Interpolant
Cubic Least Squares Fit:  * is the fitting polynomial

o is the given data

Exact
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Piecewise Interpolation

• Piecewise polynomials: a collection of 

polynomials to fit all the data points

• Different choices: linear, quadratic, cubic

• Non-polynomials: radial basis functions (RBFs)
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Radial Basis Functions

Developed to interpolate 2-D data:  think bathymetry.

Given depths: , interpolate to a rectangular grid.
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RBF
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Radial Basis Functions 

• Data points:

• For each position, there is an associated value:

• Radial basis function (located at each point): 
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Radial Basis Function for Data Fitting

• To find the unknown coefficients, we force the 

interpolant to go through all the data points:

• We have n equations for the n unknown 

coefficients
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Multiquadric RBF

MQ:

RMQ:

Hardy, 1971; Kansa, 1990
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11 (x,y) pairs:  (0.2, 3.00), (0.38, 2.10), (1.07, -1.86), (1.29, -2.71), (1.84, -2.29), (2.31, 0.39), 

(3.12, 2.91), (3.46, 1.73), (4.12, -2.11), (4.32, -2.79), (4.84, -2.25)       SAME AS BEFORE
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RBF Errors

Log10 [sqrt (mean squared errors)] versus c:  Multiquadric 
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RBF Errors
Log10 [ sqrt (mean squared errors)] versus c:  Reciprocal Multiquadric 
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Consistency (Property)

• Consistency is the ability of an interpolating 

function to reproduce a polynomial of a given 

order, the simplest consistency is constant 

consistency (reproduce unity)

If gj(0) = 1, then a constraint results:

Note:  Not all RBFs have gj(0) = 1
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RBFs and PDEs

• Solve a boundary value problem:

• We make use of RBFs as a possible solution 
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RBFs and PDEs

• The governing equation and boundary conditions

These are N equations for the N unknown constants, j
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RBFs and PDEs
• One common problem with many RBFs is that the n * n matrix is 

dense, one easy-fix is to use a RBF with compact support (matrix 

becomes sparse)

RBFs with small ‘footprints’  (Wendland, 2005)

1D:

3D:

Advantages:  matrix is sparse, but still n * n
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Wendland 1-D RBF with Compact 
Support

h=1
Max=1
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Weighted Least Squares Approximation

• In the weighted least 

squares formulation, we will 

have to use a different error 

functional that now has a 

weighting function term 

inside the formulation

 


i
Pf iii ff

d
m

))(()(
2

min xxx
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Weighting Function Choices

• The weighting function should be locally defined

22
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Solution
• Once again, we take 

partial derivatives of the 

error functional

• Function minimization: 

the partial derivatives of 

the error functional must 

be set to zero

• We now obtain a linear 

system of equations

0
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

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Solution

• The weighting functions participate in the solution

• Note that, this solution is actually locally 

meaningful, and it is applicable in a small 

neighborhood
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Global Approximation
• The concept of Partition-of-Unity 

(POU)
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Moving Lease Squares
• Moving Least Squares 

Approximants
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MLS Basis Functions
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Moving Least Squares Interpolant

are monomials in x for 1D (1, x, x2, x3)

x,y in 2D, e.g. (1, x, y, x2, xy, y2 ….)

Note aj are functions of x
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Moving Least Squares Interpolant

We define a weighted mean-squared error

where W(x-xi) is a weighting function that decays

with increasing  x-xi. 

Same as previous least squares approach, except for W(x-xi)
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Weighting Function

q=x/h
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Moving Least Squares Interpolant
Minimizing the weighted squared errors for the coefficients:

,
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Moving Least Squares Interpolant

The final locally valid interpolant is:
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MLS Fit to (Same) Irregular Data

Given data: circles; MLS: *; exact: line

h=0.51
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.3

.5

1.0

1.5

Varying h Values
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Weighing Functions

• A cubic spline weight function is a good choice
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Partition of Unity

• When b is a constant term, MLS basis functions 

reduce to partition-of-unity basis functions for all 

the weighting functions
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Applications

• A widespread and very powerful tool in 

Computer Graphics, with many applications

• Surface reconstruction from points

• Interpolating or approximating implicit surfaces

• Simulation

• Animation

• Partition of Unity
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Surface Reconstruction
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Sharp Feature Modeling
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Image Editing
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Conclusion

There are a variety of interpolation techniques for 

irregularly spaced data:

– Polynomial fits

– Best fit polynomials

– Piecewise polynomials

– Radial basis functions

– Moving least squares 


