Data Interpolation

- Why interpolation?
- We acquire discrete observations/measurements for continuous systems, and we would like to convert discrete measurements to continuous representations
- We definitely need the ability to interpolate values "in-between" discrete points

Department of Computer Science Center for Visual Computing

Data Interpolation

- One simple example
- Our goal is to find the value of a function between known values
- Let us consider the two pairs of values (*x*, *y*):
 (0.0, 1.0), and (1.0, 2.0)

What is y at x = 0.5? That is, what's (0.5, y)?

Department of Computer Science Center for Visual Computing

Linear Interpolation

• Given two points, (x_1, y_1) , (x_2, y_2) : Fit a straight line between the points

y(x) = a x + b

 $a = ((y_2 - y_1))/((x_2 - x_1)), b = ((y_1 x_2 - y_2 x_1))/((x_2 - x_1)),$

Use this equation to find y values for any

$$x_1 < x < x_2$$

Department of Computer Science Center for Visual Computing

Another Example

- What about four points ?
- (0, 2), (1, 0.3975), (2, -0.1126), (3, -0.0986)

Department of Computer Science Center for Visual Computing

Another Example

Data points are: (0,2), (1,0.3975), (2, -0.1126), (3, -0.0986).

Fitting a cubic polynomial through the four points gives:

$$y_p(x) = 2.0 - 2.3380x + 0.8302x^2 - 0.0947x^3$$

Department of Computer Science Center for Visual Computing

Polynomial Fit to Example

Polynomial Interpolants

- Now given n (n=4) data points $(x_i, y_i), i = 1, 4$
- Find the interpolating function that goes through these points, will need a cubic polynomial

$$y_p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

 If there are n+1 data points, the function will become (with n+1 unknown variables)

$$y_p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_N x^N$$

Department of Computer Science Center for Visual Computing CSE564 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

Polynomial Interpolant

• The polynomial must pass through the four points, resulting in the following constraints

Department of Computer Science Center for Visual Computing

Caution: Extrapolation

Scattered Data Fitting and Applications in Data Visualization

Department of Computer Science Center for Visual Computing

The Scattered Data Fitting Problem

- λ_i define the influence of the center
- After constructing s(x), the interpolation or extrapolation can be easily performed

Department of Computer Science Center for Visual Computing

Uniform Field (Domain)

- Measurements stored in a rectangular grid
- Equal spacing between rows and columns
- Images each grid square is a pixel

Department of Computer Science Center for Visual Computing

Rectilinear Fields

- Data samples not equally spaced along the coordinate axes
- Rectangular grid with varying distances between rows and columns

Department of Computer Science Center for Visual Computing

The Scattered Data Fitting Problem

Irregular Fields

- Contain scattered measurements not corresponding to a rectilinear structure
- No overall organizational structure
- Similar to coordinate systems used in standard mathematics

Department of Computer Science Center for Visual Computing

Scattered Data Fitting

Scattered Data Interpolation/Fitting

- Given N samples (x_i, f_i), such that s(x_i)=f_i, We would like to reconstruct a function s(x)
 - $-\mathbf{x}_{i}$ are the points from measurement
 - Reconstructed function is denoted $s(\mathbf{x})$
- Actually, there are infinite number of solutions
- We have specific constraints:
 - s(x) should be continuous over the entire domain
 - We want a 'smooth' surface

Radial basis functions are popularly used solutions

Data Fitting: Scattered Data Interpolation

Characteristics

- Interpolation vs. Extrapolation
- Linear Interpolation vs. Higher Order
- Structured vs. Scattered
- 1-Dimensional vs. Multi-Dimensional

Techniques

- Splines (cubic, B-splines, ...)
- Series (polynomial, radial basis functions, ...)

-

- Exact solution, minimization, fitting, approximation

Scattered Data Interpolation

- Radial Basis Functions (RBFs) are a powerful solution to the Problem of *Scattered Data Fitting*
 - N point samples are given as data inputs, we want to interpolate, extrapolate, approximate

• This problem occurs in many areas:

- Mesh repair and model completion
- Surface reconstruction
 - Range scanning, geographic surveys, medical data
- Field visualization (2D and 3D)
- Image warping, morphing, registration
- Artificial Intelligence
- Etc.

Graphics Applications

Given a set of samples, what are the in-between values ?

FIGURE 3. Squash & stretch in Luxo Jr.'s hop.

• Linear interpolation, interpolating by splines, ...

- It works for structured data.

How about unstructured or scattered data samples?

Department of Computer Science Center for Visual Computing

Scattered Data Interpolation

For instance, head model adjustment...

Department or computer science

Center for Visual Computing

Scattered Data Interpolation

You can drag all vertices (more than 6000) or drag feature samples...

NY RR

STATE UNIVERSITY OF NEW YORK

Department o

Center for Visual Computing

Scattered Data Modeling

Department of Computer Scien Center for Visual Computing

Smooth Surfaces

Department of Computer Science Center for Visual Computing

Scattered Data Approximation and Interpolation

 Scattered data: an arbitrary set of points in Rd space, and these scattered data carry scalar quantities (i.e., a scalar field in d dimensional parametric space)

Ordinary Least-Squares

Department of Computer Science Center for Visual Computing

Least Squares Interpolant

 For n points, we only have a fitting polynomial of order m (m < (n-1)), we want the least squares fitting polynomial is similar to the exact fit form:

$$\mathbf{y}_{\mathbf{p}}(\mathbf{x}) = \mathbf{p} \mathbf{a}$$

• Now p is becoming a n * m matrix. We have fewer unknowns than data points, the interpolant can not go through all the points exactly, we need to measure the total error N

$$\epsilon_i = y_p(x_i) - y_i$$

Department of Computer Science Center for Visual Computing CSE564 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

Least Squares Approximation

- Problem statement: we have n points in Rd space, and we want to obtain a globally defined function f(x) that can approximate the given scalar values at these points in the least-squares senses
- We are considering the space of polynomials of total degree m in d spatial dimensions

$$\min_{f\in P_m^d} \sum_i \left\| (f(x_i) - f_i) \right\|^2$$

$$f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \bullet \mathbf{c}$$

$$\mathbf{b}(\mathbf{x}) = \begin{bmatrix} b_1(\mathbf{x}) & b_2(\mathbf{x}) & \dots & b_k(\mathbf{x}) \end{bmatrix}^T$$

$$\mathbf{c} = \begin{bmatrix} c_1 & c_2 & \dots & c_k \end{bmatrix}^T$$

Department of Computer Science Center for Visual Computing

Least Squares Approximation

- Commonly-used basis functions include: quadratic, linear, constant terms
- For example:

 y^2 $\mathbf{b}(\mathbf{x}) = \begin{vmatrix} 1 & x & y & x^2 \end{vmatrix}$ XV $\mathbf{b}(\mathbf{x}) = |1|$ x y z'' $\mathbf{b}(\mathbf{x}) = [1]$

Solution

- Function minimization: the partial derivatives of the error functional must be set to zero
- We now obtain a linear system of equations

 ∂E

$$\sum_{i} 2b_{j}(\mathbf{x}_{i}) \left[\mathbf{b}(\mathbf{x}_{i})^{T} \mathbf{c} - f_{i} \right] = 0$$

Department of Computer Science Center for Visual Computing

Solution

 $\sum \left[\mathbf{b}(\mathbf{x}_i) \mathbf{b}(\mathbf{x}_i)^T \mathbf{c} - \mathbf{b}(\mathbf{x}_i) f_i \right] = \mathbf{0}$ $\mathbf{c} = \left| \sum_{i} \mathbf{b}(\mathbf{x}_{i}) \mathbf{b}(\mathbf{x}_{i})^{T} \right|^{-1} \sum_{i} \mathbf{b}(\mathbf{x}_{i}) f_{i}$

Department of Computer Science Center for Visual Computing

Outline

- Linear regression
- Geometry of least-squares
- Discussion of the Gauss-Markov theorem

Ordinary Least-Squares

Department of Computer Science Center for Visual Computing

One-dimensional Regression

Find a line that represent the "best" linear relationship:

a

Department of Computer Science Center for Visual Computing

One-dimensional Regression

 $b_i - a_i x$

• Problem: the line does NOT go through all the data points exactly, so only approximation

 $e_i = b_i - a_i x$

a

Department of Computer Science Center for Visual Computing

One-dimensional Regression

• Find the line that minimizes the sum of error squared:

$$\sum_{i} (b_i - a_i x)^2$$

a

Department of Computer Science Center for Visual Computing

Matrix Notation

Using the following notations

we can rewrite the error function using linear algebra as:

$$e(x) = \sum_{i} (b_{i} - a_{i}x)^{2}$$
$$= (\mathbf{b} - x\mathbf{a})^{T} (\mathbf{b} - x\mathbf{a})$$
$$e(x) = \|\mathbf{b} - x\mathbf{a}\|^{2}$$

Department of Computer Science Center for Visual Computing

Multidimensional Linear Regression

Using a model with *m* parameters

b

Department of Computer Science Center for Visual Computing

Multidimensional Linear Regression

Using a model with *m* parameters

Q pepartment of Computer Science Center for Visual Computing

Multidimensional Linear Regression

Using a model with *m* parameters

$$b = a_1 x_1 + \dots + a_m x_m = \sum_j a_j x_j$$

and *n* measurements

$$e(\mathbf{X}) = \sum_{i=1}^{n} (b_i - \sum_{j=1}^{m} a_{i,j} x_j)^2$$
$$= \left\| \mathbf{b} - \left[\sum_{j=1}^{m} a_{i,j} x_j \right] \right\|^2$$
$$e(\mathbf{X}) = \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|^2$$

Department of Computer Science Center for Visual Computing

Matrix Notation

$$\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_{1,1} & \dots & a_{1,m} \\ \vdots & \vdots \\ a_{n,1} & \dots & a_{n,m} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

Matrix Notation

$$\mathbf{b} - \mathbf{A}\mathbf{x} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
$$= \begin{bmatrix} b_1 - (a_{1,1}x_1 + \dots + a_{1,m}x_m) \\ \vdots \\ b_n - (a_{n,1}x_1 + \dots + a_{n,m}x_m) \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

CSE564 Lectures

ST NY BR K

$$\begin{array}{c}
 b - Ax \\
 b_{n} = \begin{bmatrix} b_{1} \\ \vdots \\ b_{n} \end{bmatrix} - \begin{bmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots \\ \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \quad \text{measurement } n \\
 = \begin{bmatrix} b_{1} - (a_{1,1}x_{1} + \cdots + a_{1,m}x_{m}) \\ \vdots \\ b_{n} - (a_{n,1}x_{1} + \cdots + a_{n,m}x_{m}) \end{bmatrix}$$

• **b** is a vector in \mathbb{R}^n

- **b** is a vector in \mathbb{R}^n
- The columns of **A** define a vector space range(**A**)

Department of Computer Science Center for Visual Computing

- **b** is a vector in \mathbb{R}^n
- The columns of **A** define a vector space range(**A**)
- Ax is an arbitrary vector in range(A)

Department of Computer Science Center for Visual Computing

- **b** is a vector in \mathbb{R}^n
- The columns of **A** define a vector space range(**A**)
- Ax is an arbitrary vector in range(A)

Department of Computer Science Center for Visual Computing

• $A\hat{x}$ is the orthogonal projection of **b** onto range(A)

$$\Leftrightarrow \boldsymbol{A}^{T} \big(\boldsymbol{b} - \boldsymbol{A} \hat{\boldsymbol{x}} \big) = \boldsymbol{O} \Leftrightarrow \boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}} = \boldsymbol{A}^{T} \boldsymbol{b}$$

Department of Computer Science Center for Visual Computing

The Normal Equation

The Normal Equation: $A^T A \hat{x} = A^T b$

Existence: $\mathbf{A}^T \mathbf{A} \hat{\mathbf{X}} = \mathbf{A}^T \mathbf{b}$ •

has always a solution

The Normal Equation: $A^T A \hat{x} = A^T b$

- Existence: $A^T A \hat{x} = A^T b$ has always a solution
- Uniqueness: the solution is unique if the columns of A are linearly independent

The Normal Equation: $A^T A \hat{x} = A^T b$

- **Existence:** $\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$ has always a solution •
- Uniqueness: the solution is unique if the columns of A are linearly independent

ST NY BR K

Department of Computer Science Center for Visual Computing

Department of Computer Science Center for Visual Computing

ST NY BR K

Department of Computer Science Center for Visual Computing

- Poorly selected data
- One or more of the parameters are redundant

- Poorly selected data
- One or more of the parameters are redundant

Add constraints

$$\mathbf{A}^{T}\mathbf{A}\mathbf{x} = \mathbf{A}^{T}\mathbf{b}$$
 with min_x $\|\mathbf{x}\|$

 \boldsymbol{x}_{\min} minimizes $e(\boldsymbol{x})$ if

CSE564 Let

\boldsymbol{x}_{\min} minimizes $e(\boldsymbol{x})$ if

Department of Computer Science Center for Visual Computing

Xmin

Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

 $e(\mathbf{x})$ is flat at \mathbf{x}_{min}

$$\nabla e(\mathbf{X}_{\min}) = \mathbf{0}$$

 $e(\mathbf{X})$ does not go down around \mathbf{X}_{min}

 $H_e(\mathbf{x}_{\min})$ is positive semi-definite

X_{min}

ST NY BR K

Department of Computer Science Center for Visual Computing

 $e(\mathbf{X})$

Positive Semi-definite

A is positive semi-definite

$\mathbf{X}^T \mathbf{A} \mathbf{X} \geq \mathbf{0}$, for all \mathbf{X}

Department of Computer Science Center for Visual Computing

CSE564 Lectures

ST NY BR K

Minimizing $e(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2$

 $e(\mathbf{X}) = \frac{1}{2} \mathbf{X}^T \mathbf{H}_e(\hat{\mathbf{X}}) \mathbf{X}$

Department of Computer Science Center for Visual Computing

Minimizing

 $e(\mathbf{X}) = \|\mathbf{b} - \mathbf{A}\mathbf{X}\|^2$

$\hat{\boldsymbol{x}}$ minimizes $e(\boldsymbol{x})$ if

$2\mathbf{A}^{T}\mathbf{A}$ is positive semi-definite

Department of Computer Science Center for Visual Computing

Minimizing $e(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2$

$\hat{\boldsymbol{x}}$ minimizes $e(\boldsymbol{x})$ if

2**A**^T**A** is positive semi-definite

 $\mathbf{A}^T \mathbf{A} \hat{\mathbf{X}} = \mathbf{A}^T \mathbf{b}$

Always true

ST NY BR K

Department of Computer Science Center for Visual Computing

Minimizing $e(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2$

$\mathbf{A}^{T}\mathbf{A}\hat{\mathbf{X}} = \mathbf{A}^{T}\mathbf{b}$

The Normal Equation

$\hat{\boldsymbol{x}}$ minimizes $e(\boldsymbol{x})$ if

2**A**^T**A** is positive semi-definite

Department of Computer Science Center for Visual Computing

CSE564 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

CSE564 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

STATE UNIVERSITY OF NEW YORK

Center for Visual Computing

Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

Question

You should be able to prove that the equation above leads to the following expression for the best fit straight line:

$$egin{aligned} y_p(x) &= mx+b \ m = rac{(N\sum_i^N x_i y_i - \sum_i x_i \sum_i y_i)}{N\sum_i x_i^2 - (\sum_i x_i)^2} \ b &= rac{\sum_i^N y_i - m\sum_i x_i}{N} \end{aligned}$$

Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

• Optimality: the Gauss-Markov theorem

• Optimality: the Gauss-Markov theorem

Let $\{b_i\}$ and and define:

be two sets of random variables

$$e_i = b_i - a_{i,1} x_1 - \dots - a_{i,m} x_m$$

be two sets of random variables

Optimality: the Gauss-Markov theorem

Let $\{b_i\}$ and $\{x_j\}$ and define:

If

$$e_i = b_i - a_{i,1} x_1 - \dots - a_{i,m} x_m$$

A1: $\{a_{i,j}\}$ are not random variables, A2: $E(e_i) = 0$, for all i, A3: $var(e_i) = \sigma$, for all i, A4: $cov(e_i, e_j) = 0$, for all i and j,

Department of Computer Science Center for Visual Computing

Least Squares Interpolant

• We arrive at a system of equations through function minimization $2\mathbf{p}^T\mathbf{p}\mathbf{a} - 2\mathbf{p}^T\mathbf{y} = 0$ $\mathbf{a} = (\mathbf{p}^T\mathbf{p})^{-1}\mathbf{p}^T\mathbf{y}^T$

 ${f p}$ =

 x_1

- We can introduce a pseudo-inverse
- $\mathbf{a} = \mathbf{p} \cdot \mathbf{y}^{-}$ • For four points with a cubic polynomial

Department of Computer Science Center for Visual Computing CSE564 Lecture

ST NY BR K STATE UNIVERSITY OF NEW YORK

Cubic Least Squares Example

Least Squares Interpolant

Piecewise Interpolation

- Piecewise polynomials: a collection of polynomials to fit all the data points
- Different choices: linear, quadratic, cubic

Non-polynomials: radial basis functions (RBFs)

Radial Basis Functions

Developed to interpolate 2-D data: think bathymetry. Given depths: $\mathbf{x}_i, i = 1, N$, interpolate to a rectangular grid.

RBF

Radial Basis Functions

• Data points:

$$\mathbf{x}_i, i=1,N$$

• For each position, there is an associated value:

$$u_i, i=1,N$$

• Radial basis function (located at each point): $g_j(\mathbf{x}) \equiv g(|\mathbf{x} - \mathbf{x}_j|), j = 1, N$

$$u_p(\mathbf{x}) = \sum_{j=1}^N lpha_j \; g_j(\mathbf{x})$$

Department of Computer Science Center for Visual Computing

Radial Basis Function for Data Fitting

• To find the unknown coefficients, we force the interpolant to go through all the data points:

$$\sum_{j=1}^N lpha_j \; g_j(\mathbf{x}_i) = u_i, \;\; i=1,N$$

$$\mathbf{x}_i \equiv |\mathbf{x}_i - \mathbf{x}_j|$$

• We have n equations for the n unknown coefficients

.

E564 Lectures

Multiquadric RBF

MQ: RMQ:

$$g_j(\mathbf{x}) = \sqrt{c_j^2 + r^2}$$

 $g_j(\mathbf{x}) = rac{-}{\sqrt{c_j^2 + r^2}}$

$$r = |\mathbf{x} - \mathbf{x}_j|$$

Hardy, 1971; Kansa, 1990

Department of Computer Science Center for Visual Computing

11 (x,y) pairs: (0.2, 3.00), (0.38, 2.10), (1.07, -1.86), (1.29, -2.71), (1.84, -2.29), (2.31, 0.39), (3.12, 2.91), (3.46, 1.73), (4.12, -2.11), (4.32, -2.79), (4.84, -2.25) **SAME AS BEFORE**

RBF Errors

Κ

RBF Errors

Log₁₀ [sqrt (mean squared errors)] versus c: Reciprocal Multiquadric

Consistency (Property)

Consistency is the ability of an interpolating function to reproduce a polynomial of a given order, the simplest consistency is constant consistency (reproduce unity)
 x_i ≡ |x_i - x_j|

$$\sum_{j=1}lpha_j \ g_j(\mathbf{x}_i) = 1, \ \ i=1,N$$

If $g_i(0) = 1$, then a constraint results:

$$\sum_{j=1}^{N} \alpha_j = 1$$

Note: Not all RBFs have
$$g_i(0) = 1$$

Department of Computer Science Center for Visual Computing

RBFs and PDEs

• Solve a boundary value problem: $abla^2 \phi(x,y) = 0$

$$\phi(x,y)\Big|_{\text{on the boundary}} = f(x,y)$$

• We make use of RBFs as a possible solution

$$\phi_h(\mathbf{x}) = \sum_{j=1,N} lpha_j \, g_j(\mathbf{x})$$

Department of Computer Science Center for Visual Computing

RBFs and PDEs

The governing equation and boundary conditions

$$\phi_h(\mathbf{x}) = \sum_{j=1,N} lpha_j \, g_j(\mathbf{x})$$

 $\sum_{j=1}^{N} lpha_j
abla^2 g_j(x_i) = 0$ for all the interior points

 $\sum_{j=1}^{N} lpha_j g_j(x_i) = f_i$ for the boundary points

These are N equations for the N unknown constants, α_i

Department of Computer Science Center for Visual Computing

RBFs and PDEs

 One common problem with many RBFs is that the n * n matrix is dense, one easy-fix is to use a RBF with compact support (matrix becomes sparse)

1D:
$$\begin{cases} (1 - r/h)^3 (3r/h + 1) & \text{for } |r| < h \\ 0, & \text{otherwise} \end{cases}$$

3D:
$$\begin{cases} (1 - r/h)^4 (4r/h + 1) & \text{for } |r| < h \\ 0, & \text{otherwise} \end{cases}$$

$$(1 - r/h)^4_+(4r/h + 1)$$

RBFs with small 'footprints' (Wendland, 2005)

Advantages: matrix is sparse, but still n * n

Department of Computer Science Center for Visual Computing

Wendland 1-D RBF with Compact Support

Weighted Least Squares Approximation

 In the weighted least squares formulation, we will have to use a different error functional that now has a weighting function term inside the formulation

$$\min_{f \in P_m^d} \sum_i \theta(\|\mathbf{\bar{x}} - \mathbf{x}_i\|) \|(f(\mathbf{x}_i) - f_i)\|^2$$

Department of Computer Science Center for Visual Computing

Weighting Function Choices

• The weighting function should be locally defined

 d^2 $\theta(d) = e^{-\frac{1}{h^2}}$ $\theta(d) = (1 - d / h)^4 (4d / h + 1)$ $\theta(d) = \frac{1}{d^2 + \varepsilon^2}$ Center fo

Solution

- Once again, we take partial derivatives of the error functional
- Function minimization: the partial derivatives of the error functional must be set to zero
- We now obtain a linear system of equations

 ∂E $\partial \mathbf{c}(\mathbf{\bar{x}})$

 $\left[\theta(d_i) 2b_i(\mathbf{x}_i) \left[\mathbf{b}(\mathbf{x}_i)^T \mathbf{c}(\overline{\mathbf{x}}) - f_i \right] = 0 \right]$

Department of Comp Center for Visual (

Solution

- The weighting functions participate in the solution
- Note that, this solution is actually locally meaningful, and it is applicable in a small neighborhood

$$\sum_{i} \left[\theta(d_i) \mathbf{b}(\mathbf{x}_i) \mathbf{b}(\mathbf{x}_i)^T \mathbf{c}(\overline{\mathbf{x}}) - \theta(d_i) \mathbf{b}(\mathbf{x}_i) f_i \right] = \mathbf{0}$$

$$\mathbf{c}(\mathbf{\bar{x}}) = \left[\theta(d_i)\sum_i \mathbf{b}(\mathbf{x}_i)\mathbf{b}(\mathbf{x}_i)^T\right]^{-1}\sum_i \theta(d_i)\mathbf{b}(\mathbf{x}_i)f_i$$

NY BR

STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Global Approximation

• The concept of Partition-of-Unity (POU)

$$\varphi_j(\mathbf{x}) = \frac{\theta_j(\mathbf{x})}{\sum_{i=1}^n \theta_i(\mathbf{x})}$$
$$f(\mathbf{x}) = \sum_j \varphi_j(\mathbf{x}) \mathbf{b}(\mathbf{x})^T \mathbf{c}(\overline{\mathbf{x}})$$

Department of Computer Science Center for Visual Computing

Moving Lease Squares

Moving Least Squares
 Approximants

$$f(x) = \sum_{i} \phi_{i}(x) f_{i} = \sum_{j} b_{j}(x) c_{j}(x)$$

$$\min_{c} \sum_{i} \theta(\|\mathbf{x} - \mathbf{x}_{i}\|) \| (\mathbf{b}(\mathbf{x}_{i})^{T} \mathbf{c}(\mathbf{x}) - f_{i}) \|^{2}$$

Department of Computer Science Center for Visual Computing

MLS Basis Functions

$$\phi_i(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{A}(\mathbf{x})^{-1} \mathbf{B}_i(\mathbf{x})$$
$$\mathbf{A}(\mathbf{x}) = \sum_{i=1}^n \theta_i(\mathbf{x}) \mathbf{b}(\mathbf{x}_i) \mathbf{b}(\mathbf{x}_i)^T$$
$$\mathbf{B}(\mathbf{x}) = \begin{bmatrix} \theta_1(\mathbf{x}) \mathbf{b}(\mathbf{x}_1) & \theta_2(\mathbf{x}) \mathbf{b}(\mathbf{x}_2) & \dots & \theta_n(\mathbf{x}) \mathbf{b}(\mathbf{x}_n) \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

CSE564 Lectures

ST NY BR K

Moving Least Squares Interpolant

$$u_p(\mathbf{x}) = \sum_j^N a_j(\mathbf{x}) p_j(\mathbf{x}) \equiv \mathbf{p}^T(\mathbf{x}) \, \mathbf{a}(\mathbf{x})$$

 $p^T(\mathbf{x})$

are monomials in x for 1D $(1, x, x^2, x^3)$ x,y in 2D, e.g. $(1, x, y, x^2, xy, y^2 ...)$

Note a_i are functions of x

A T

ST NY BR K

Department of Computer Science Center for Visual Computing

Moving Least Squares Interpolant

$$E(\mathbf{x}) = \sum_{i=1}^{N} W(\mathbf{x} - \mathbf{x}_i) \left(\mathbf{p}^T(\mathbf{x}_i) \mathbf{a}(\mathbf{x}) - u_i\right)^2$$

We define a weighted mean-squared error

where $W(x-x_i)$ is a weighting function that decays with increasing $x-x_i$.

Same as previous least squares approach, except for $W(x-x_i)$

Department of Computer Science Center for Visual Computing

Weighting Function

Department of Computer Scient Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

Moving Least Squares Interpolant

Minimizing the weighted squared errors for the coefficients:

$$\frac{\partial E}{\partial \mathbf{a}} = \mathbf{A}(\mathbf{x})\mathbf{a}(\mathbf{x}) - \mathbf{B}(\mathbf{x})\mathbf{u} = 0$$

where $\mathbf{u}^T = (u_1, u_2, \dots u_n)$ $\mathbf{A} = \mathbf{P}^T \mathbf{W}(\mathbf{x})\mathbf{P}$ $\mathbf{B} = \mathbf{P}^T \mathbf{W}(\mathbf{x})$
 $\mathbf{P} = \begin{bmatrix} p_1(\mathbf{x}_1) & p_2(\mathbf{x}_1) & \dots & p_m(\mathbf{x}_1) \\ p_1(\mathbf{x}_2) & p_2(\mathbf{x}_2) & \dots & p_m(\mathbf{x}_2) \\ \dots & \dots & \dots & \dots \\ p_1(\mathbf{x}_n) & p_2(\mathbf{x}_n) & \dots & p_m(\mathbf{x}_n) \end{bmatrix}$
 $\mathbf{W}(\mathbf{x}) = \begin{bmatrix} W(\mathbf{x} - \mathbf{x}_1) & 0 & \dots & 0 \\ 0 & W(\mathbf{x} - \mathbf{x}_2) & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & W(\mathbf{x} - \mathbf{x}_n) \end{bmatrix}$

Department of Computer Science Center for Visual Computing

CSE564 Lecture

ST NY BR K

Moving Least Squares Interpolant

$$\mathbf{a}(\mathbf{x}) = \mathbf{A}^{-1}(\mathbf{x}) \mathbf{B}(\mathbf{x}) \mathbf{u}$$

The final locally valid interpolant is:

$$u_p(\mathbf{x}) = \sum_j^N a_j(\mathbf{x}) p_j(\mathbf{x}) \equiv \mathbf{p}^T(\mathbf{x}) \, \mathbf{a}(\mathbf{x})$$

Department of Computer Science Center for Visual Computing

MLS Fit to (Same) Irregular Data

Weighing Functions

• A cubic spline weight function is a good choice

Department of Computer Science Center for Visual Computing

Partition of Unity

 When b is a constant term, MLS basis functions reduce to partition-of-unity basis functions for all the weighting functions

Applications

- A widespread and very powerful tool in Computer Graphics, with many applications
- Surface reconstruction from points
- Interpolating or approximating implicit surfaces
- Simulation
- Animation
- Partition of Unity

Surface Reconstruction

Department of Computer Science Center for Visual Computing

Sharp Feature Modeling

Image Editing

Department of Computer Science Center for Visual Computing

Conclusion

There are a variety of interpolation techniques for irregularly spaced data:

- Polynomial fits
- Best fit polynomials
- Piecewise polynomials
- Radial basis functions
- Moving least squares

Department of Computer Science Center for Visual Computing CSE564 Lectures